fix: Use QueryPerformanceCounter on windows for monotonic time.

This fixes time resolution issues and simplifies the code a bit. QPC can
in theory jump forward in time, but in practice not by enough to matter
in our use case.
This commit is contained in:
iphydf 2023-12-27 11:54:37 +00:00
parent 1224e656e3
commit 82d8265688
No known key found for this signature in database
GPG Key ID: 3855DBA2D74403C9
4 changed files with 31 additions and 75 deletions

View File

@ -149,6 +149,8 @@ void set_mono_time_callback(AutoTox *autotox)
Mono_Time *mono_time = autotox->tox->mono_time; Mono_Time *mono_time = autotox->tox->mono_time;
autotox->clock = current_time_monotonic(mono_time); autotox->clock = current_time_monotonic(mono_time);
ck_assert_msg(autotox->clock >= 1000,
"clock is too low (not initialised?): %lu", (unsigned long)autotox->clock);
mono_time_set_current_time_callback(mono_time, nullptr, nullptr); // set to default first mono_time_set_current_time_callback(mono_time, nullptr, nullptr); // set to default first
mono_time_set_current_time_callback(mono_time, get_state_clock_callback, &autotox->clock); mono_time_set_current_time_callback(mono_time, get_state_clock_callback, &autotox->clock);
} }

View File

@ -9,7 +9,7 @@ namespace {
struct Announces : ::testing::Test { struct Announces : ::testing::Test {
protected: protected:
const Memory *mem_ = system_memory(); const Memory *mem_ = system_memory();
uint64_t clock_ = 0; uint64_t clock_ = 1000;
Mono_Time *mono_time_ = nullptr; Mono_Time *mono_time_ = nullptr;
GC_Announces_List *gca_ = nullptr; GC_Announces_List *gca_ = nullptr;
GC_Announce _ann1; GC_Announce _ann1;

View File

@ -1,5 +1,5 @@
/* SPDX-License-Identifier: GPL-3.0-or-later /* SPDX-License-Identifier: GPL-3.0-or-later
* Copyright © 2016-2020 The TokTok team. * Copyright © 2016-2023 The TokTok team.
* Copyright © 2014 Tox project. * Copyright © 2014 Tox project.
*/ */
#ifndef _XOPEN_SOURCE #ifndef _XOPEN_SOURCE
@ -40,12 +40,6 @@
struct Mono_Time { struct Mono_Time {
uint64_t cur_time; uint64_t cur_time;
uint64_t base_time; uint64_t base_time;
#ifdef OS_WIN32
/* protect `last_clock_update` and `last_clock_mono` from concurrent access */
pthread_mutex_t last_clock_lock;
uint32_t last_clock_mono;
bool last_clock_update;
#endif
#ifndef ESP_PLATFORM #ifndef ESP_PLATFORM
/* protect `time` from concurrent access */ /* protect `time` from concurrent access */
@ -56,42 +50,33 @@ struct Mono_Time {
void *user_data; void *user_data;
}; };
static uint64_t timespec_to_u64(struct timespec clock_mono)
{
return UINT64_C(1000) * clock_mono.tv_sec + (clock_mono.tv_nsec / UINT64_C(1000000));
}
#ifdef OS_WIN32 #ifdef OS_WIN32
non_null() non_null()
static uint64_t current_time_monotonic_default(void *user_data) static uint64_t current_time_monotonic_default(void *user_data)
{ {
Mono_Time *const mono_time = (Mono_Time *)user_data; LARGE_INTEGER freq;
LARGE_INTEGER count;
/* Must hold mono_time->last_clock_lock here */ if (!QueryPerformanceFrequency(&freq)) {
return 0;
/* GetTickCount provides only a 32 bit counter, but we can't use
* GetTickCount64 for backwards compatibility, so we handle wraparound
* ourselves.
*/
const uint32_t ticks = GetTickCount();
/* the higher 32 bits count the number of wrap arounds */
uint64_t old_ovf = mono_time->cur_time & ~((uint64_t)UINT32_MAX);
/* Check if time has decreased because of 32 bit wrap from GetTickCount() */
if (ticks < mono_time->last_clock_mono) {
/* account for overflow */
old_ovf += UINT32_MAX + UINT64_C(1);
} }
if (!QueryPerformanceCounter(&count)) {
if (mono_time->last_clock_update) { return 0;
mono_time->last_clock_mono = ticks;
mono_time->last_clock_update = false;
} }
struct timespec sp = {0};
/* splice the low and high bits back together */ sp.tv_sec = count.QuadPart / freq.QuadPart;
return old_ovf + ticks; if (freq.QuadPart < 1000000000) {
} sp.tv_nsec = (count.QuadPart % freq.QuadPart) * 1000000000 / freq.QuadPart;
#else // !OS_WIN32 } else {
static uint64_t timespec_to_u64(struct timespec clock_mono) sp.tv_nsec = (long)((count.QuadPart % freq.QuadPart) * (1000000000.0 / freq.QuadPart));
{ }
return 1000ULL * clock_mono.tv_sec + (clock_mono.tv_nsec / 1000000ULL); return timespec_to_u64(sp);
} }
#else
#ifdef __APPLE__ #ifdef __APPLE__
non_null() non_null()
static uint64_t current_time_monotonic_default(void *user_data) static uint64_t current_time_monotonic_default(void *user_data)
@ -150,19 +135,6 @@ Mono_Time *mono_time_new(const Memory *mem, mono_time_current_time_cb *current_t
mono_time_set_current_time_callback(mono_time, current_time_callback, user_data); mono_time_set_current_time_callback(mono_time, current_time_callback, user_data);
#ifdef OS_WIN32
mono_time->last_clock_mono = 0;
mono_time->last_clock_update = false;
if (pthread_mutex_init(&mono_time->last_clock_lock, nullptr) < 0) {
mem_delete(mem, mono_time->time_update_lock);
mem_delete(mem, mono_time);
return nullptr;
}
#endif
mono_time->cur_time = 0; mono_time->cur_time = 0;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
// Maximum reproducibility. Never return time = 0. // Maximum reproducibility. Never return time = 0.
@ -170,7 +142,7 @@ Mono_Time *mono_time_new(const Memory *mem, mono_time_current_time_cb *current_t
#else #else
// Never return time = 0 in case time() returns 0 (e.g. on microcontrollers // Never return time = 0 in case time() returns 0 (e.g. on microcontrollers
// without battery-powered RTC or ones where NTP didn't initialise it yet). // without battery-powered RTC or ones where NTP didn't initialise it yet).
mono_time->base_time = max_u64(1, (uint64_t)time(nullptr)) * 1000ULL - current_time_monotonic(mono_time); mono_time->base_time = max_u64(1, (uint64_t)time(nullptr)) * UINT64_C(1000) - current_time_monotonic(mono_time);
#endif #endif
mono_time_update(mono_time); mono_time_update(mono_time);
@ -183,9 +155,6 @@ void mono_time_free(const Memory *mem, Mono_Time *mono_time)
if (mono_time == nullptr) { if (mono_time == nullptr) {
return; return;
} }
#ifdef OS_WIN32
pthread_mutex_destroy(&mono_time->last_clock_lock);
#endif
#ifndef ESP_PLATFORM #ifndef ESP_PLATFORM
pthread_rwlock_destroy(mono_time->time_update_lock); pthread_rwlock_destroy(mono_time->time_update_lock);
mem_delete(mem, mono_time->time_update_lock); mem_delete(mem, mono_time->time_update_lock);
@ -195,16 +164,8 @@ void mono_time_free(const Memory *mem, Mono_Time *mono_time)
void mono_time_update(Mono_Time *mono_time) void mono_time_update(Mono_Time *mono_time)
{ {
#ifdef OS_WIN32
/* we actually want to update the overflow state of mono_time here */
pthread_mutex_lock(&mono_time->last_clock_lock);
mono_time->last_clock_update = true;
#endif
const uint64_t cur_time = const uint64_t cur_time =
mono_time->base_time + mono_time->current_time_callback(mono_time->user_data); mono_time->base_time + mono_time->current_time_callback(mono_time->user_data);
#ifdef OS_WIN32
pthread_mutex_unlock(&mono_time->last_clock_lock);
#endif
#ifndef ESP_PLATFORM #ifndef ESP_PLATFORM
pthread_rwlock_wrlock(mono_time->time_update_lock); pthread_rwlock_wrlock(mono_time->time_update_lock);
@ -230,7 +191,7 @@ uint64_t mono_time_get_ms(const Mono_Time *mono_time)
uint64_t mono_time_get(const Mono_Time *mono_time) uint64_t mono_time_get(const Mono_Time *mono_time)
{ {
return mono_time_get_ms(mono_time) / 1000ULL; return mono_time_get_ms(mono_time) / UINT64_C(1000);
} }
bool mono_time_is_timeout(const Mono_Time *mono_time, uint64_t timestamp, uint64_t timeout) bool mono_time_is_timeout(const Mono_Time *mono_time, uint64_t timestamp, uint64_t timeout)
@ -257,15 +218,5 @@ void mono_time_set_current_time_callback(Mono_Time *mono_time,
*/ */
uint64_t current_time_monotonic(Mono_Time *mono_time) uint64_t current_time_monotonic(Mono_Time *mono_time)
{ {
/* For WIN32 we don't want to change overflow state of mono_time here */ return mono_time->current_time_callback(mono_time->user_data);
#ifdef OS_WIN32
/* We don't want to update the overflow state of mono_time here,
* but must protect against other threads */
pthread_mutex_lock(&mono_time->last_clock_lock);
#endif
const uint64_t cur_time = mono_time->current_time_callback(mono_time->user_data);
#ifdef OS_WIN32
pthread_mutex_unlock(&mono_time->last_clock_lock);
#endif
return cur_time;
} }

View File

@ -53,11 +53,14 @@ TEST(MonoTime, IsTimeoutReal)
uint64_t const start = mono_time_get(mono_time); uint64_t const start = mono_time_get(mono_time);
EXPECT_FALSE(mono_time_is_timeout(mono_time, start, 5)); EXPECT_FALSE(mono_time_is_timeout(mono_time, start, 5));
const uint64_t before_sleep = mono_time_get(mono_time);
std::this_thread::sleep_for(std::chrono::milliseconds(100)); std::this_thread::sleep_for(std::chrono::milliseconds(100));
mono_time_update(mono_time); mono_time_update(mono_time);
const uint64_t after_sleep = mono_time_get(mono_time);
// should still not have timed out (5sec) after sleeping ~100ms // should still not have timed out (5sec) after sleeping ~100ms
EXPECT_FALSE(mono_time_is_timeout(mono_time, start, 5)); EXPECT_FALSE(mono_time_is_timeout(mono_time, start, 5))
<< "before sleep: " << before_sleep << ", after sleep: " << after_sleep;
mono_time_free(mem, mono_time); mono_time_free(mem, mono_time);
} }