sol2/include/sol/table_core.hpp
2019-03-13 05:18:06 -04:00

610 lines
23 KiB
C++

// sol3
// The MIT License (MIT)
// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_TABLE_CORE_HPP
#define SOL_TABLE_CORE_HPP
#include "proxy.hpp"
#include "stack.hpp"
#include "function_types.hpp"
#include "table_iterator.hpp"
#include "types.hpp"
#include "object.hpp"
#include "usertype.hpp"
#include "optional.hpp"
namespace sol {
namespace detail {
template <std::size_t n>
struct clean {
lua_State* L;
clean(lua_State* luastate) : L(luastate) {
}
~clean() {
lua_pop(L, static_cast<int>(n));
}
};
struct ref_clean {
lua_State* L;
int& n;
ref_clean(lua_State* luastate, int& n) : L(luastate), n(n) {
}
~ref_clean() {
lua_pop(L, static_cast<int>(n));
}
};
inline int fail_on_newindex(lua_State* L) {
return luaL_error(L, "sol: cannot modify the elements of an enumeration table");
}
template <bool top_level, typename... Args>
using is_global = meta::all<meta::boolean<top_level>, meta::is_c_str<Args>...>;
template <bool top_level, typename... Args>
constexpr inline bool is_global_v = is_global<top_level, Args...>::value;
} // namespace detail
template <bool top_level, typename ref_t>
class basic_table_core : public basic_object<ref_t> {
private:
using base_t = basic_object<ref_t>;
friend class state;
friend class state_view;
template <bool raw, typename... Ret, typename... Keys>
decltype(auto) tuple_get(int table_index, Keys&&... keys) const {
if constexpr (sizeof...(Ret) < 2) {
return traverse_get_single_maybe_tuple<raw, Ret...>(table_index, std::forward<Keys>(keys)...);
}
else {
using multi_ret = decltype(stack::pop<std::tuple<Ret...>>(nullptr));
return multi_ret(traverse_get_single_maybe_tuple<raw, Ret>(table_index, std::forward<Keys>(keys))...);
}
}
template <bool raw, typename Ret, size_t... I, typename Key>
decltype(auto) traverse_get_single_tuple(int table_index, std::index_sequence<I...>, Key&& key) const {
return traverse_get_single<raw, Ret>(table_index, std::get<I>(std::forward<Key>(key))...);
}
template <bool raw, typename Ret, typename Key>
decltype(auto) traverse_get_single_maybe_tuple(int table_index, Key&& key) const {
if constexpr (meta::is_tuple_v<meta::unqualified_t<Key>>) {
return traverse_get_single_tuple<raw, Ret>(
table_index, std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<Key>>>(), std::forward<Key>(key));
}
else {
return traverse_get_single<raw, Ret>(table_index, std::forward<Key>(key));
}
}
template <bool raw, typename Ret, typename... Keys>
decltype(auto) traverse_get_single(int table_index, Keys&&... keys) const {
constexpr static bool global = detail::is_global_v<top_level, Keys...>;
if constexpr (meta::is_optional_v<meta::unqualified_t<Ret>>) {
int popcount = 0;
detail::ref_clean c(base_t::lua_state(), popcount);
return traverse_get_deep_optional<global, raw, Ret>(popcount, table_index, std::forward<Keys>(keys)...);
}
else {
detail::clean<sizeof...(Keys)> c(base_t::lua_state());
return traverse_get_deep<global, raw, Ret>(table_index, std::forward<Keys>(keys)...);
}
}
template <bool raw, typename Pairs, std::size_t... I>
void tuple_set(std::index_sequence<I...>, Pairs&& pairs) {
constexpr bool global = detail::is_global<top_level, decltype(std::get<I * 2>(std::forward<Pairs>(pairs)))...>::value;
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
lua_State* L = base_t::lua_state();
void(detail::swallow{ (stack::set_field<top_level, raw>(L,
std::get<I * 2>(std::forward<Pairs>(pairs)),
std::get<I * 2 + 1>(std::forward<Pairs>(pairs)),
table_index),
0)... });
}
template <bool global, bool raw, typename T, typename Key, typename... Keys>
decltype(auto) traverse_get_deep(int table_index, Key&& key, Keys&&... keys) const {
lua_State* L = base_t::lua_state();
stack::get_field<global, raw>(L, std::forward<Key>(key), table_index);
(void)detail::swallow{ 0, (stack::get_field<false, raw>(L, std::forward<Keys>(keys), lua_gettop(L)), 0)... };
return stack::get<T>(L);
}
template <bool global, bool raw, typename T, typename Key, typename... Keys>
decltype(auto) traverse_get_deep_optional(int& popcount, int table_index, Key&& key, Keys&&... keys) const {
lua_State* L = base_t::lua_state();
if constexpr (sizeof...(Keys) > 0) {
auto p = stack::probe_get_field<global>(L, std::forward<Key>(key), table_index);
popcount += p.levels;
if (!p.success)
return T(nullopt);
return traverse_get_deep_optional<false, raw, T>(popcount, lua_gettop(L), std::forward<Keys>(keys)...);
}
else {
using R = decltype(stack::get<T>(L));
auto p = stack::probe_get_field<global, raw, T>(L, std::forward<Key>(key), table_index);
popcount += p.levels;
if (!p.success)
return R(nullopt);
return stack::get<T>(L);
}
}
template <bool global, bool raw, detail::insert_mode mode, typename Key, typename... Keys>
void traverse_set_deep(int table_index, Key&& key, Keys&&... keys) const {
using KeyU = meta::unqualified_t<Key>;
if constexpr (std::is_same_v<KeyU, update_if_empty_t>) {
(void)key;
traverse_set_deep<false, raw, detail::insert_mode::update_if_empty>(table_index, std::forward<Keys>(keys)...);
}
else if constexpr (std::is_same_v<KeyU, override_value_t>) {
(void)key;
traverse_set_deep<false, raw, detail::insert_mode::override_value>(table_index, std::forward<Keys>(keys)...);
}
else {
lua_State* L = base_t::lua_state();
if constexpr (sizeof...(Keys) == 1) {
if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty) {
stack::get_field<global, raw>(L, key, table_index);
type vt = type_of(L, -1);
if (vt == type::lua_nil || vt == type::none) {
stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index);
}
}
else {
stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index);
}
}
else {
if constexpr ((mode & detail::insert_mode::override_value) == detail::insert_mode::override_value) {
stack::probe p = stack::probe_get_field<global, raw>(L, key, table_index);
if (!p.success) {
constexpr bool is_seq = std::is_integral_v<KeyU>;
stack::set_field<global, raw>(L, key, new_table(static_cast<int>(is_seq), !static_cast<int>(is_seq)), table_index);
stack::get_field<global, raw>(L, std::forward<Key>(key), table_index);
}
}
else if constexpr((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty) {
stack::get_field<global, raw>(L, key, table_index);
type vt = type_of(L, -1);
if (vt == type::lua_nil || vt == type::none) {
constexpr bool is_seq = std::is_integral_v<KeyU>;
lua_pop(L, 1);
stack::set_field<global, raw>(L, key, new_table(static_cast<int>(is_seq), !static_cast<int>(is_seq)), table_index);
stack::get_field<global, raw>(L, std::forward<Key>(key), table_index);
}
}
else {
stack::get_field<global, raw>(L, std::forward<Key>(key), table_index);
}
traverse_set_deep<false, raw, mode>(lua_gettop(L), std::forward<Keys>(keys)...);
}
}
}
basic_table_core(lua_State* L, detail::global_tag t) noexcept : base_t(L, t) {
}
protected:
basic_table_core(detail::no_safety_tag, lua_nil_t n) : base_t(n) {
}
basic_table_core(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) {
}
basic_table_core(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) {
}
template <typename T,
meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>,
meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) {
}
template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) {
}
public:
using iterator = basic_table_iterator<ref_t>;
using const_iterator = iterator;
using base_t::lua_state;
basic_table_core() noexcept = default;
basic_table_core(const basic_table_core&) = default;
basic_table_core(basic_table_core&&) = default;
basic_table_core& operator=(const basic_table_core&) = default;
basic_table_core& operator=(basic_table_core&&) = default;
basic_table_core(const stack_reference& r) : basic_table_core(r.lua_state(), r.stack_index()) {
}
basic_table_core(stack_reference&& r) : basic_table_core(r.lua_state(), r.stack_index()) {
}
template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_table_core>(lua_state(), -1, handler);
#endif // Safety
}
basic_table_core(lua_State* L, const new_table& nt) : base_t(L, -stack::push(L, nt)) {
if (!is_stack_based<meta::unqualified_t<ref_t>>::value) {
lua_pop(L, 1);
}
}
basic_table_core(lua_State* L, int index = -1) : basic_table_core(detail::no_safety, L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
constructor_handler handler{};
stack::check<basic_table_core>(L, index, handler);
#endif // Safety
}
basic_table_core(lua_State* L, ref_index index) : basic_table_core(detail::no_safety, L, index) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_table_core>(lua_state(), -1, handler);
#endif // Safety
}
template <typename T,
meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>,
meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(T&& r) noexcept : basic_table_core(detail::no_safety, std::forward<T>(r)) {
#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
if (!is_table<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
constructor_handler handler{};
stack::check<basic_table_core>(lua_state(), -1, handler);
}
#endif // Safety
}
basic_table_core(lua_nil_t r) noexcept : basic_table_core(detail::no_safety, r) {
}
iterator begin() const {
return iterator(*this);
}
iterator end() const {
return iterator();
}
const_iterator cbegin() const {
return begin();
}
const_iterator cend() const {
return end();
}
template <typename... Ret, typename... Keys>
decltype(auto) get(Keys&&... keys) const {
static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
constexpr static bool global = detail::is_global_v<top_level, Keys...>;
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
return tuple_get<false, Ret...>(table_index, std::forward<Keys>(keys)...);
}
template <typename T, typename Key>
decltype(auto) get_or(Key&& key, T&& otherwise) const {
typedef decltype(get<T>("")) U;
optional<U> option = get<optional<U>>(std::forward<Key>(key));
if (option) {
return static_cast<U>(option.value());
}
return static_cast<U>(std::forward<T>(otherwise));
}
template <typename T, typename Key, typename D>
decltype(auto) get_or(Key&& key, D&& otherwise) const {
optional<T> option = get<optional<T>>(std::forward<Key>(key));
if (option) {
return static_cast<T>(option.value());
}
return static_cast<T>(std::forward<D>(otherwise));
}
template <typename T, typename... Keys>
decltype(auto) traverse_get(Keys&&... keys) const {
constexpr static bool global = detail::is_global_v<top_level, Keys...>;
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
return traverse_get_single<false, T>(table_index, std::forward<Keys>(keys)...);
}
template <typename... Keys>
basic_table_core& traverse_set(Keys&&... keys) {
constexpr static bool global = detail::is_global_v<top_level, Keys...>;
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
lua_State* L = base_t::lua_state();
auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2));
traverse_set_deep<top_level, false, detail::insert_mode::none>(table_index, std::forward<Keys>(keys)...);
return *this;
}
template <typename... Args>
basic_table_core& set(Args&&... args) {
if constexpr(sizeof...(Args) == 2) {
traverse_set(std::forward<Args>(args)...);
}
else {
tuple_set<false>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
}
return *this;
}
template <typename... Ret, typename... Keys>
decltype(auto) raw_get(Keys&&... keys) const {
static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
constexpr static bool global = detail::is_global_v<top_level, Keys...>;
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
return tuple_get<true, Ret...>(table_index, std::forward<Keys>(keys)...);
}
template <typename T, typename Key>
decltype(auto) raw_get_or(Key&& key, T&& otherwise) const {
typedef decltype(raw_get<T>("")) U;
optional<U> option = raw_get<optional<U>>(std::forward<Key>(key));
if (option) {
return static_cast<U>(option.value());
}
return static_cast<U>(std::forward<T>(otherwise));
}
template <typename T, typename Key, typename D>
decltype(auto) raw_get_or(Key&& key, D&& otherwise) const {
optional<T> option = raw_get<optional<T>>(std::forward<Key>(key));
if (option) {
return static_cast<T>(option.value());
}
return static_cast<T>(std::forward<D>(otherwise));
}
template <typename T, typename... Keys>
decltype(auto) traverse_raw_get(Keys&&... keys) const {
constexpr static bool global = detail::is_global_v<top_level, Keys...>;
auto pp = stack::push_pop<global>(*this);
int table_index = pp.index_of(*this);
return traverse_get_single<true, T>(table_index, std::forward<Keys>(keys)...);
}
template <typename... Keys>
basic_table_core& traverse_raw_set(Keys&&... keys) {
constexpr static bool global = detail::is_global_v<top_level, Keys...>;
auto pp = stack::push_pop<global>(*this);
lua_State* L = base_t::lua_state();
auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2));
traverse_set_deep<top_level, true, false>(std::forward<Keys>(keys)...);
return *this;
}
template <typename... Args>
basic_table_core& raw_set(Args&&... args) {
tuple_set<true>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
return *this;
}
template <typename Class, typename Key>
usertype<Class> new_usertype(Key&& key);
template <typename Class, typename Key>
usertype<Class> new_usertype(Key&& key, automagic_enrollments enrollment);
template <typename Class, typename Key, typename Arg, typename... Args,
typename = std::enable_if_t<!std::is_same_v<meta::unqualified_t<Arg>, automagic_enrollments>>>
usertype<Class> new_usertype(Key&& key, Arg&& arg, Args&&... args);
template <bool read_only = true, typename... Args>
table new_enum(const string_view& name, Args&&... args) {
table target = create_with(std::forward<Args>(args)...);
if (read_only) {
table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target);
table shim = create_named(name, metatable_key, x);
return shim;
}
else {
set(name, target);
return target;
}
}
template <typename T, bool read_only = true>
table new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) {
table target = create(static_cast<int>(items.size()), static_cast<int>(0));
for (const auto& kvp : items) {
target.set(kvp.first, kvp.second);
}
if constexpr (read_only) {
table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target);
table shim = create_named(name, metatable_key, x);
return shim;
}
else {
set(name, target);
return target;
}
}
template <typename Key = object, typename Value = object, typename Fx>
void for_each(Fx&& fx) const {
lua_State* L = base_t::lua_state();
if constexpr (std::is_invocable_v<Fx, Key, Value>) {
auto pp = stack::push_pop(*this);
stack::push(L, lua_nil);
while (lua_next(L, -2)) {
Key key(L, -2);
Value value(L, -1);
auto pn = stack::pop_n(L, 1);
fx(key, value);
}
}
else {
auto pp = stack::push_pop(*this);
stack::push(L, lua_nil);
while (lua_next(L, -2)) {
Key key(L, -2);
Value value(L, -1);
auto pn = stack::pop_n(L, 1);
std::pair<Key&, Value&> keyvalue(key, value);
fx(keyvalue);
}
}
}
size_t size() const {
auto pp = stack::push_pop(*this);
lua_State* L = base_t::lua_state();
lua_len(L, -1);
return stack::pop<size_t>(L);
}
bool empty() const {
return cbegin() == cend();
}
template <typename T>
proxy<basic_table_core&, T> operator[](T&& key) & {
return proxy<basic_table_core&, T>(*this, std::forward<T>(key));
}
template <typename T>
proxy<const basic_table_core&, T> operator[](T&& key) const& {
return proxy<const basic_table_core&, T>(*this, std::forward<T>(key));
}
template <typename T>
proxy<basic_table_core, T> operator[](T&& key) && {
return proxy<basic_table_core, T>(*this, std::forward<T>(key));
}
template <typename Sig, typename Key, typename... Args>
basic_table_core& set_function(Key&& key, Args&&... args) {
set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename Key, typename... Args>
basic_table_core& set_function(Key&& key, Args&&... args) {
set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename... Args>
basic_table_core& add(Args&&... args) {
auto pp = stack::push_pop(*this);
int table_index = pp.index_of(*this);
lua_State* L = base_t::lua_state();
(void)detail::swallow{ 0, (stack::set_ref(L, std::forward<Args>(args), table_index), 0)... };
return *this;
}
private:
template <typename R, typename... Args, typename Fx, typename Key, typename = std::result_of_t<Fx(Args...)>>
void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) {
set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx));
}
template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
void set_fx(types<>, Key&& key, Fx&& fx) {
set(std::forward<Key>(key), std::forward<Fx>(fx));
}
template <typename Fx, typename Key, typename... Args,
meta::disable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) {
set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...));
}
template <typename... Sig, typename... Args, typename Key>
void set_resolved_function(Key&& key, Args&&... args) {
set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...));
}
public:
static inline table create(lua_State* L, int narr = 0, int nrec = 0) {
lua_createtable(L, narr, nrec);
table result(L);
lua_pop(L, 1);
return result;
}
template <typename Key, typename Value, typename... Args>
static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
lua_createtable(L, narr, nrec);
table result(L);
result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
lua_pop(L, 1);
return result;
}
template <typename... Args>
static inline table create_with(lua_State* L, Args&&... args) {
static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list.");
static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value);
return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...);
}
table create(int narr = 0, int nrec = 0) {
return create(base_t::lua_state(), narr, nrec);
}
template <typename Key, typename Value, typename... Args>
table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename Name>
table create(Name&& name, int narr = 0, int nrec = 0) {
table x = create(base_t::lua_state(), narr, nrec);
this->set(std::forward<Name>(name), x);
return x;
}
template <typename Name, typename Key, typename Value, typename... Args>
table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
this->set(std::forward<Name>(name), x);
return x;
}
template <typename... Args>
table create_with(Args&&... args) {
return create_with(base_t::lua_state(), std::forward<Args>(args)...);
}
template <typename Name, typename... Args>
table create_named(Name&& name, Args&&... args) {
static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value);
return create(std::forward<Name>(name), narr, (sizeof...(Args) / 2) - narr, std::forward<Args>(args)...);
}
};
} // namespace sol
#endif // SOL_TABLE_CORE_HPP