/* Lossless_UDP.c * * An implementation of the Lossless_UDP protocol as seen in docs/Lossless_UDP.txt * Copyright (C) 2013 Tox project All Rights Reserved. This file is part of Tox. Tox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Tox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Tox. If not, see . */ //TODO: clean this file a bit. //There are a couple of useless variables to get rid of. #include "Lossless_UDP.h" //maximum data packets in sent and recieve queues. #define MAX_QUEUE_NUM 32 //maximum length of the data in the data packets #define MAX_DATA_SIZE 1024 //maximum number of data packets in the buffer #define BUFFER_PACKET_NUM MAX_QUEUE_NUM //Lossless UDP connection timeout. #define CONNEXION_TIMEOUT 10 //initial amount of sync/hanshake packets to send per second. #define SYNC_RATE 5 //initial send rate of sync packets when data is being sent/recieved. #define DATA_SYNC_RATE 20 typedef struct { char data[MAX_DATA_SIZE]; uint16_t size; }Data; typedef struct { IP_Port ip_port; char status;//0 if connection is dead, 1 if attempting handshake, //2 if handshake is done (we start sending SYNC packets) //3 if we are sending SYNC packets and can send data char inbound; //1 or 2 if connection was initiated by someone else, 0 if not. //2 if incoming_connection() has not returned it yet, 1 if it has. uint16_t SYNC_rate;//current SYNC packet send rate packets per second. uint16_t data_rate;//current data packet send rate packets per second. uint64_t last_SYNC; //time at which our last SYNC packet was sent. uint64_t last_sent; //time at which our last data or handshake packet was sent. uint64_t last_recv; //time at which we last recieved something from the other Data sendbuffer[MAX_QUEUE_NUM];//packet send buffer. Data recvbuffer[MAX_QUEUE_NUM];//packet recieve buffer. uint32_t handshake_id1; uint32_t handshake_id2; uint32_t recv_packetnum; //number of data packets recieved (also used as handshake_id1) uint32_t orecv_packetnum; //number of packets recieved by the other peer uint32_t sent_packetnum; //number of data packets sent uint32_t osent_packetnum; //number of packets sent by the other peer. uint32_t sendbuff_packetnum; //number of latest packet written onto the sendbuffer uint32_t successful_sent;//we know all packets before that number were successfully sent uint32_t successful_read;//packet number of last packet read with the read_packet function uint32_t req_packets[BUFFER_PACKET_NUM]; //list of currently requested packet numbers(by the other person) uint16_t num_req_paquets; //total number of currently requested packets(by the other person) uint8_t recv_counter; uint8_t send_counter; }Connection; #define MAX_CONNECTIONS 256 Connection connections[MAX_CONNECTIONS]; //Functions //get connection id from IP_Port //return -1 if there are no connections like we are looking for //return id if it found it int getconnection_id(IP_Port ip_port) { uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++ ) { if(connections[i].ip_port.ip.i == ip_port.ip.i && connections[i].ip_port.port == ip_port.port && connections[i].status > 0) { return i; } } return -1; } //table of random numbers used below. static uint32_t randtable[6][256]; //generate a handshake_id which depends on the ip_port. //this function will always give one unique handshake_id per ip_port. //TODO: make this better uint32_t handshake_id(IP_Port source) { uint32_t id = 0, i; for(i = 0; i < 6; i++) { if(randtable[i][((uint8_t *)&source)[i]] == 0) { randtable[i][((uint8_t *)&source)[i]] = random_int(); } id ^= randtable[i][((uint8_t *)&source)[i]]; } if(id == 0)//id can't be zero { id = 1; } return id; } //initialize a new connection to ip_port //returns an integer corresponding to the connection id. //return -1 if it could not initialize the connection. //if there already was an existing connection to that ip_port return its number. int new_connection(IP_Port ip_port) { int connect = getconnection_id(ip_port); if(connect != -1) { return connect; } uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].status == 0) { connections[i].ip_port = ip_port; connections[i].status = 1; connections[i].inbound = 0; connections[i].handshake_id1 = handshake_id(ip_port); connections[i].sent_packetnum = connections[i].handshake_id1; connections[i].sendbuff_packetnum = connections[i].handshake_id1; connections[i].successful_sent = connections[i].handshake_id1; connections[i].SYNC_rate = SYNC_RATE; connections[i].data_rate = DATA_SYNC_RATE; connections[i].last_recv = current_time(); connections[i].send_counter = 0; return i; } } return -1; } //initialize a new inbound connection from ip_port //returns an integer corresponding to the connection id. //return -1 if it could not initialize the connection. int new_inconnection(IP_Port ip_port) { if(getconnection_id(ip_port) != -1) { return -1; } uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].status == 0) { connections[i].ip_port = ip_port; connections[i].status = 2; connections[i].inbound = 2; connections[i].SYNC_rate = SYNC_RATE; connections[i].data_rate = DATA_SYNC_RATE; connections[i].last_recv = current_time(); connections[i].send_counter = 127; return i; } } return -1; } //returns an integer corresponding to the next connection in our incoming connection list //return -1 if there are no new incoming connections in the list. int incoming_connection() { uint32_t i; for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].inbound == 2) { connections[i].inbound = 1; return i; } } return -1; } //return -1 if it could not kill the connection. //return 0 if killed successfully int kill_connection(int connection_id) { if(connection_id >= 0 && connection_id < MAX_CONNECTIONS) { if(connections[connection_id].status > 0) { connections[connection_id].status = 0; return 0; } } return -1; } //check if connection is connected //return 0 no. //return 1 if attempting handshake //return 2 if handshake is done //return 3 if fully connected int is_connected(int connection_id) { if(connection_id >= 0 && connection_id < MAX_CONNECTIONS) { return connections[connection_id].status; } return 0; } //returns the ip_port of the corresponding connection. IP_Port connection_ip(int connection_id) { if(connection_id > 0 && connection_id < MAX_CONNECTIONS) { return connections[connection_id].ip_port; } IP_Port zero = {{{0}}, 0}; return zero; } //returns the number of packets in the queue waiting to be successfully sent. uint32_t sendqueue(int connection_id) { return connections[connection_id].sendbuff_packetnum - connections[connection_id].successful_sent; } //returns the number of packets in the queue waiting to be successfully read with read_packet(...) uint32_t recvqueue(int connection_id) { return connections[connection_id].recv_packetnum - connections[connection_id].successful_read; } //return 0 if there is no received data in the buffer. //return length of received packet if successful int read_packet(int connection_id, char * data) { if(recvqueue(connection_id) != 0) { uint16_t index = connections[connection_id].successful_read % MAX_QUEUE_NUM; uint16_t size = connections[connection_id].recvbuffer[index].size; memcpy(data, connections[connection_id].recvbuffer[index].data, size); connections[connection_id].successful_read++; connections[connection_id].recvbuffer[index].size = 0; return size; } return 0; } //return 0 if data could not be put in packet queue //return 1 if data was put into the queue int write_packet(int connection_id, char * data, uint32_t length) { if(length > MAX_DATA_SIZE) { return 0; } if(length == 0) { return 0; } if(sendqueue(connection_id) < MAX_QUEUE_NUM) { uint32_t index = connections[connection_id].sendbuff_packetnum % MAX_QUEUE_NUM; memcpy(connections[connection_id].sendbuffer[index].data, data, length); connections[connection_id].sendbuffer[index].size = length; connections[connection_id].sendbuff_packetnum++; return 1; } return 0; } //put the packet numbers the we are missing in requested and return the number uint32_t missing_packets(int connection_id, uint32_t * requested) { uint32_t number = 0; uint32_t i; for(i = connections[connection_id].recv_packetnum; i != connections[connection_id].osent_packetnum; i++ ) { if(connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].size == 0) { memcpy(requested + number, &i, 4); number++; } } if(number == 0) { connections[connection_id].recv_packetnum = connections[connection_id].osent_packetnum; } return number; } //Packet sending functions //One per packet type. //see docs/Lossless_UDP.txt for more information. int send_handshake(IP_Port ip_port, uint32_t handshake_id1, uint32_t handshake_id2) { char packet[1 + 4 + 4]; packet[0] = 16; memcpy(packet + 1, &handshake_id1, 4); memcpy(packet + 5, &handshake_id2, 4); return sendpacket(ip_port, packet, sizeof(packet)); } int send_SYNC(uint32_t connection_id) { char packet[(BUFFER_PACKET_NUM*4 + 4 + 4 + 2)]; uint16_t index = 0; IP_Port ip_port = connections[connection_id].ip_port; uint8_t counter = connections[connection_id].send_counter; uint32_t recv_packetnum = connections[connection_id].recv_packetnum; uint32_t sent_packetnum = connections[connection_id].sent_packetnum; uint32_t requested[BUFFER_PACKET_NUM]; uint32_t number = missing_packets(connection_id, requested); packet[0] = 17; index += 1; memcpy(packet + index, &counter, 1); index += 1; memcpy(packet + index, &recv_packetnum, 4); index += 4; memcpy(packet + index, &sent_packetnum, 4); index += 4; memcpy(packet + index, requested, 4 * number); return sendpacket(ip_port, packet, (number*4 + 4 + 4 + 2)); } int send_data_packet(uint32_t connection_id, uint32_t packet_num) { uint32_t index = packet_num % MAX_QUEUE_NUM; char packet[1 + 4 + MAX_DATA_SIZE]; packet[0] = 18; memcpy(packet + 1, &packet_num, 4); memcpy(packet + 5, connections[connection_id].sendbuffer[index].data, connections[connection_id].sendbuffer[index].size); return sendpacket(connections[connection_id].ip_port, packet, 1 + 4 + connections[connection_id].sendbuffer[index].size); } //sends 1 data packet int send_DATA(uint32_t connection_id) { int ret; uint32_t buffer[BUFFER_PACKET_NUM]; if(connections[connection_id].num_req_paquets > 0) { ret = send_data_packet(connection_id, connections[connection_id].req_packets[0]); connections[connection_id].num_req_paquets--; memcpy(buffer, connections[connection_id].req_packets + 1, connections[connection_id].num_req_paquets * 4); memcpy(connections[connection_id].req_packets, buffer, connections[connection_id].num_req_paquets * 4); return ret; } if(connections[connection_id].sendbuff_packetnum != connections[connection_id].sent_packetnum) { ret = send_data_packet(connection_id, connections[connection_id].sent_packetnum); connections[connection_id].sent_packetnum++; return ret; } return 0; } //END of packet sending functions //Packet handling functions //One to handle each type of packets we recieve //return 0 if handled correctly, 1 if packet is bad. int handle_handshake(char * packet, uint32_t length, IP_Port source) { if(length != (1 + 4 + 4)) { return 1; } uint32_t handshake_id1, handshake_id2; int connection = getconnection_id(source); memcpy(&handshake_id1, packet + 1, 4); memcpy(&handshake_id2, packet + 5, 4); if(handshake_id2 == 0) { send_handshake(source, handshake_id(source), handshake_id1); return 0; } if(is_connected(connection) != 1) { return 1; } if(handshake_id2 == connections[connection].handshake_id1)//if handshake_id2 is what we sent previously as handshake_id1 { connections[connection].status = 2; //NOTE:is this necessary? //connections[connection].handshake_id2 = handshake_id1; connections[connection].orecv_packetnum = handshake_id2; connections[connection].osent_packetnum = handshake_id1; connections[connection].recv_packetnum = handshake_id1; connections[connection].successful_read = handshake_id1; } return 0; } //returns 1 if sync packet is valid //0 if not. int SYNC_valid(uint32_t length) { if(length < 4 + 4 + 2) { return 0; } if(length > (BUFFER_PACKET_NUM*4 + 4 + 4 + 2) || ((length - 4 - 4 - 2) % 4) != 0) { return 0; } return 1; } //case 1: int handle_SYNC1(IP_Port source, uint32_t recv_packetnum, uint32_t sent_packetnum) { if(handshake_id(source) == recv_packetnum) { int x = new_inconnection(source); if(x != -1) { connections[x].orecv_packetnum = recv_packetnum; connections[x].sent_packetnum = recv_packetnum; connections[x].sendbuff_packetnum = recv_packetnum; connections[x].successful_sent = recv_packetnum; connections[x].osent_packetnum = sent_packetnum; connections[x].recv_packetnum = sent_packetnum; connections[x].successful_read = sent_packetnum; return x; } } return -1; } //case 2: int handle_SYNC2(int connection_id, uint8_t counter, uint32_t recv_packetnum, uint32_t sent_packetnum) { if(recv_packetnum == connections[connection_id].orecv_packetnum) //&& sent_packetnum == connections[connection_id].osent_packetnum) { connections[connection_id].status = 3; connections[connection_id].recv_counter = counter; connections[connection_id].send_counter++; return 0; } return 1; } //case 3: int handle_SYNC3(int connection_id, uint8_t counter, uint32_t recv_packetnum, uint32_t sent_packetnum, uint32_t * req_packets, uint16_t number) { uint8_t comp_counter = (counter - connections[connection_id].recv_counter ); uint32_t comp_1 = (recv_packetnum - connections[connection_id].orecv_packetnum); uint32_t comp_2 = (sent_packetnum - connections[connection_id].osent_packetnum); if(comp_1 < BUFFER_PACKET_NUM && comp_2 < BUFFER_PACKET_NUM && comp_counter < 10) //packet valid { connections[connection_id].orecv_packetnum = recv_packetnum; connections[connection_id].osent_packetnum = sent_packetnum; connections[connection_id].successful_sent = recv_packetnum; connections[connection_id].last_recv = current_time(); connections[connection_id].recv_counter = counter; connections[connection_id].send_counter++; memcpy(connections[connection_id].req_packets, req_packets, 4 * number); connections[connection_id].num_req_paquets = number; return 0; } return 1; } int handle_SYNC(char * packet, uint32_t length, IP_Port source) { if(!SYNC_valid(length)) { return 1; } int connection = getconnection_id(source); uint8_t counter; uint32_t recv_packetnum, sent_packetnum; uint32_t req_packets[BUFFER_PACKET_NUM]; uint16_t number = (length - 4 - 4 - 2)/ 4; memcpy(&counter, packet + 1, 1); memcpy(&recv_packetnum, packet + 2, 4); memcpy(&sent_packetnum,packet + 6, 4); if(number != 0) { memcpy(req_packets, packet + 10, 4 * number); } if(connection == -1) { handle_SYNC1(source, recv_packetnum, sent_packetnum); return 0; } if(connections[connection].status == 2) { handle_SYNC2(connection, counter, recv_packetnum, sent_packetnum); return 0; } if(connections[connection].status == 3) { handle_SYNC3(connection, counter, recv_packetnum, sent_packetnum, req_packets, number); } return 0; } //add a packet to the recieved buffer and set the recv_packetnum of the connection to its proper value. //return 1 if data was too big, 0 if not. int add_recv(int connection_id, uint32_t data_num, char * data, uint16_t size) { if(size > MAX_DATA_SIZE) { return 1; } uint32_t i; uint32_t maxnum = connections[connection_id].successful_read + BUFFER_PACKET_NUM; uint32_t sent_packet = data_num - connections[connection_id].osent_packetnum; for(i = connections[connection_id].recv_packetnum; i != maxnum; i++) { if(i == data_num) { memcpy(connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].data, data, size); connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].size = size; if(sent_packet < BUFFER_PACKET_NUM) { connections[connection_id].osent_packetnum = data_num; } break; } } for(i = connections[connection_id].recv_packetnum; i != maxnum; i++) { if(connections[connection_id].recvbuffer[i % MAX_QUEUE_NUM].size != 0) { connections[connection_id].recv_packetnum = i; } else { break; } } return 0; } int handle_data(char * packet, uint32_t length, IP_Port source) { int connection = getconnection_id(source); if(connection == -1) { return 1; } if(length > 1 + 4 + MAX_DATA_SIZE || length < 1 + 4 + 1) { return 1; } uint32_t number; uint16_t size = length - 1 - 4; memcpy(&number, packet + 1, 4); return add_recv(connection, number, packet + 5, size); } //END of packet handling functions int LosslessUDP_handlepacket(char * packet, uint32_t length, IP_Port source) { switch (packet[0]) { case 16: return handle_handshake(packet, length, source); case 17: return handle_SYNC(packet, length, source); case 18: return handle_data(packet, length, source); default: return 1; } return 0; } //Send handshake requests //handshake packets are sent at the same rate as SYNC packets void doNew() { uint32_t i; uint64_t temp_time = current_time(); for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].status == 1) { if((connections[i].last_sent + (1000000UL/connections[i].SYNC_rate)) <= temp_time) { send_handshake(connections[i].ip_port, connections[i].handshake_id1, 0); connections[i].last_sent = temp_time; } } //kill all timed out connections if( connections[i].status > 0 && (connections[i].last_recv + CONNEXION_TIMEOUT * 1000000UL) < temp_time) { kill_connection(i); } } } void doSYNC() { uint32_t i; uint64_t temp_time = current_time(); for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].status == 2 || connections[i].status == 3) { if((connections[i].last_SYNC + (1000000UL/connections[i].SYNC_rate)) <= temp_time) { send_SYNC(i); connections[i].last_SYNC = temp_time; } } } } void doData() { uint32_t i; uint64_t temp_time = current_time(); for(i = 0; i < MAX_CONNECTIONS; i++) { if(connections[i].status == 3) { if((connections[i].last_sent + (1000000UL/connections[i].data_rate)) <= temp_time) { send_DATA(i); connections[i].last_sent = temp_time; } } } } //TODO: flow control. //automatically adjusts send rates of packets for optimal transmission. void adjustRates() { //if() } //Call this function a couple times per second //It's the main loop. void doLossless_UDP() { doNew(); doSYNC(); doData(); adjustRates(); }