#include #include #include #include #include struct vec3 { float x=0, y=0, z=0; float& operator[](const int i) { return i==0 ? x : (1==i ? y : z); } const float& operator[](const int i) const { return i==0 ? x : (1==i ? y : z); } vec3 operator*(const float v) const { return {x*v, y*v, z*v}; } float operator*(const vec3& v) const { return x*v.x + y*v.y + z*v.z; } vec3 operator+(const vec3& v) const { return {x+v.x, y+v.y, z+v.z}; } vec3 operator-(const vec3& v) const { return {x-v.x, y-v.y, z-v.z}; } vec3 operator-() const { return {-x, -y, -z}; } float norm() const { return std::sqrt(x*x+y*y+z*z); } vec3 normalized() const { return (*this)*(1.f/norm()); } }; vec3 cross(const vec3 v1, const vec3 v2) { return { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x }; } struct Material { float refractive_index = 1; float albedo[4] = {2,0,0,0}; vec3 diffuse_color = {0,0,0}; float specular_exponent = 0; }; struct Sphere { vec3 center; float radius; Material material; }; constexpr Material ivory = {1.0, {0.9, 0.5, 0.1, 0.0}, {0.4, 0.4, 0.3}, 50.}; constexpr Material glass = {1.5, {0.0, 0.9, 0.1, 0.8}, {0.6, 0.7, 0.8}, 125.}; constexpr Material red_rubber = {1.0, {1.4, 0.3, 0.0, 0.0}, {0.3, 0.1, 0.1}, 10.}; constexpr Material mirror = {1.0, {0.0, 16.0, 0.8, 0.0}, {1.0, 1.0, 1.0}, 1425.}; constexpr Sphere spheres[] = { {{-3, 0, -16}, 2, ivory}, {{-1.0, -1.5, -12}, 2, glass}, {{ 1.5, -0.5, -18}, 3, red_rubber}, {{ 7, 5, -18}, 4, mirror} }; constexpr vec3 lights[] = { {-20, 20, 20}, { 30, 50, -25}, { 30, 20, 30} }; vec3 reflect(const vec3 &I, const vec3 &N) { return I - N*2.f*(I*N); } vec3 refract(const vec3 &I, const vec3 &N, const float eta_t, const float eta_i=1.f) { // Snell's law float cosi = - std::max(-1.f, std::min(1.f, I*N)); if (cosi<0) return refract(I, -N, eta_i, eta_t); // if the ray comes from the inside the object, swap the air and the media float eta = eta_i / eta_t; float k = 1 - eta*eta*(1 - cosi*cosi); return k<0 ? vec3{1,0,0} : I*eta + N*(eta*cosi - std::sqrt(k)); // k<0 = total reflection, no ray to refract. I refract it anyways, this has no physical meaning } std::tuple ray_sphere_intersect(const vec3 &orig, const vec3 &dir, const Sphere &s) { // ret value is a pair [intersection found, distance] vec3 L = s.center - orig; float tca = L*dir; float d2 = L*L - tca*tca; if (d2 > s.radius*s.radius) return {false, 0}; float thc = std::sqrt(s.radius*s.radius - d2); float t0 = tca-thc, t1 = tca+thc; if (t0>.001) return {true, t0}; // offset the original point by .001 to avoid occlusion by the object itself if (t1>.001) return {true, t1}; return {false, 0}; } std::tuple scene_intersect(const vec3 &orig, const vec3 &dir) { vec3 pt, N; Material material; float nearest_dist = 1e10; if (std::abs(dir.y)>.001) { // intersect the ray with the checkerboard, avoid division by zero float d = -(orig.y+4)/dir.y; // the checkerboard plane has equation y = -4 vec3 p = orig + dir*d; if (d>.001 && d-30) { nearest_dist = d; pt = p; N = {0,1,0}; material.diffuse_color = (int(.5*pt.x+1000) + int(.5*pt.z)) & 1 ? vec3{.3, .3, .3} : vec3{.3, .2, .1}; } } for (const Sphere &s : spheres) { // intersect the ray with all spheres auto [intersection, d] = ray_sphere_intersect(orig, dir, s); if (!intersection || d > nearest_dist) continue; nearest_dist = d; pt = orig + dir*nearest_dist; N = (pt - s.center).normalized(); material = s.material; } return { nearest_dist<1000, pt, N, material }; } vec3 cast_ray(const vec3 &orig, const vec3 &dir, const int depth=0) { auto [hit, point, N, material] = scene_intersect(orig, dir); if (depth>4 || !hit) return {0.2, 0.7, 0.8}; // background color vec3 reflect_dir = reflect(dir, N).normalized(); vec3 refract_dir = refract(dir, N, material.refractive_index).normalized(); vec3 reflect_color = cast_ray(point, reflect_dir, depth + 1); vec3 refract_color = cast_ray(point, refract_dir, depth + 1); float diffuse_light_intensity = 0, specular_light_intensity = 0; for (const vec3 &light : lights) { // checking if the point lies in the shadow of the light vec3 light_dir = (light - point).normalized(); auto [hit, shadow_pt, trashnrm, trashmat] = scene_intersect(point, light_dir); if (hit && (shadow_pt-point).norm() < (light-point).norm()) continue; diffuse_light_intensity += std::max(0.f, light_dir*N); specular_light_intensity += std::pow(std::max(0.f, -reflect(-light_dir, N)*dir), material.specular_exponent); } return material.diffuse_color * diffuse_light_intensity * material.albedo[0] + vec3{1., 1., 1.}*specular_light_intensity * material.albedo[1] + reflect_color*material.albedo[2] + refract_color*material.albedo[3]; } int main() { constexpr int width = 1024; constexpr int height = 768; constexpr float fov = 1.05; // 60 degrees field of view in radians std::vector framebuffer(width*height); #pragma omp parallel for for (int pix = 0; pix