system-design-primer/README.md

594 lines
36 KiB
Markdown
Raw Normal View History

2017-02-26 21:08:55 +08:00
# The System Design Primer
2017-02-26 21:09:37 +08:00
<p align="center">
<img src="http://i.imgur.com/jrUBAF7.png">
<br/>
</p>
2017-02-26 21:10:03 +08:00
## Motivation
> Learn how to design large scale systems from the open source community.
>
> Understand real-world architectures.
>
> Prep for the system design interview.
### Learn how to design large scale systems
Learning how to design scalable systems will make you a better engineer.
System design is a broad topic. There is a **vast amount of resources scattered throughout the web** on system design principles.
This repo is an **organized collection** of resources to help you learn how to build systems at scale.
Topics for learning system design:
* [System design topic summaries](#index-of-system-design-topics)
* [Real world architectures](#real-world-architectures)
* [Engineering blogs](#company-engineering-blogs)
#### Learn from the open source community
This is an **early draft** of a **continually updated, open source** project.
[Contributions](#contributin) are welcome!
2017-02-26 21:10:29 +08:00
### Prep for the system design interview
In addition to coding interviews, system design is a **required component** of the **technical interview process** at many tech companies.
**Practice common system design interview questions** and **compare** your results with sample **discussions, code, and diagrams**.
Additional topics for interview prep:
* [Study guide](#study-guide)
* [How to approach a system design interview question](#how-to-approach-a-system-design-interview-question)
* [System design interview questions, **with solutions**](#system-design-interview-questions-with-solutions)
* [Object-oriented design interview questions, **with solutions**](#object-oriented-design-interview-questions-with-solutions)
* [Additional system design interview questions](#additional-system-design-interview-questions)
#### For interviews, do I need to know everything here?
**No, you don't need to know everything here to prepare for the interview**.
What you are asked in an interview depends on variables such as:
* How much experience you have
* What your technical background is
* What positions you are interviewing for
* Which companies you are interviewing with
* Luck
More experienced candidates are generally expected to know more about system design. Architects or team leads might be expected to know more than individual contributors. Top tech companies are likely to have one or more design interview rounds.
#### Any resources to prep for coding interviews?
Check out the sister repo [**interactive-coding-challenges**](https://github.com/donnemartin/interactive-coding-challenges) for coding interview resources.
2017-02-26 21:10:48 +08:00
## Contributing
> Learn from the community.
Feel free to submit pull requests to help:
* Fix errors
* Improve sections
* Add new sections
Content that needs some polishing is placed [under development](#under-development).
Review the [Contributing Guidelines](https://github.com/donnemartin/awesome-aws/blob/master/CONTRIBUTING.md).
2017-02-26 21:11:11 +08:00
## Index of system design topics
> Summaries of various system design topics, including pros and cons. **Everything is a trade-off**.
>
> Each section contains links to more in-depth resources.
![Imgur](http://i.imgur.com/jj3A5N8.png)
* [System design topics: start here](#system-design-topics-start-here)
* [Step 1: Review the scalability video lecture](#step-1-review-the-scalability-video-lecture)
* [Step 2: Review the scalability article](#step-2-review-the-scalability-article)
* [Next steps](#next-steps)
* [Performance vs scalability](#performance-vs-scalability)
* [Latency vs throughput](#latency-vs-throughput)
* [Availability vs consistency](#availability-vs-consistency)
* [CAP theorem](#cap-theorem)
* [CP - consistency and partition tolerance](#cp-consistency-and-partition-tolerance)
* [AP - availability and partition tolerance](#ap-availability-and-partition-tolerance)
* [Consistency patterns](#consistency-patterns)
* [Weak consistency](#weak-consistency)
* [Eventual consistency](#eventual-consistency)
* [Strong consistency](#strong-consistency)
* [Availability patterns](#availability-patterns)
* [Fail-over](#fail-over)
* [Replication](#replication)
* [Domain name system](#domain-name-system)
* [Content delivery network](#content-delivery-network)
* [Push CDNs](#push-cdns)
* [Pull CDNs](#pull-cdns)
* [Load balancer](#load-balancer)
* [Active-passive](#active-passive)
* [Active-active](#active-active)
* [Layer 4 load balancing](#layer-4-load-balancing)
* [Layer 7 load balancing](#layer-7-load-balancing)
* [Horizontal scaling](#horizontal-scaling)
* [Reverse proxy (web server)](#reverse-proxy-web-server)
* [Load balancer vs reverse proxy](#load-balancer-vs-reverse-proxy)
* [Application layer](#application-layer)
* [Microservices](#microservices)
* [Service discovery](#service-discovery)
* [Database](#database)
* [SQL](#sql)
* [Relational database management system (RDBMS)](relational-database-management-system-rdbms)
* [Scaling SQL](#scaling-sql)
* [Master-slave replication](#master-slave-replication)
* [Federation](#federation)
* [Sharding](#sharding)
* [Denormalization](#denormalization)
* [SQL tuning](#sql-tuning)
* [NoSQL](#nosql)
* [Key-value store](#key-value-store)
* [Document store](#document-store)
* [Wide column store](#wide-column-store)
* [Graph Database](#graph-database)
* [SQL or NoSQL](#sql-or-nosql)
* [Cache](#cache)
* [Client caching](#client-caching)
* [CDN caching](#cdn-caching)
* [Web server caching](#web-server-caching)
* [Database caching](#database-caching)
* [Application caching](#application-caching)
* [Caching at the database query level](#caching-at-the-database-query-level)
* [Caching at the object level](#caching-at-the-object-level)
* [When to update the cache](#when-to-update-the-cache)
* [Cache-aside](#cache-aside)
* [Write-through](#write-through)
* [Write-behind (write-back)](#write-behind-write-back)
* [Refresh-ahead](#refresh-ahead)
* [Asynchronism](#asynchronism)
* [Message queues](#message-queues)
* [Task queues](#task-queues)
* [Back pressure](#back-pressure)
* [Communication](#communication)
* [Transmission control protocol (TCP)](#transmission-control-protocol-tcp)
* [User datagram protocol (UDP)](#user-datagram-protocol-udp)
* [Remote procedure call (RPC)](#remote-procedure-call-rpc)
* [Representational state transfer (REST)](#representational-state-transfer-rest)
* [Security](#security)
* [Appendix](#appendix)
* [Powers of two table](#powers-of-two-table)
* [Latency numbers every programmer should know](#latency-numbers-every-programmer-should-know)
* [Under development](#under-development)
* [Distributed computing](#distributed-computing)
* [Consistent hashing](#consistent-hashing)
* [Scatter gather](#scatter-gather)
* [Contribute](#contributing)
* [Credits](#credits)
* [Contact info](#contact-info)
* [License](#license)
2017-02-26 21:11:32 +08:00
## Study guide
> Suggested topics to review based on your interview timeline (short, medium, long).
![Imgur](http://i.imgur.com/Klsu4cw.png)
Start broad and go deeper in a few areas. It helps to know a little about various key system design topics. Adjust the following guide based on your experience, what positions you are interviewing for, and which companies you are interviewing with.
* **Short** - Aim for **breadth** with system design topics. Practice by solving **some** interview questions.
* **Medium** - Aim for **breadth** and **some depth** with system design topics. Practice by solving a **many** interview questions.
* **Long** - Aim for **breadth** and **more depth** with system design topics. Practice by solving a **most** interview questions.
| | Short | Medium | Long |
|---|---|---|---|
| Read through the [System design topics](#index-of-system-design-topics) to get a broad understanding of how systems work | :+1: | :+1: | :+1: |
| Read through a few articles in the [Company engineering blogs](#company-engineering-blogs) for the companies you are interviewing with | :+1: | :+1: | :+1: |
| Read through a few [Real world architectures](#real-world-architectures) | :+1: | :+1: | :+1: |
| Review [How to approach a system design interview question](#how-to-approach-a-system-design-interview-question) | :+1: | :+1: | :+1: |
| Work through [System design interview questions with solutions](#system-design-interview-questions-with-solutions) | Some | Many | Most |
| Work through [Object-oriented design interview questions with solutions](#object-oriented-design-interview-questions-with-solutions) | Some | Many | Most |
| Review [Additional system design interview questions](#additional-system-design-interview-questions) | Some | Many | Most |
## How to approach a system design interview question
> How to tackle a system design interview question.
The system design interview is an **open-ended conversation**. You are expected to lead it.
You can use the following steps to guide the discussion. To help solidify this process, work through the [System design interview questions with solutions](#system-design-interview-questions-with-solutions) section using the following steps.
### Step 1: Outline use cases, constraints, and assumptions
Gather requirements and scope the problem. Ask questions to clarify use cases and constraints. Discuss assumptions.
* Who is going to use it?
* How are they going to use it?
* How many users are there?
* What does the system do?
* What are the inputs and outputs of the system?
* How much data do we expect to handle?
* How many requests per second do we expect?
* What is the expected read to write ratio?
### Step 2: Create a high level design
Outline a high level design with all important components.
* Sketch the main components and connections
* Justify your ideas
### Step 3: Design core components
Dive into details for each core component. For example, if you were asked to [design a url shortening service](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/pastebin/README.md), discuss:
* Generating and storing a hash of the full url
* [MD5](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/pastebin/README.md) and [Base62](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/pastebin/README.md)
* Hash collisions
* SQL or NoSQL
* Database schema
* Translating a hashed url to the full url
* Database lookup
* API and object-oriented design
### Step 4: Scale the design
Identify and address bottlenecks, given the constraints. For example, do you need the following to address scalability issues?
* Load balancer
* Horizontal scaling
* Caching
* Database sharding
Discuss potential solutions and trade-offs. Everything is a trade-off. Address bottlenecks using [principles of scalable system design](#index-of-system-design-topics).
### Back-of-the-envelope calculations
You might be asked to do some estimates by hand. Refer to the [Appendix](#appendix) for the following resources:
* [Use back of the envelope calculations](http://highscalability.com/blog/2011/1/26/google-pro-tip-use-back-of-the-envelope-calculations-to-choo.html)
* [Powers of two table](#powers-of-two-table)
* [Latency numbers every programmer should know](#latency-numbers-every-programmer-should-know)
### Source(s) and further reading
Check out the following links to get a better idea of what to expect:
* [How to ace a systems design interview](https://www.palantir.com/2011/10/how-to-rock-a-systems-design-interview/)
* [The system design interview](http://www.hiredintech.com/system-design)
* [Intro to Architecture and Systems Design Interviews](https://www.youtube.com/watch?v=ZgdS0EUmn70)
## System design interview questions with solutions
> Common system design interview questions with sample discussions, code, and diagrams.
>
> Solutions linked to content in the `solutions/` folder.
| Question | |
|---|---|
| Design Pastebin.com (or Bit.ly) | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/pastebin/README.md) |
| Design the Twitter timeline (or Facebook feed)<br/>Design Twitter search (or Facebook search) | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/twitter/README.md) |
| Design a web crawler | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/web_crawler/README.md) |
| Design Mint.com | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/mint/README.md) |
| Design the data structures for a social network | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/social_graph/README.md) |
| Design a key-value store for a search engine | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/query_cache/README.md) |
| Design Amazon's sales ranking by category feature | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/sales_rank/README.md) |
| Design a system that scales to millions of users on AWS | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/scaling_aws/README.md) |
| Add a system design question | [Contribute](#contributing) |
2017-02-26 21:18:17 +08:00
### Design Pastebin.com (or Bit.ly)
[View exercise and solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/pastebin/README.md)
2017-02-26 21:18:17 +08:00
![Imgur](http://i.imgur.com/4edXG0T.png)
### Design the Twitter timeline and search (or Facebook feed and search)
[View exercise and solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/twitter/README.md)
![Imgur](http://i.imgur.com/jrUBAF7.png)
2017-02-26 21:19:35 +08:00
### Design a web crawler
[View exercise and solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/web_crawler/README.md)
2017-02-26 21:19:35 +08:00
![Imgur](http://i.imgur.com/bWxPtQA.png)
2017-02-26 21:19:59 +08:00
### Design Mint.com
[View exercise and solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/mint/README.md)
2017-02-26 21:19:59 +08:00
![Imgur](http://i.imgur.com/V5q57vU.png)
### Design the data structures for a social network
[View exercise and solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/social_graph/README.md)
![Imgur](http://i.imgur.com/cdCv5g7.png)
### Design a key-value store for a search engine
[View exercise and solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/query_cache/README.md)
![Imgur](http://i.imgur.com/4j99mhe.png)
### Design Amazon's sales ranking by category feature
[View exercise and solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/sales_rank/README.md)
![Imgur](http://i.imgur.com/MzExP06.png)
### Design a system that scales to millions of users on AWS
[View exercise and solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/scaling_aws/README.md)
![Imgur](http://i.imgur.com/jj3A5N8.png)
## Object-oriented design interview questions with solutions
> Common object-oriented design interview questions with sample discussions, code, and diagrams.
>
> Solutions linked to content in the `solutions/` folder.
>**Note: This section is under development**
| Question | |
|---|---|
| Design a deck of cards to be used for blackjack | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/object_oriented_design/deck_of_cards/deck_of_cards.ipynb) |
| Design a call center | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/object_oriented_design/call_center/call_center.ipynb) |
| Design a hash map | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/object_oriented_design/hash_table/hash_map.ipynb) |
| Design a least recently used cache | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/object_oriented_design/lru_cache/lru_cache.ipynb) |
| Design a parking lot | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/object_oriented_design/parking_lot/parking_lot.ipynb) |
| Design a chat server | [Solution](https://github.com/donnemartin/system-design-primer/blob/master/solutions/object_oriented_design/chat_server/chat_server.ipynb) |
| Design a circular array | [Contribute](#contributing) |
| Add an object-oriented design question | [Contribute](#contributing) |
## Additional system design interview questions
> Common system design interview questions, with links to resources on how to solve each.
| Question | Reference(s) |
|---|---|
| Design a file sync service like Dropbox | [youtube.com](https://www.youtube.com/watch?v=PE4gwstWhmc) |
| Design a search engine like Google | [queue.acm.org](http://queue.acm.org/detail.cfm?id=988407)<br/>[stackexchange.com](http://programmers.stackexchange.com/questions/38324/interview-question-how-would-you-implement-google-search)<br/>[ardendertat.com](http://www.ardendertat.com/2012/01/11/implementing-search-engines/)<br>[stanford.edu](http://infolab.stanford.edu/~backrub/google.html) |
| Design a scalable web crawler like Google | [quora.com](https://www.quora.com/How-can-I-build-a-web-crawler-from-scratch) |
| Design Google docs | [code.google.com](https://code.google.com/p/google-mobwrite/)<br/>[neil.fraser.name](https://neil.fraser.name/writing/sync/) |
| Design a key-value store like Redis | [slideshare.net](http://www.slideshare.net/dvirsky/introduction-to-redis) |
| Design a cache system like Memcached | [slideshare.net](http://www.slideshare.net/oemebamo/introduction-to-memcached) |
| Design a recommendation system like Amazon's | [hulu.com](http://tech.hulu.com/blog/2011/09/19/recommendation-system.html)<br/>[ijcai13.org](http://ijcai13.org/files/tutorial_slides/td3.pdf) |
| Design a tinyurl system like Bitly | [n00tc0d3r.blogspot.com](http://n00tc0d3r.blogspot.com/) |
| Design a chat app like WhatsApp | [highscalability.com](http://highscalability.com/blog/2014/2/26/the-whatsapp-architecture-facebook-bought-for-19-billion.html)
| Design a picture sharing system like Instagram | [highscalability.com](http://highscalability.com/flickr-architecture)<br/>[highscalability.com](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html) |
| Design the Facebook news feed function | [quora.com](http://www.quora.com/What-are-best-practices-for-building-something-like-a-News-Feed)<br/>[quora.com](http://www.quora.com/Activity-Streams/What-are-the-scaling-issues-to-keep-in-mind-while-developing-a-social-network-feed)<br/>[slideshare.net](http://www.slideshare.net/danmckinley/etsy-activity-feeds-architecture) |
| Design the Facebook timeline function | [facebook.com](https://www.facebook.com/note.php?note_id=10150468255628920)<br/>[highscalability.com](http://highscalability.com/blog/2012/1/23/facebook-timeline-brought-to-you-by-the-power-of-denormaliza.html) |
| Design the Facebook chat function | [erlang-factory.com](http://www.erlang-factory.com/upload/presentations/31/EugeneLetuchy-ErlangatFacebook.pdf)<br/>[facebook.com](https://www.facebook.com/note.php?note_id=14218138919&id=9445547199&index=0) |
| Design a graph search function like Facebook's | [facebook.com](https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-out-the-infrastructure-for-graph-search/10151347573598920)<br/>[facebook.com](https://www.facebook.com/notes/facebook-engineering/under-the-hood-indexing-and-ranking-in-graph-search/10151361720763920)<br/>[facebook.com](https://www.facebook.com/notes/facebook-engineering/under-the-hood-the-natural-language-interface-of-graph-search/10151432733048920) |
| Design a content delivery network like CloudFlare | [cmu.edu](http://repository.cmu.edu/cgi/viewcontent.cgi?article=2112&context=compsci) |
| Design a trending topic system like Twitter's | [michael-noll.com](http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/)<br/>[snikolov .wordpress.com](http://snikolov.wordpress.com/2012/11/14/early-detection-of-twitter-trends/) |
| Design a random ID generation system | [blog.twitter.com](https://blog.twitter.com/2010/announcing-snowflake)<br/>[github.com](https://github.com/twitter/snowflake/) |
| Return the top k requests during a time interval | [ucsb.edu](https://icmi.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf)<br/>[wpi.edu](http://davis.wpi.edu/xmdv/docs/EDBT11-diyang.pdf) |
| Design a system that serves data from multiple data centers | [highscalability.com](http://highscalability.com/blog/2009/8/24/how-google-serves-data-from-multiple-datacenters.html) |
| Design an online multiplayer card game | [indieflashblog.com](http://www.indieflashblog.com/how-to-create-an-asynchronous-multiplayer-game.html)<br/>[buildnewgames.com](http://buildnewgames.com/real-time-multiplayer/) |
| Design a garbage collection system | [stuffwithstuff.com](http://journal.stuffwithstuff.com/2013/12/08/babys-first-garbage-collector/)<br/>[washington.edu](http://courses.cs.washington.edu/courses/csep521/07wi/prj/rick.pdf) |
| Add a system design question | [Contribute](#contributing) |
2017-02-27 21:04:21 +08:00
## Real world architectures
> Articles on how real world systems are designed.
<p align="center">
<img src="http://i.imgur.com/TcUo2fw.png">
<br/>
<i><a href=https://www.infoq.com/presentations/Twitter-Timeline-Scalability>Source: Twitter timelines at scale</a></i>
</p>
**Don't focus on nitty gritty details for the following articles, instead:**
* Identify shared principles, common technologies, and patterns within these articles
* Study what problems are solved by each component, where it works, where it doesn't
* Review the lessons learned
|Type | System | Reference(s) |
|---|---|---|
| Data processing | **MapReduce** - Distributed data processing from Google | [research.google.com](http://static.googleusercontent.com/media/research.google.com/zh-CN/us/archive/mapreduce-osdi04.pdf) |
| Data processing | **Spark** - Distributed data processing from Databricks | [slideshare.net](http://www.slideshare.net/AGrishchenko/apache-spark-architecture) |
| Data processing | **Storm** - Distributed data processing from Twitter | [slideshare.net](http://www.slideshare.net/previa/storm-16094009) |
| | | |
| Data store | **Bigtable** - Distributed column-oriented database from Google | [harvard.edu](http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/chang06bigtable.pdf) |
| Data store | **HBase** - Open source implementation of Bigtable | [slideshare.net](http://www.slideshare.net/alexbaranau/intro-to-hbase) |
| Data store | **Cassandra** - Distributed column-oriented database from Facebook | [slideshare.net](http://www.slideshare.net/planetcassandra/cassandra-introduction-features-30103666)
| Data store | **DynamoDB** - Document-oriented database from Amazon | [harvard.edu](http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf) |
| Data store | **MongoDB** - Document-oriented database | [slideshare.net](http://www.slideshare.net/mdirolf/introduction-to-mongodb) |
| Data store | **Spanner** - Globally-distributed database from Google | [research.google.com](http://research.google.com/archive/spanner-osdi2012.pdf) |
| Data store | **Memcached** - Distributed memory caching system | [slideshare.net](http://www.slideshare.net/oemebamo/introduction-to-memcached) |
| Data store | **Redis** - Distributed memory caching system with persistence and value types | [slideshare.net](http://www.slideshare.net/dvirsky/introduction-to-redis) |
| | | |
| File system | **Google File System (GFS)** - Distributed file system | [research.google.com](http://static.googleusercontent.com/media/research.google.com/zh-CN/us/archive/gfs-sosp2003.pdf) |
| File system | **Hadoop File System (HDFS)** - Open source implementation of GFS | [apache.org](https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html) |
| | | |
| Misc | **Chubby** - Lock service for loosely-coupled distributed systems from Google | [research.google.com](http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/archive/chubby-osdi06.pdf) |
| Misc | **Dapper** - Distributed systems tracing infrastructure | [research.google.com](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf)
| Misc | **Kafka** - Pub/sub message queue from LinkedIn | [slideshare.net](http://www.slideshare.net/mumrah/kafka-talk-tri-hug) |
| Misc | **Zookeeper** - Centralized infrastructure and services enabling synchronization | [slideshare.net](http://www.slideshare.net/sauravhaloi/introduction-to-apache-zookeeper) |
| | Add an architecture | [Contribute](#contributing) |
2017-02-27 21:04:53 +08:00
### Company architectures
| Company | Reference(s) |
|---|---|
| Amazon | [Amazon architecture](http://highscalability.com/amazon-architecture) |
| Cinchcast | [Producing 1,500 hours of audio every day](http://highscalability.com/blog/2012/7/16/cinchcast-architecture-producing-1500-hours-of-audio-every-d.html) |
| DataSift | [Realtime datamining At 120,000 tweets per second](http://highscalability.com/blog/2011/11/29/datasift-architecture-realtime-datamining-at-120000-tweets-p.html) |
| DropBox | [How we've scaled Dropbox](https://www.youtube.com/watch?v=PE4gwstWhmc) |
| ESPN | [Operating At 100,000 duh nuh nuhs per second](http://highscalability.com/blog/2013/11/4/espns-architecture-at-scale-operating-at-100000-duh-nuh-nuhs.html) |
| Google | [Google architecture](http://highscalability.com/google-architecture) |
| Instagram | [14 million users, terabytes of photos](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html)<br/>[What powers Instagram](http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances) |
| Justin.tv | [Justin.Tv's live video broadcasting architecture](http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html) |
| Facebook | [Scaling memcached at Facebook](https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/key-value/fb-memcached-nsdi-2013.pdf)<br/>[TAO: Facebooks distributed data store for the social graph](https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/data-store/tao-facebook-distributed-datastore-atc-2013.pdf)<br/>[Facebooks photo storage](https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf) |
| Flickr | [Flickr architecture](http://highscalability.com/flickr-architecture) |
| Mailbox | [From 0 to one million users in 6 weeks](http://highscalability.com/blog/2013/6/18/scaling-mailbox-from-0-to-one-million-users-in-6-weeks-and-1.html) |
| Pinterest | [From 0 To 10s of billions of page views a month](http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-billions-of-page-views-a.html)<br/>[18 million visitors, 10x growth, 12 employees](http://highscalability.com/blog/2012/5/21/pinterest-architecture-update-18-million-visitors-10x-growth.html) |
| Playfish | [50 million monthly users and growing](http://highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html) |
| PlentyOfFish | [PlentyOfFish architecture](http://highscalability.com/plentyoffish-architecture) |
| Salesforce | [How they handle 1.3 billion transactions a day](http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html) |
| Stack Overflow | [Stack Overflow architecture](http://highscalability.com/blog/2009/8/5/stack-overflow-architecture.html) |
| TripAdvisor | [40M visitors, 200M dynamic page views, 30TB data](http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-visitors-200m-dynamic-page-view.html) |
| Tumblr | [15 billion page views a month](http://highscalability.com/blog/2012/2/13/tumblr-architecture-15-billion-page-views-a-month-and-harder.html) |
| Twitter | [Making Twitter 10000 percent faster](http://highscalability.com/scaling-twitter-making-twitter-10000-percent-faster)<br/>[Storing 250 million tweets a day using MySQL](http://highscalability.com/blog/2011/12/19/how-twitter-stores-250-million-tweets-a-day-using-mysql.html)<br/>[150M active users, 300K QPS, a 22 MB/S firehose](http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html)<br/>[Timelines at scale](https://www.infoq.com/presentations/Twitter-Timeline-Scalability)<br/>[Big and small data at Twitter](https://www.youtube.com/watch?v=5cKTP36HVgI)<br/>[Operations at Twitter: scaling beyond 100 million users](https://www.youtube.com/watch?v=z8LU0Cj6BOU) |
| Uber | [How Uber scales their real-time market platform](http://highscalability.com/blog/2015/9/14/how-uber-scales-their-real-time-market-platform.html) |
| WhatsApp | [The WhatsApp architecture Facebook bought for $19 billion](http://highscalability.com/blog/2014/2/26/the-whatsapp-architecture-facebook-bought-for-19-billion.html) |
| YouTube | [YouTube scalability](https://www.youtube.com/watch?v=w5WVu624fY8)<br/>[YouTube architecture](http://highscalability.com/youtube-architecture) |
2017-02-27 21:05:23 +08:00
## Company engineering blogs
> Architectures for companies you are interviewing with.
>
> Questions you encounter might be from the same domain.
* [Airbnb Engineering](http://nerds.airbnb.com/)
* [Atlassian Developers](https://developer.atlassian.com/blog/)
* [Autodesk Engineering](http://cloudengineering.autodesk.com/blog/)
* [AWS Blog](https://aws.amazon.com/blogs/aws/)
* [Bitly Engineering Blog](http://word.bitly.com/)
* [Box Blogs](https://www.box.com/blog/engineering/)
* [Cloudera Developer Blog](http://blog.cloudera.com/blog/)
* [Dropbox Tech Blog](https://tech.dropbox.com/)
* [Engineering at Quora](http://engineering.quora.com/)
* [Ebay Tech Blog](http://www.ebaytechblog.com/)
* [Evernote Tech Blog](https://blog.evernote.com/tech/)
* [Etsy Code as Craft](http://codeascraft.com/)
* [Facebook Engineering](https://www.facebook.com/Engineering)
* [Flickr Code](http://code.flickr.net/)
* [Foursquare Engineering Blog](http://engineering.foursquare.com/)
* [GitHub Engineering Blog](http://githubengineering.com/)
* [Google Research Blog](http://googleresearch.blogspot.com/)
* [Groupon Engineering Blog](https://engineering.groupon.com/)
* [Heroku Engineering Blog](https://engineering.heroku.com/)
* [Hubspot Engineering Blog](http://product.hubspot.com/blog/topic/engineering)
* [High Scalability](http://highscalability.com/)
* [Instagram Engineering](http://instagram-engineering.tumblr.com/)
* [Intel Software Blog](https://software.intel.com/en-us/blogs/)
* [Jane Street Tech Blog](https://blogs.janestreet.com/category/ocaml/)
* [LinkedIn Engineering](http://engineering.linkedin.com/blog)
* [Microsoft Engineering](https://engineering.microsoft.com/)
* [Microsoft Python Engineering](https://blogs.msdn.microsoft.com/pythonengineering/)
* [Netflix Tech Blog](http://techblog.netflix.com/)
* [Paypal Developer Blog](https://devblog.paypal.com/category/engineering/)
* [Pinterest Engineering Blog](http://engineering.pinterest.com/)
* [Quora Engineering](https://engineering.quora.com/)
* [Reddit Blog](http://www.redditblog.com/)
* [Salesforce Engineering Blog](https://developer.salesforce.com/blogs/engineering/)
* [Slack Engineering Blog](https://slack.engineering/)
* [Spotify Labs](https://labs.spotify.com/)
* [Twilio Engineering Blog](http://www.twilio.com/engineering)
* [Twitter Engineering](https://engineering.twitter.com/)
* [Uber Engineering Blog](http://eng.uber.com/)
* [Yahoo Engineering Blog](http://yahooeng.tumblr.com/)
* [Yelp Engineering Blog](http://engineeringblog.yelp.com/)
* [Zynga Engineering Blog](https://www.zynga.com/blogs/engineering)
### Source(s) and further reading
* [kilimchoi/engineering-blogs](https://github.com/kilimchoi/engineering-blogs)
## System design topics: start here
New to system design?
First, you'll need a basic understanding of common principles, learning about what they are, how they are used, and their pros and cons.
### Step 1: Review the scalability video lecture
[Scalability Lecture at Harvard](https://www.youtube.com/watch?v=-W9F__D3oY4)
* Topics covered:
* Vertical scaling
* Horizontal scaling
* Caching
* Load balancing
* Database replication
* Database partitioning
### Step 2: Review the scalability article
[Scalability](http://www.lecloud.net/tagged/scalability)
* Topics covered:
* [Clones](http://www.lecloud.net/post/7295452622/scalability-for-dummies-part-1-clones)
* [Databases](http://www.lecloud.net/post/7994751381/scalability-for-dummies-part-2-database)
* [Caches](http://www.lecloud.net/post/9246290032/scalability-for-dummies-part-3-cache)
* [Asynchronism](http://www.lecloud.net/post/9699762917/scalability-for-dummies-part-4-asynchronism)
### Next steps
Next, we'll look at high-level trade-offs:
* **Performance** vs **scalability**
* **Latency** vs **throughput**
* **Availability** vs **consistency**
Keep in mind that **everything is a trade-off**.
Then we'll dive into more specific topics such as DNS, CDNs, and load balancers.
2017-02-27 21:06:10 +08:00
## Performance vs scalability
A service is **scalable** if it results in increased **performance** in a manner proportional to resources added. Generally, increasing performance means serving more units of work, but it can also be to handle larger units of work, such as when datasets grow.<sup><a href=http://www.allthingsdistributed.com/2006/03/a_word_on_scalability.html>1</a></sup>
Another way to look at performance vs scalability:
* If you have a **performance** problem, your system is slow for a single user.
* If you have a **scalability** problem, your system is fast for a single user but slow under heavy load.
### Source(s) and further reading
* [A word on scalability](http://www.allthingsdistributed.com/2006/03/a_word_on_scalability.html)
* [Scalability, availability, stability, patterns](http://www.slideshare.net/jboner/scalability-availability-stability-patterns/)
2017-02-27 21:06:28 +08:00
## Latency vs throughput
**Latency** is the time to perform some action or to produce some result.
**Throughput** is the number of such actions or results per unit of time.
Generally, you should aim for **maximal throughput** with **acceptable latency**.
### Source(s) and further reading
* [Understanding latency vs throughput](https://community.cadence.com/cadence_blogs_8/b/sd/archive/2010/09/13/understanding-latency-vs-throughput)
## Availability vs consistency
### CAP theorem
<p align="center">
<img src="http://i.imgur.com/bgLMI2u.png">
<br/>
<i><a href=http://robertgreiner.com/2014/08/cap-theorem-revisited>Source: CAP theorem revisited</a></i>
</p>
In a distributed computer system, you can only support two of the following guarantees:
* **Consistency** - Every read receives the most recent write or an error
* **Availability** - Every request receives a response, without guarantee that it contains the most recent version of the information
* **Partition Tolerance** - The system continues to operate despite arbitrary partitioning due to network failures
*Networks aren't reliable, so you'll need to support partition tolerance. You'll need to make a software tradeoff between consistency and availability.*
#### CP - consistency and partition tolerance
Waiting for a response from the partitioned node might result in a timeout error. CP is a good choice if your business needs require atomic reads and writes.
#### AP - availability and partition tolerance
Responses return the most recent version of the data, which might not be the latest. Writes might take some time to propagate when the partition is resolved.
AP is a good choice if the business needs allow for [eventual consistency](#eventual-consistency) or when the system needs to continue working despite external errors.
### Source(s) and further reading
* [CAP theorem revisited](http://robertgreiner.com/2014/08/cap-theorem-revisited/)
* [A plain english introduction to CAP theorem](http://ksat.me/a-plain-english-introduction-to-cap-theorem/)
* [CAP FAQ](https://github.com/henryr/cap-faq)