#include #include #include #include #include #include "geometry.h" struct Light { Light(const Vec3f &p, const float &i) : position(p), intensity(i) {} Vec3f position; float intensity; }; struct Material { Material(const float &r, const Vec4f &a, const Vec3f &color, const float &spec) : refractive_index(r), albedo(a), diffuse_color(color), specular_exponent(spec) {} Material() : refractive_index(1), albedo(1,0,0,0), diffuse_color(), specular_exponent() {} float refractive_index; Vec4f albedo; Vec3f diffuse_color; float specular_exponent; }; struct Sphere { Vec3f center; float radius; Material material; Sphere(const Vec3f &c, const float &r, const Material &m) : center(c), radius(r), material(m) {} bool ray_intersect(const Vec3f &orig, const Vec3f &dir, float &t0) const { Vec3f L = center - orig; float tca = L*dir; float d2 = L*L - tca*tca; if (d2 > radius*radius) return false; float thc = sqrtf(radius*radius - d2); t0 = tca - thc; float t1 = tca + thc; if (t0 < 0) t0 = t1; if (t0 < 0) return false; return true; } }; Vec3f reflect(const Vec3f &I, const Vec3f &N) { return I - N*2.f*(I*N); } Vec3f refract(const Vec3f &I, const Vec3f &N, const float &refractive_index) { // Snell's law float cosi = - std::max(-1.f, std::min(1.f, I*N)); float etai = 1, etat = refractive_index; Vec3f n = N; if (cosi < 0) { // if the ray is inside the object, swap the indices and invert the normal to get the correct result cosi = -cosi; std::swap(etai, etat); n = -N; } float eta = etai / etat; float k = 1 - eta*eta*(1 - cosi*cosi); return k < 0 ? Vec3f(0,0,0) : I*eta + n*(eta * cosi - sqrtf(k)); } bool scene_intersect(const Vec3f &orig, const Vec3f &dir, const std::vector &spheres, Vec3f &hit, Vec3f &N, Material &material) { float spheres_dist = std::numeric_limits::max(); for (size_t i=0; i < spheres.size(); i++) { float dist_i; if (spheres[i].ray_intersect(orig, dir, dist_i) && dist_i < spheres_dist) { spheres_dist = dist_i; hit = orig + dir*dist_i; N = (hit - spheres[i].center).normalize(); material = spheres[i].material; } } float checkerboard_dist = std::numeric_limits::max(); if (fabs(dir.y)>1e-3) { float d = -(orig.y+4)/dir.y; // the checkerboard plane has equation y = -4 Vec3f pt = orig + dir*d; if (d>0 && fabs(pt.x)<10 && pt.z<-10 && pt.z>-30 && d &spheres, const std::vector &lights, size_t depth=0) { Vec3f point, N; Material material; if (depth>4 || !scene_intersect(orig, dir, spheres, point, N, material)) { return Vec3f(0.2, 0.7, 0.8); // background color } Vec3f reflect_dir = reflect(dir, N).normalize(); Vec3f refract_dir = refract(dir, N, material.refractive_index).normalize(); Vec3f reflect_orig = reflect_dir*N < 0 ? point - N*1e-3 : point + N*1e-3; // offset the original point to avoid occlusion by the object itself Vec3f refract_orig = refract_dir*N < 0 ? point - N*1e-3 : point + N*1e-3; Vec3f reflect_color = cast_ray(reflect_orig, reflect_dir, spheres, lights, depth + 1); Vec3f refract_color = cast_ray(refract_orig, refract_dir, spheres, lights, depth + 1); float diffuse_light_intensity = 0, specular_light_intensity = 0; for (size_t i=0; i &spheres, const std::vector &lights) { const int width = 1024; const int height = 768; const int fov = M_PI/2.; std::vector framebuffer(width*height); #pragma omp parallel for for (size_t j = 0; j1) c = c*(1./max); for (size_t j = 0; j<3; j++) { ofs << (char)(255 * std::max(0.f, std::min(1.f, framebuffer[i][j]))); } } ofs.close(); } int main() { Material ivory(1.0, Vec4f(0.6, 0.3, 0.1, 0.0), Vec3f(0.4, 0.4, 0.3), 50.); Material glass(1.5, Vec4f(0.0, 0.5, 0.1, 0.8), Vec3f(0.6, 0.7, 0.8), 125.); Material red_rubber(1.0, Vec4f(0.9, 0.1, 0.0, 0.0), Vec3f(0.3, 0.1, 0.1), 10.); Material mirror(1.0, Vec4f(0.0, 10.0, 0.8, 0.0), Vec3f(1.0, 1.0, 1.0), 1425.); std::vector spheres; spheres.push_back(Sphere(Vec3f(-3, 0, -16), 2, ivory)); spheres.push_back(Sphere(Vec3f(-1.0, -1.5, -12), 2, glass)); spheres.push_back(Sphere(Vec3f( 1.5, -0.5, -18), 3, red_rubber)); spheres.push_back(Sphere(Vec3f( 7, 5, -18), 4, mirror)); std::vector lights; lights.push_back(Light(Vec3f(-20, 20, 20), 1.5)); lights.push_back(Light(Vec3f( 30, 50, -25), 1.8)); lights.push_back(Light(Vec3f( 30, 20, 30), 1.7)); render(spheres, lights); return 0; }