mirror of
https://github.com/irungentoo/toxcore.git
synced 2024-03-22 13:30:51 +08:00
Merge branch 'dubslow-master'
# # Please enter a commit message to explain why this merge is necessary, # especially if it merges an updated upstream into a topic branch. # # Lines starting with '#' will be ignored, and an empty message aborts # the commit.
This commit is contained in:
commit
9878b441b1
|
@ -99,8 +99,8 @@ START_TEST(test_save_friend)
|
|||
// now test compaitibilty with tox_encrypted_load, first manually...
|
||||
uint8_t out1[size], out2[size];
|
||||
printf("Trying to decrypt from pw:\n");
|
||||
uint32_t sz1 = tox_pass_decrypt(data2+TOX_ENC_SAVE_MAGIC_LENGTH, size-TOX_ENC_SAVE_MAGIC_LENGTH, pw, pwlen, out1);
|
||||
uint32_t sz2 = tox_pass_key_decrypt(data2+TOX_ENC_SAVE_MAGIC_LENGTH, size-TOX_ENC_SAVE_MAGIC_LENGTH, key, out2);
|
||||
uint32_t sz1 = tox_pass_decrypt(data2, size, pw, pwlen, out1);
|
||||
uint32_t sz2 = tox_pass_key_decrypt(data2, size, key, out2);
|
||||
ck_assert_msg(sz1 == sz2, "differing output sizes");
|
||||
ck_assert_msg(memcmp(out1, out2, sz1) == 0, "differing output data");
|
||||
|
||||
|
@ -145,6 +145,12 @@ START_TEST(test_keys)
|
|||
sz = tox_pass_decrypt(encrypted, 44+tox_pass_encryption_extra_length(), "123qweasdzxc", 12, out1);
|
||||
ck_assert_msg(sz == 44, "sz isn't right");
|
||||
ck_assert_msg(memcmp(out1, string, 44) == 0, "decryption 3 failed");
|
||||
|
||||
uint8_t salt[tox_pass_salt_length()];
|
||||
ck_assert_msg(0 == tox_get_salt(encrypted, salt), "couldn't get salt");
|
||||
uint8_t key2[tox_pass_key_length()];
|
||||
tox_derive_key_with_salt("123qweasdzxc", 12, salt, key2);
|
||||
ck_assert_msg(0 == memcmp(key, key2, tox_pass_key_length()), "salt comparison failed");
|
||||
}
|
||||
END_TEST
|
||||
|
||||
|
|
|
@ -36,9 +36,9 @@
|
|||
#endif
|
||||
|
||||
#define TOX_PASS_ENCRYPTION_EXTRA_LENGTH (crypto_box_MACBYTES + crypto_box_NONCEBYTES \
|
||||
+ crypto_pwhash_scryptsalsa208sha256_SALTBYTES)
|
||||
+ crypto_pwhash_scryptsalsa208sha256_SALTBYTES + TOX_ENC_SAVE_MAGIC_LENGTH)
|
||||
|
||||
#define TOX_PASS_KEY_LENGTH (crypto_box_KEYBYTES + crypto_pwhash_scryptsalsa208sha256_SALTBYTES)
|
||||
#define TOX_PASS_KEY_LENGTH (crypto_pwhash_scryptsalsa208sha256_SALTBYTES + crypto_box_KEYBYTES)
|
||||
|
||||
int tox_pass_encryption_extra_length()
|
||||
{
|
||||
|
@ -50,6 +50,11 @@ int tox_pass_key_length()
|
|||
return TOX_PASS_KEY_LENGTH;
|
||||
}
|
||||
|
||||
int tox_pass_salt_length()
|
||||
{
|
||||
return crypto_pwhash_scryptsalsa208sha256_SALTBYTES;
|
||||
}
|
||||
|
||||
/* This "module" provides functions analogous to tox_load and tox_save in toxcore
|
||||
* Clients should consider alerting their users that, unlike plain data, if even one bit
|
||||
* becomes corrupted, the data will be entirely unrecoverable.
|
||||
|
@ -59,7 +64,24 @@ int tox_pass_key_length()
|
|||
/* return size of the messenger data (for encrypted saving). */
|
||||
uint32_t tox_encrypted_size(const Tox *tox)
|
||||
{
|
||||
return tox_size(tox) + TOX_PASS_ENCRYPTION_EXTRA_LENGTH + TOX_ENC_SAVE_MAGIC_LENGTH;
|
||||
return tox_size(tox) + TOX_PASS_ENCRYPTION_EXTRA_LENGTH;
|
||||
}
|
||||
|
||||
/* This retrieves the salt used to encrypt the given data, which can then be passed to
|
||||
* derive_key_with_salt to produce the same key as was previously used. Any encrpyted
|
||||
* data with this module can be used as input.
|
||||
*
|
||||
* returns -1 if the magic number is wrong
|
||||
* returns 0 otherwise (no guarantee about validity of data)
|
||||
*/
|
||||
int tox_get_salt(uint8_t *data, uint8_t *salt)
|
||||
{
|
||||
if (memcmp(data, TOX_ENC_SAVE_MAGIC_NUMBER, TOX_ENC_SAVE_MAGIC_LENGTH) != 0)
|
||||
return -1;
|
||||
|
||||
data += TOX_ENC_SAVE_MAGIC_LENGTH;
|
||||
memcpy(salt, data, crypto_pwhash_scryptsalsa208sha256_SALTBYTES);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Generates a secret symmetric key from the given passphrase. out_key must be at least
|
||||
|
@ -75,20 +97,29 @@ uint32_t tox_encrypted_size(const Tox *tox)
|
|||
* returns -1 on failure
|
||||
*/
|
||||
int tox_derive_key_from_pass(uint8_t *passphrase, uint32_t pplength, uint8_t *out_key)
|
||||
{
|
||||
uint8_t salt[crypto_pwhash_scryptsalsa208sha256_SALTBYTES];
|
||||
randombytes(salt, sizeof salt);
|
||||
return tox_derive_key_with_salt(passphrase, pplength, salt, out_key);
|
||||
}
|
||||
|
||||
/* Same as above, except with use the given salt for deterministic key derivation.
|
||||
* The salt must be tox_salt_length() bytes in length.
|
||||
*/
|
||||
int tox_derive_key_with_salt(uint8_t *passphrase, uint32_t pplength, uint8_t *salt, uint8_t *out_key)
|
||||
{
|
||||
if (pplength == 0)
|
||||
return -1;
|
||||
|
||||
uint8_t passkey[crypto_hash_sha256_BYTES];
|
||||
crypto_hash_sha256(passkey, passphrase, pplength);
|
||||
/* First derive a key from the password */
|
||||
|
||||
uint8_t key[crypto_box_KEYBYTES];
|
||||
|
||||
/* Derive a key from the password */
|
||||
/* http://doc.libsodium.org/key_derivation/README.html */
|
||||
/* note that, according to the documentation, a generic pwhash interface will be created
|
||||
* once the pwhash competition (https://password-hashing.net/) is over */
|
||||
uint8_t salt[crypto_pwhash_scryptsalsa208sha256_SALTBYTES];
|
||||
uint8_t key[crypto_box_KEYBYTES];
|
||||
randombytes(salt, sizeof salt);
|
||||
|
||||
if (crypto_pwhash_scryptsalsa208sha256(
|
||||
key, sizeof(key), passkey, sizeof(passkey), salt,
|
||||
crypto_pwhash_scryptsalsa208sha256_OPSLIMIT_INTERACTIVE * 2, /* slightly stronger */
|
||||
|
@ -123,13 +154,17 @@ int tox_pass_key_encrypt(const uint8_t *data, uint32_t data_len, const uint8_t *
|
|||
* need them to decrypt the data
|
||||
*/
|
||||
|
||||
/* first add the prefix */
|
||||
uint8_t nonce[crypto_box_NONCEBYTES];
|
||||
random_nonce(nonce);
|
||||
/* first add the magic number */
|
||||
memcpy(out, TOX_ENC_SAVE_MAGIC_NUMBER, TOX_ENC_SAVE_MAGIC_LENGTH);
|
||||
out += TOX_ENC_SAVE_MAGIC_LENGTH;
|
||||
|
||||
/* then add the rest prefix */
|
||||
memcpy(out, key, crypto_pwhash_scryptsalsa208sha256_SALTBYTES);
|
||||
key += crypto_pwhash_scryptsalsa208sha256_SALTBYTES;
|
||||
out += crypto_pwhash_scryptsalsa208sha256_SALTBYTES;
|
||||
|
||||
uint8_t nonce[crypto_box_NONCEBYTES];
|
||||
random_nonce(nonce);
|
||||
memcpy(out, nonce, crypto_box_NONCEBYTES);
|
||||
out += crypto_box_NONCEBYTES;
|
||||
|
||||
|
@ -172,11 +207,6 @@ int tox_encrypted_save(const Tox *tox, uint8_t *data, uint8_t *passphrase, uint3
|
|||
uint8_t temp_data[temp_size];
|
||||
tox_save(tox, temp_data);
|
||||
|
||||
/* the output data consists of, in order: magic number, enc_data */
|
||||
/* first add the magic number */
|
||||
memcpy(data, TOX_ENC_SAVE_MAGIC_NUMBER, TOX_ENC_SAVE_MAGIC_LENGTH);
|
||||
data += TOX_ENC_SAVE_MAGIC_LENGTH;
|
||||
|
||||
/* now encrypt */
|
||||
return tox_pass_encrypt(temp_data, temp_size, passphrase, pplength, data);
|
||||
}
|
||||
|
@ -194,11 +224,6 @@ int tox_encrypted_key_save(const Tox *tox, uint8_t *data, uint8_t *key)
|
|||
uint8_t temp_data[temp_size];
|
||||
tox_save(tox, temp_data);
|
||||
|
||||
/* the output data consists of, in order: magic number, enc_data */
|
||||
/* first add the magic number */
|
||||
memcpy(data, TOX_ENC_SAVE_MAGIC_NUMBER, TOX_ENC_SAVE_MAGIC_LENGTH);
|
||||
data += TOX_ENC_SAVE_MAGIC_LENGTH;
|
||||
|
||||
/* encrypt */
|
||||
return tox_pass_key_encrypt(temp_data, temp_size, key, data);
|
||||
}
|
||||
|
@ -211,9 +236,12 @@ int tox_encrypted_key_save(const Tox *tox, uint8_t *data, uint8_t *key)
|
|||
*/
|
||||
int tox_pass_key_decrypt(const uint8_t *data, uint32_t length, const uint8_t *key, uint8_t *out)
|
||||
{
|
||||
if (length <= TOX_PASS_ENCRYPTION_EXTRA_LENGTH)
|
||||
if (length <= TOX_PASS_ENCRYPTION_EXTRA_LENGTH
|
||||
|| 0 != memcmp(data, TOX_ENC_SAVE_MAGIC_NUMBER, TOX_ENC_SAVE_MAGIC_LENGTH))
|
||||
return -1;
|
||||
|
||||
data += TOX_ENC_SAVE_MAGIC_LENGTH;
|
||||
|
||||
uint32_t decrypt_length = length - TOX_PASS_ENCRYPTION_EXTRA_LENGTH;
|
||||
//uint8_t salt[crypto_pwhash_scryptsalsa208sha256_SALTBYTES];
|
||||
uint8_t nonce[crypto_box_NONCEBYTES];
|
||||
|
@ -241,12 +269,11 @@ int tox_pass_key_decrypt(const uint8_t *data, uint32_t length, const uint8_t *ke
|
|||
*/
|
||||
int tox_pass_decrypt(const uint8_t *data, uint32_t length, uint8_t *passphrase, uint32_t pplength, uint8_t *out)
|
||||
{
|
||||
|
||||
uint8_t passkey[crypto_hash_sha256_BYTES];
|
||||
crypto_hash_sha256(passkey, passphrase, pplength);
|
||||
|
||||
uint8_t salt[crypto_pwhash_scryptsalsa208sha256_SALTBYTES];
|
||||
memcpy(salt, data, crypto_pwhash_scryptsalsa208sha256_SALTBYTES);
|
||||
memcpy(salt, data + TOX_ENC_SAVE_MAGIC_LENGTH, crypto_pwhash_scryptsalsa208sha256_SALTBYTES);
|
||||
|
||||
/* derive the key */
|
||||
uint8_t key[crypto_box_KEYBYTES + crypto_pwhash_scryptsalsa208sha256_SALTBYTES];
|
||||
|
@ -272,12 +299,6 @@ int tox_pass_decrypt(const uint8_t *data, uint32_t length, uint8_t *passphrase,
|
|||
*/
|
||||
int tox_encrypted_load(Tox *tox, const uint8_t *data, uint32_t length, uint8_t *passphrase, uint32_t pplength)
|
||||
{
|
||||
if (memcmp(data, TOX_ENC_SAVE_MAGIC_NUMBER, TOX_ENC_SAVE_MAGIC_LENGTH) != 0)
|
||||
return -1;
|
||||
|
||||
data += TOX_ENC_SAVE_MAGIC_LENGTH;
|
||||
length -= TOX_ENC_SAVE_MAGIC_LENGTH;
|
||||
|
||||
uint32_t decrypt_length = length - TOX_PASS_ENCRYPTION_EXTRA_LENGTH;
|
||||
uint8_t temp_data[decrypt_length];
|
||||
|
||||
|
@ -295,12 +316,6 @@ int tox_encrypted_load(Tox *tox, const uint8_t *data, uint32_t length, uint8_t *
|
|||
*/
|
||||
int tox_encrypted_key_load(Tox *tox, const uint8_t *data, uint32_t length, uint8_t *key)
|
||||
{
|
||||
if (memcmp(data, TOX_ENC_SAVE_MAGIC_NUMBER, TOX_ENC_SAVE_MAGIC_LENGTH) != 0)
|
||||
return -1;
|
||||
|
||||
data += TOX_ENC_SAVE_MAGIC_LENGTH;
|
||||
length -= TOX_ENC_SAVE_MAGIC_LENGTH;
|
||||
|
||||
uint32_t decrypt_length = length - TOX_PASS_ENCRYPTION_EXTRA_LENGTH;
|
||||
uint8_t temp_data[decrypt_length];
|
||||
|
||||
|
@ -316,10 +331,15 @@ int tox_encrypted_key_load(Tox *tox, const uint8_t *data, uint32_t length, uint8
|
|||
* returns 1 if it is encrypted
|
||||
* returns 0 otherwise
|
||||
*/
|
||||
int tox_is_save_encrypted(const uint8_t *data)
|
||||
int tox_is_data_encrypted(const uint8_t *data)
|
||||
{
|
||||
if (memcmp(data, TOX_ENC_SAVE_MAGIC_NUMBER, TOX_ENC_SAVE_MAGIC_LENGTH) == 0)
|
||||
return 1;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
int tox_is_save_encrypted(const uint8_t *data)
|
||||
{
|
||||
return tox_is_data_encrypted(data);
|
||||
}
|
||||
|
|
|
@ -35,46 +35,44 @@ extern "C" {
|
|||
typedef struct Tox Tox;
|
||||
#endif
|
||||
|
||||
// these two functions provide access to these defines in toxencryptsave.c, which
|
||||
//otherwise aren't actually available in clients...
|
||||
// these functions provide access to these defines in toxencryptsave.c, which
|
||||
// otherwise aren't actually available in clients...
|
||||
int tox_pass_encryption_extra_length();
|
||||
|
||||
int tox_pass_key_length();
|
||||
|
||||
/* This "module" provides functions analogous to tox_load and tox_save in toxcore
|
||||
int tox_pass_salt_length();
|
||||
|
||||
/* return size of the messenger data (for encrypted Messenger saving). */
|
||||
uint32_t tox_encrypted_size(const Tox *tox);
|
||||
|
||||
/* This "module" provides functions analogous to tox_load and tox_save in toxcore,
|
||||
* as well as functions for encryption of arbitrary client data (e.g. chat logs).
|
||||
*
|
||||
* It is conceptually organized into two parts. The first part are the functions
|
||||
* with "key" in the name. To use these functions, first derive an encryption key
|
||||
* from a password with tox_derive_key_from_pass, and use the returned key to
|
||||
* encrypt the data. The second part takes the password itself instead of the key,
|
||||
* and then delegates to the first part to derive the key before de/encryption,
|
||||
* which can simplify client code; however, key derivation is very expensive
|
||||
* compared to the actual encryption, so clients that do a lot of encryption should
|
||||
* favor using the first part intead of the second part.
|
||||
*
|
||||
* The encrypted data is prepended with a magic number, to aid validity checking
|
||||
* (no guarantees are made of course).
|
||||
*
|
||||
* Clients should consider alerting their users that, unlike plain data, if even one bit
|
||||
* becomes corrupted, the data will be entirely unrecoverable.
|
||||
* Ditto if they forget their password, there is no way to recover the data.
|
||||
*/
|
||||
|
||||
/* return size of the messenger data (for encrypted saving). */
|
||||
uint32_t tox_encrypted_size(const Tox *tox);
|
||||
|
||||
/* Generates a secret symmetric key from the given passphrase. out_key must be at least
|
||||
* tox_pass_key_length() bytes long.
|
||||
* Be sure to not compromise the key! Only keep it in memory, do not write to disk.
|
||||
* This function is fairly cheap, but irungentoo insists that you be allowed to
|
||||
* cache the result if you want, to minimize computation for repeated encryptions.
|
||||
* The password is zeroed after key derivation.
|
||||
* The key should only be used with the other functions in this module, as it
|
||||
* includes a salt.
|
||||
*
|
||||
* returns 0 on success
|
||||
* returns -1 on failure
|
||||
/******************************* BEGIN PART 2 *******************************
|
||||
* For simplicty, the second part of the module is presented first. The API for
|
||||
* the first part is analgous, with some extra functions for key handling. If
|
||||
* your code spends too much time using these functions, consider using the part
|
||||
* 1 functions instead.
|
||||
*/
|
||||
int tox_derive_key_from_pass(uint8_t *passphrase, uint32_t pplength, uint8_t *out_key);
|
||||
|
||||
/* Encrypt arbitrary with a key produced by tox_derive_key_from_pass. The output
|
||||
* array must be at least data_len + tox_pass_encryption_extra_length() bytes long.
|
||||
* key must be tox_pass_key_length() bytes.
|
||||
* If you already have a symmetric key from somewhere besides this module, simply
|
||||
* call encrypt_data_symmetric in toxcore/crypto_core directly.
|
||||
*
|
||||
*
|
||||
* returns 0 on success
|
||||
* returns -1 on failure
|
||||
*/
|
||||
int tox_pass_key_encrypt(const uint8_t *data, uint32_t data_len, const uint8_t *key, uint8_t *out);
|
||||
|
||||
/* Encrypts the given data with the given passphrase. The output array must be
|
||||
* at least data_len + tox_pass_encryption_extra_length() bytes long. This delegates
|
||||
|
@ -95,22 +93,6 @@ int tox_pass_encrypt(const uint8_t *data, uint32_t data_len, uint8_t *passphrase
|
|||
*/
|
||||
int tox_encrypted_save(const Tox *tox, uint8_t *data, uint8_t *passphrase, uint32_t pplength);
|
||||
|
||||
/* Save the messenger data encrypted with the given key from tox_derive_key.
|
||||
* data must be at least tox_encrypted_size().
|
||||
*
|
||||
* returns 0 on success
|
||||
* returns -1 on failure
|
||||
*/
|
||||
int tox_encrypted_key_save(const Tox *tox, uint8_t *data, uint8_t *key);
|
||||
|
||||
/* This is the inverse of tox_pass_key_encrypt, also using only keys produced by
|
||||
* tox_derive_key_from_pass.
|
||||
*
|
||||
* returns the length of the output data (== data_len - tox_pass_encryption_extra_length()) on success
|
||||
* returns -1 on failure
|
||||
*/
|
||||
int tox_pass_key_decrypt(const uint8_t *data, uint32_t length, const uint8_t *key, uint8_t *out);
|
||||
|
||||
/* Decrypts the given data with the given passphrase. The output array must be
|
||||
* at least data_len - tox_pass_encryption_extra_length() bytes long. This delegates
|
||||
* to tox_pass_key_decrypt.
|
||||
|
@ -129,6 +111,69 @@ int tox_pass_decrypt(const uint8_t *data, uint32_t length, uint8_t *passphrase,
|
|||
*/
|
||||
int tox_encrypted_load(Tox *tox, const uint8_t *data, uint32_t length, uint8_t *passphrase, uint32_t pplength);
|
||||
|
||||
|
||||
/******************************* BEGIN PART 1 *******************************
|
||||
* And now part "1", which does the actual encryption, and is rather less cpu
|
||||
* intensive than part one. The first 3 functions are for key handling.
|
||||
*/
|
||||
|
||||
/* Generates a secret symmetric key from the given passphrase. out_key must be at least
|
||||
* tox_pass_key_length() bytes long.
|
||||
* Be sure to not compromise the key! Only keep it in memory, do not write to disk.
|
||||
* The password is zeroed after key derivation.
|
||||
* The key should only be used with the other functions in this module, as it
|
||||
* includes a salt.
|
||||
* Note that this function is not deterministic; to derive the same key from a
|
||||
* password, you also must know the random salt that was used. See below.
|
||||
*
|
||||
* returns 0 on success
|
||||
* returns -1 on failure
|
||||
*/
|
||||
int tox_derive_key_from_pass(uint8_t *passphrase, uint32_t pplength, uint8_t *out_key);
|
||||
|
||||
/* Same as above, except with use the given salt for deterministic key derivation.
|
||||
* The salt must be tox_salt_length() bytes in length.
|
||||
*/
|
||||
int tox_derive_key_with_salt(uint8_t *passphrase, uint32_t pplength, uint8_t *salt, uint8_t *out_key);
|
||||
|
||||
/* This retrieves the salt used to encrypt the given data, which can then be passed to
|
||||
* derive_key_with_salt to produce the same key as was previously used. Any encrpyted
|
||||
* data with this module can be used as input.
|
||||
*
|
||||
* returns -1 if the magic number is wrong
|
||||
* returns 0 otherwise (no guarantee about validity of data)
|
||||
*/
|
||||
int tox_get_salt(uint8_t *data, uint8_t *salt);
|
||||
|
||||
/* Now come the functions that are analogous to the part 2 functions. */
|
||||
|
||||
/* Encrypt arbitrary with a key produced by tox_derive_key_. The output
|
||||
* array must be at least data_len + tox_pass_encryption_extra_length() bytes long.
|
||||
* key must be tox_pass_key_length() bytes.
|
||||
* If you already have a symmetric key from somewhere besides this module, simply
|
||||
* call encrypt_data_symmetric in toxcore/crypto_core directly.
|
||||
*
|
||||
* returns 0 on success
|
||||
* returns -1 on failure
|
||||
*/
|
||||
int tox_pass_key_encrypt(const uint8_t *data, uint32_t data_len, const uint8_t *key, uint8_t *out);
|
||||
|
||||
/* Save the messenger data encrypted with the given key from tox_derive_key.
|
||||
* data must be at least tox_encrypted_size().
|
||||
*
|
||||
* returns 0 on success
|
||||
* returns -1 on failure
|
||||
*/
|
||||
int tox_encrypted_key_save(const Tox *tox, uint8_t *data, uint8_t *key);
|
||||
|
||||
/* This is the inverse of tox_pass_key_encrypt, also using only keys produced by
|
||||
* tox_derive_key_from_pass.
|
||||
*
|
||||
* returns the length of the output data (== data_len - tox_pass_encryption_extra_length()) on success
|
||||
* returns -1 on failure
|
||||
*/
|
||||
int tox_pass_key_decrypt(const uint8_t *data, uint32_t length, const uint8_t *key, uint8_t *out);
|
||||
|
||||
/* Load the messenger from encrypted data of size length, with key from tox_derive_key.
|
||||
*
|
||||
* returns 0 on success
|
||||
|
@ -141,7 +186,8 @@ int tox_encrypted_key_load(Tox *tox, const uint8_t *data, uint32_t length, uint8
|
|||
* returns 1 if it is encrypted
|
||||
* returns 0 otherwise
|
||||
*/
|
||||
int tox_is_save_encrypted(const uint8_t *data);
|
||||
int tox_is_data_encrypted(const uint8_t *data);
|
||||
int tox_is_save_encrypted(const uint8_t *data); // poorly-named alias for backwards compat (oh irony...)
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user