diff --git a/solutions/system_design/query_cache/README.md b/solutions/system_design/query_cache/README.md new file mode 100644 index 00000000..f34bd282 --- /dev/null +++ b/solutions/system_design/query_cache/README.md @@ -0,0 +1,306 @@ +# Design a key-value cache to save the results of the most recent web server queries + +*Note: This document links directly to relevant areas found in the [system design topics](https://github.com/donnemartin/system-design-primer-interview#index-of-system-design-topics-1) to avoid duplication. Refer to the linked content for general talking points, tradeoffs, and alternatives.* + +## Step 1: Outline use cases and constraints + +> Gather requirements and scope the problem. +> Ask questions to clarify use cases and constraints. +> Discuss assumptions. + +Without an interviewer to address clarifying questions, we'll define some use cases and constraints. + +### Use cases + +#### We'll scope the problem to handle only the following use cases + +* **User** sends a search request resulting in a cache hit +* **User** sends a search request resulting in a cache miss +* **Service** has high availability + +### Constraints and assumptions + +#### State assumptions + +* Traffic is not evenly distributed + * Popular queries should almost always be in the cache + * Need to determine how to expire/refresh +* Serving from cache requires fast lookups +* Low latency between machines +* Limited memory in cache + * Need to determine what to keep/remove + * Need to cache millions of queries +* 10 million users +* 10 billion queries per month + +#### Calculate usage + +**Clarify with your interviewer if you should run back-of-the-envelope usage calculations.** + +* Cache stores ordered list of key: query, value: results + * `query` - 50 bytes + * `title` - 20 bytes + * `snippet` - 200 bytes + * Total: 270 bytes +* 2.7 TB of cache data per month if all 10 billion queries are unique and all are stored + * 270 bytes per search * 10 billion searches per month + * Assumptions state limited memory, need to determine how to expire contents +* 4,000 requests per second + +Handy conversion guide: + +* 2.5 million seconds per month +* 1 request per second = 2.5 million requests per month +* 40 requests per second = 100 million requests per month +* 400 requests per second = 1 billion requests per month + +## Step 2: Create a high level design + +> Outline a high level design with all important components. + +![Imgur](http://i.imgur.com/KqZ3dSx.png) + +## Step 3: Design core components + +> Dive into details for each core component. + +### Use case: User sends a request resulting in a cache hit + +Popular queries can be served from a **Memory Cache** such as Redis or Memcached to reduce read latency and to avoid overloading the **Reverse Index Service** and **Document Service**. Reading 1 MB sequentially from memory takes about 250 microseconds, while reading from SSD takes 4x and from disk takes 80x longer.1 + +Since the cache has limited capacity, we'll use a least recently used (LRU) approach to expire older entries. + +* The **Client** sends a request to the **Web Server**, running as a [reverse proxy](https://github.com/donnemartin/system-design-primer-interview#reverse-proxy-web-server) +* The **Web Server** forwards the request to the **Query API** server +* The **Query API** server does the following: + * Parses the query + * Removes markup + * Breaks up the text into terms + * Fixes typos + * Normalizes capitalization + * Converts the query to use boolean operations + * Checks the **Memory Cache** for the content matching the query + * If there's a hit in the **Memory Cache**, the **Memory Cache** does the following: + * Updates the cached entry's position to the front of the LRU list + * Returns the cached contents + * Else, the **Query API** does the following: + * Uses the **Reverse Index Service** to find documents matching the query + * The **Reverse Index Service** ranks the matching results and returns the top ones + * Uses the **Document Service** to return titles and snippets + * Updates the **Memory Cache** with the contents, placing the entry at the front of the LRU list + +#### Cache implementation + +The cache can use a doubly-linked list: new items will be added to the head while items to expire will be removed from the tail. We'll use a hash table for fast lookups to each linked list node. + +**Clarify with your interviewer how much code you are expected to write**. + +**Query API Server** implementation: + +``` +class QueryApi(object): + + def __init__(self, memory_cache, reverse_index_service): + self.memory_cache = memory_cache + self.reverse_index_service = reverse_index_service + + def parse_query(self, query): + """Remove markup, break text into terms, deal with typos, + normalize capitalization, convert to use boolean operations. + """ + ... + + def process_query(self, query): + query = self.parse_query(query) + results = self.memory_cache.get(query) + if results is None: + results = self.reverse_index_service.process_search(query) + self.memory_cache.set(query, results) + return results +``` + +**Node** implementation: + +``` +class Node(object): + + def __init__(self, query, results): + self.query = query + self.results = results +``` + +**LinkedList** implementation: + +``` +class LinkedList(object): + + def __init__(self): + self.head = None + self.tail = None + + def move_to_front(self, node): + ... + + def append_to_front(self, node): + ... + + def remove_from_tail(self): + ... +``` + +**Cache** implementation: + +``` +class Cache(object): + + def __init__(self, MAX_SIZE): + self.MAX_SIZE = MAX_SIZE + self.size = 0 + self.lookup = {} # key: query, value: node + self.linked_list = LinkedList() + + def get(self, query) + """Get the stored query result from the cache. + + Accessing a node updates its position to the front of the LRU list. + """ + node = self.lookup[query] + if node is None: + return None + self.linked_list.move_to_front(node) + return node.results + + def set(self, results, query): + """Set the result for the given query key in the cache. + + When updating an entry, updates its position to the front of the LRU list. + If the entry is new and the cache is at capacity, removes the oldest entry + before the new entry is added. + """ + node = self.lookup[query] + if node is not None: + # Key exists in cache, update the value + node.results = results + self.linked_list.move_to_front(node) + else: + # Key does not exist in cache + if self.size == self.MAX_SIZE: + # Remove the oldest entry from the linked list and lookup + self.lookup.pop(self.linked_list.tail.query, None) + self.linked_list.remove_from_tail() + else: + self.size += 1 + # Add the new key and value + new_node = Node(query, results) + self.linked_list.append_to_front(new_node) + self.lookup[query] = new_node +``` + +#### When to update the cache + +The cache should be updated when: + +* The page contents change +* The page is removed or a new page is added +* The page rank changes + +The most straightforward way to handle these cases is to simply set a max time that a cached entry can stay in the cache before it is updated, usually referred to as time to live (TTL). + +Refer to [When to update the cache](https://github.com/donnemartin/system-design-primer-interview#when-to-update-the-cache) for tradeoffs and alternatives. The approach above describes [cache-aside](https://github.com/donnemartin/system-design-primer-interview#cache-aside). + +## Step 4: Scale the design + +> Identify and address bottlenecks, given the constraints. + +![Imgur](http://i.imgur.com/4j99mhe.png) + +**Important: Do not simply jump right into the final design from the initial design!** + +State you would 1) **Benchmark/Load Test**, 2) **Profile** for bottlenecks 3) address bottlenecks while evaluating alternatives and trade-offs, and 4) repeat. See [Design a system that scales to millions of users on AWS]() as a sample on how to iteratively scale the initial design. + +It's important to discuss what bottlenecks you might encounter with the initial design and how you might address each of them. For example, what issues are addressed by adding a **Load Balancer** with multiple **Web Servers**? **CDN**? **Master-Slave Replicas**? What are the alternatives and **Trade-Offs** for each? + +We'll introduce some components to complete the design and to address scalability issues. Internal load balancers are not shown to reduce clutter. + +*To avoid repeating discussions*, refer to the following [system design topics](https://github.com/donnemartin/system-design-primer-interview#) for main talking points, tradeoffs, and alternatives: + +* [DNS](https://github.com/donnemartin/system-design-primer-interview#domain-name-system) +* [Load balancer](https://github.com/donnemartin/system-design-primer-interview#load-balancer) +* [Horizontal scaling](https://github.com/donnemartin/system-design-primer-interview#horizontal-scaling) +* [Web server (reverse proxy)](https://github.com/donnemartin/system-design-primer-interview#reverse-proxy-web-server) +* [API server (application layer)](https://github.com/donnemartin/system-design-primer-interview#application-layer) +* [Cache](https://github.com/donnemartin/system-design-primer-interview#cache) +* [Consistency patterns](https://github.com/donnemartin/system-design-primer-interview#consistency-patterns) +* [Availability patterns](https://github.com/donnemartin/system-design-primer-interview#availability-patterns) + +### Expanding the Memory Cache to many machines + +To handle the heavy request load and the large amount of memory needed, we'll scale horizontally. We have three main options on how to store the data on our **Memory Cache** cluster: + +* **Each machine in the cache cluster has its own cache** - Simple, although it will likely result in a low cache hit rate. +* **Each machine in the cache cluster has a copy of the cache** - Simple, although it is an inefficient use of memory. +* **The cache is [sharded](https://github.com/donnemartin/system-design-primer-interview#sharding) across all machines in the cache cluster** - More complex, although it is likely the best option. We could use hashing to determine which machine could have the cached results of a query using `machine = hash(query)`. We'll likely want to use [consistent hashing](https://github.com/donnemartin/system-design-primer-interview#consistent-hashing). + +## Additional talking points + +> Additional topics to dive into, depending on the problem scope and time remaining. + +### SQL scaling patterns + +* [Read replicas](https://github.com/donnemartin/system-design-primer-interview#master-slave) +* [Federation](https://github.com/donnemartin/system-design-primer-interview#federation) +* [Sharding](https://github.com/donnemartin/system-design-primer-interview#sharding) +* [Denormalization](https://github.com/donnemartin/system-design-primer-interview#denormalization) +* [SQL Tuning](https://github.com/donnemartin/system-design-primer-interview#sql-tuning) + +#### NoSQL + +* [Key-value store](https://github.com/donnemartin/system-design-primer-interview#) +* [Document store](https://github.com/donnemartin/system-design-primer-interview#) +* [Wide column store](https://github.com/donnemartin/system-design-primer-interview#) +* [Graph database](https://github.com/donnemartin/system-design-primer-interview#) +* [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer-interview#) + +### Caching + +* Where to cache + * [Client caching](https://github.com/donnemartin/system-design-primer-interview#client-caching) + * [CDN caching](https://github.com/donnemartin/system-design-primer-interview#cdn-caching) + * [Web server caching](https://github.com/donnemartin/system-design-primer-interview#web-server-caching) + * [Database caching](https://github.com/donnemartin/system-design-primer-interview#database-caching) + * [Application caching](https://github.com/donnemartin/system-design-primer-interview#application-caching) +* What to cache + * [Caching at the database query level](https://github.com/donnemartin/system-design-primer-interview#caching-at-the-database-query-level) + * [Caching at the object level](https://github.com/donnemartin/system-design-primer-interview#caching-at-the-object-level) +* When to update the cache + * [Cache-aside](https://github.com/donnemartin/system-design-primer-interview#cache-aside) + * [Write-through](https://github.com/donnemartin/system-design-primer-interview#write-through) + * [Write-behind (write-back)](https://github.com/donnemartin/system-design-primer-interview#write-behind-write-back) + * [Refresh ahead](https://github.com/donnemartin/system-design-primer-interview#refresh-ahead) + +### Asynchronism and microservices + +* [Message queues](https://github.com/donnemartin/system-design-primer-interview#) +* [Task queues](https://github.com/donnemartin/system-design-primer-interview#) +* [Back pressure](https://github.com/donnemartin/system-design-primer-interview#) +* [Microservices](https://github.com/donnemartin/system-design-primer-interview#) + +### Communications + +* Discuss tradeoffs: + * External communication with clients - [HTTP APIs following REST](https://github.com/donnemartin/system-design-primer-interview#representational-state-transfer-rest) + * Internal communications - [RPC](https://github.com/donnemartin/system-design-primer-interview#remote-procedure-call-rpc) +* [Service discovery](https://github.com/donnemartin/system-design-primer-interview#service-discovery) + +### Security + +Refer to the [security section](https://github.com/donnemartin/system-design-primer-interview#security). + +### Latency numbers + +See [Latency numbers every programmer should know](https://github.com/donnemartin/system-design-primer-interview#latency-numbers-every-programmer-should-know). + +### Ongoing + +* Continue benchmarking and monitoring your system to address bottlenecks as they come up +* Scaling is an iterative process diff --git a/solutions/system_design/query_cache/__init__.py b/solutions/system_design/query_cache/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/solutions/system_design/query_cache/query_cache.png b/solutions/system_design/query_cache/query_cache.png new file mode 100644 index 00000000..55c93f40 Binary files /dev/null and b/solutions/system_design/query_cache/query_cache.png differ diff --git a/solutions/system_design/query_cache/query_cache_basic.png b/solutions/system_design/query_cache/query_cache_basic.png new file mode 100644 index 00000000..a1128e54 Binary files /dev/null and b/solutions/system_design/query_cache/query_cache_basic.png differ diff --git a/solutions/system_design/query_cache/query_cache_snippets.py b/solutions/system_design/query_cache/query_cache_snippets.py new file mode 100644 index 00000000..469dc7c6 --- /dev/null +++ b/solutions/system_design/query_cache/query_cache_snippets.py @@ -0,0 +1,89 @@ +# -*- coding: utf-8 -*- + +class QueryApi(object): + + def __init__(self, memory_cache, reverse_index_cluster): + self.memory_cache = memory_cache + self.reverse_index_cluster = reverse_index_cluster + + def parse_query(self, query): + """Remove markup, break text into terms, deal with typos, + normalize capitalization, convert to use boolean operations. + """ + ... + + def process_query(self, query): + query = self.parse_query(query) + results = self.memory_cache.get(query) + if results is None: + results = self.reverse_index_cluster.process_search(query) + self.memory_cache.set(query, results) + return results + + +class Node(object): + + def __init__(self, query, results): + self.query = query + self.results = results + + +class LinkedList(object): + + def __init__(self): + self.head = None + self.tail = None + + def move_to_front(self, node): + ... + + def append_to_front(self, node): + ... + + def remove_from_tail(self): + ... + + +class Cache(object): + + def __init__(self, MAX_SIZE): + self.MAX_SIZE = MAX_SIZE + self.size = 0 + self.lookup = {} + self.linked_list = LinkedList() + + def get(self, query) + """Get the stored query result from the cache. + + Accessing a node updates its position to the front of the LRU list. + """ + node = self.lookup[query] + if node is None: + return None + self.linked_list.move_to_front(node) + return node.results + + def set(self, results, query): + """Set the result for the given query key in the cache. + + When updating an entry, updates its position to the front of the LRU list. + If the entry is new and the cache is at capacity, removes the oldest entry + before the new entry is added. + """ + node = self.map[query] + if node is not None: + # Key exists in cache, update the value + node.results = results + self.linked_list.move_to_front(node) + else: + # Key does not exist in cache + if self.size == self.MAX_SIZE: + # Remove the oldest entry from the linked list and lookup + self.lookup.pop(self.linked_list.tail.query, None) + self.linked_list.remove_from_tail() + else: + self.size += 1 + # Add the new key and value + new_node = Node(query, results) + self.linked_list.append_to_front(new_node) + self.lookup[query] = new_node