sol2/include/sol/stack_core.hpp

1457 lines
50 KiB
C++

// sol2
// The MIT License (MIT)
// Copyright (c) 2013-2021 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_STACK_CORE_HPP
#define SOL_STACK_CORE_HPP
#include <sol/types.hpp>
#include <sol/inheritance.hpp>
#include <sol/error_handler.hpp>
#include <sol/reference.hpp>
#include <sol/stack_reference.hpp>
#include <sol/tuple.hpp>
#include <sol/traits.hpp>
#include <sol/tie.hpp>
#include <sol/stack_guard.hpp>
#include <sol/demangle.hpp>
#include <sol/forward_detail.hpp>
#include <vector>
#include <bitset>
#include <forward_list>
#include <string>
#include <limits>
#include <algorithm>
#include <sstream>
#include <optional>
#include <type_traits>
namespace sol {
namespace detail {
struct with_function_tag { };
struct as_reference_tag { };
template <typename T>
struct as_pointer_tag { };
template <typename T>
struct as_value_tag { };
template <typename T>
struct as_unique_tag { };
template <typename T>
struct as_table_tag { };
template <typename Tag>
inline constexpr bool is_tagged_v
= meta::is_specialization_of_v<Tag,
detail::
as_pointer_tag> || meta::is_specialization_of_v<Tag, as_value_tag> || meta::is_specialization_of_v<Tag, as_unique_tag> || meta::is_specialization_of_v<Tag, as_table_tag> || std::is_same_v<Tag, as_reference_tag> || std::is_same_v<Tag, with_function_tag>;
using lua_reg_table = luaL_Reg[64];
using unique_destructor = void (*)(void*);
using unique_tag = detail::inheritance_unique_cast_function;
inline void* alloc_newuserdata(lua_State* L, std::size_t bytesize) {
#if SOL_LUA_VERSION_I_ >= 504
return lua_newuserdatauv(L, bytesize, 1);
#else
return lua_newuserdata(L, bytesize);
#endif
}
constexpr std::uintptr_t align(std::size_t alignment, std::uintptr_t ptr, std::size_t& space) {
// this handles arbitrary alignments...
// make this into a power-of-2-only?
// actually can't: this is a C++14-compatible framework,
// power of 2 alignment is C++17
std::uintptr_t offby = static_cast<std::uintptr_t>(ptr % alignment);
std::uintptr_t padding = (alignment - offby) % alignment;
ptr += padding;
space -= padding;
return ptr;
}
inline void* align(std::size_t alignment, void* ptr, std::size_t& space) {
return reinterpret_cast<void*>(align(alignment, reinterpret_cast<std::uintptr_t>(ptr), space));
}
constexpr std::uintptr_t align_one(std::size_t alignment, std::size_t size, std::uintptr_t ptr) {
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(alignment, ptr, space) + size;
}
template <typename... Args>
constexpr std::size_t aligned_space_for(std::uintptr_t ptr) {
std::uintptr_t end = ptr;
((end = align_one(alignof(Args), sizeof(Args), end)), ...);
return static_cast<std::size_t>(end - ptr);
}
template <typename... Args>
constexpr std::size_t aligned_space_for() {
static_assert(sizeof...(Args) > 0);
constexpr std::size_t max_arg_alignment = (std::max)({ alignof(Args)... });
if constexpr (max_arg_alignment <= alignof(std::max_align_t)) {
// If all types are `good enough`, simply calculate alignment in case of the worst allocator
std::size_t worst_required_size = 0;
for (std::size_t ptr = 0; ptr < max_arg_alignment; ptr++) {
worst_required_size = std::max(worst_required_size, aligned_space_for<Args...>(ptr));
}
return worst_required_size;
}
else {
// For over-aligned types let's assume that every Arg in Args starts at the worst aligned address
return (aligned_space_for<Args>(0x1) + ...);
}
}
inline void* align_usertype_pointer(void* ptr) {
using use_align = std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<void*>::value > 1)
#endif
>;
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<void*>::value, ptr, space);
}
template <bool pre_aligned = false, bool pre_shifted = false>
void* align_usertype_unique_destructor(void* ptr) {
using use_align = std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<unique_destructor>::value > 1)
#endif
>;
if (!pre_aligned) {
ptr = align_usertype_pointer(ptr);
}
if (!pre_shifted) {
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*));
}
if (!use_align::value) {
return static_cast<void*>(static_cast<void**>(ptr) + 1);
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<unique_destructor>::value, ptr, space);
}
template <bool pre_aligned = false, bool pre_shifted = false>
void* align_usertype_unique_tag(void* ptr) {
using use_align = std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<unique_tag>::value > 1)
#endif
>;
if (!pre_aligned) {
ptr = align_usertype_unique_destructor(ptr);
}
if (!pre_shifted) {
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor));
}
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<unique_tag>::value, ptr, space);
}
template <typename T, bool pre_aligned = false, bool pre_shifted = false>
void* align_usertype_unique(void* ptr) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of_v<T> > 1)
#endif
>
use_align;
if (!pre_aligned) {
ptr = align_usertype_unique_tag(ptr);
}
if (!pre_shifted) {
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_tag));
}
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of_v<T>, ptr, space);
}
template <typename T>
void* align_user(void* ptr) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of_v<T> > 1)
#endif
>
use_align;
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of_v<T>, ptr, space);
}
template <typename T>
T** usertype_allocate_pointer(lua_State* L) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<T*>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
T** pointerpointer = static_cast<T**>(alloc_newuserdata(L, sizeof(T*)));
return pointerpointer;
}
constexpr std::size_t initial_size = aligned_space_for<T*>();
std::size_t allocated_size = initial_size;
void* unadjusted = alloc_newuserdata(L, initial_size);
void* adjusted = align(std::alignment_of<T*>::value, unadjusted, allocated_size);
if (adjusted == nullptr) {
// trash allocator can burn in hell
lua_pop(L, 1);
// luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a
// worse job than malloc/realloc and should go read some books, yeah?");
luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data());
}
return static_cast<T**>(adjusted);
}
inline bool attempt_alloc(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t value_align,
std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) {
void* adjusted = alloc_newuserdata(L, allocated_size);
pointer_adjusted = align(ptr_align, adjusted, allocated_size);
if (pointer_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
// subtract size of what we're going to allocate there
allocated_size -= ptr_size;
adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
data_adjusted = align(value_align, adjusted, allocated_size);
if (data_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
return true;
}
inline bool attempt_alloc_unique(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t real_align,
std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& id_adjusted, void*& data_adjusted) {
void* adjusted = alloc_newuserdata(L, allocated_size);
pointer_adjusted = align(ptr_align, adjusted, allocated_size);
if (pointer_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= ptr_size;
adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
dx_adjusted = align(std::alignment_of_v<unique_destructor>, adjusted, allocated_size);
if (dx_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= sizeof(unique_destructor);
adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor));
id_adjusted = align(std::alignment_of_v<unique_tag>, adjusted, allocated_size);
if (id_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= sizeof(unique_tag);
adjusted = static_cast<void*>(static_cast<char*>(id_adjusted) + sizeof(unique_tag));
data_adjusted = align(real_align, adjusted, allocated_size);
if (data_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
return true;
}
template <typename T>
T* usertype_allocate(lua_State* L) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<T*>::value > 1 || std::alignment_of_v<T> > 1)
#endif
>
use_align;
if (!use_align::value) {
T** pointerpointer = static_cast<T**>(alloc_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& pointerreference = *pointerpointer;
T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
pointerreference = allocationtarget;
return allocationtarget;
}
constexpr std::size_t initial_size = aligned_space_for<T*, T>();
void* pointer_adjusted;
void* data_adjusted;
bool result
= attempt_alloc(L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, initial_size, pointer_adjusted, data_adjusted);
if (!result) {
if (pointer_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
}
else {
luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
}
return nullptr;
}
T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted);
T*& pointerreference = *pointerpointer;
T* allocationtarget = reinterpret_cast<T*>(data_adjusted);
pointerreference = allocationtarget;
return allocationtarget;
}
template <typename T, typename Real>
Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx, unique_tag*& id) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of<T*>::value > 1 || std::alignment_of<unique_tag>::value > 1 || std::alignment_of<unique_destructor>::value > 1
|| std::alignment_of<Real>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
pref = static_cast<T**>(alloc_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(unique_tag) + sizeof(Real)));
dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1));
id = static_cast<unique_tag*>(static_cast<void*>(dx + 1));
Real* mem = static_cast<Real*>(static_cast<void*>(id + 1));
return mem;
}
constexpr std::size_t initial_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>();
void* pointer_adjusted;
void* dx_adjusted;
void* id_adjusted;
void* data_adjusted;
bool result = attempt_alloc_unique(L,
std::alignment_of_v<T*>,
sizeof(T*),
std::alignment_of_v<Real>,
initial_size,
pointer_adjusted,
dx_adjusted,
id_adjusted,
data_adjusted);
if (!result) {
if (pointer_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
}
else if (dx_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<T>().c_str());
}
else {
luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
}
return nullptr;
}
pref = static_cast<T**>(pointer_adjusted);
dx = static_cast<detail::unique_destructor*>(dx_adjusted);
id = static_cast<unique_tag*>(id_adjusted);
Real* mem = static_cast<Real*>(data_adjusted);
return mem;
}
template <typename T>
T* user_allocate(lua_State* L) {
typedef std::integral_constant<bool,
#if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
false
#else
(std::alignment_of_v<T> > 1)
#endif
>
use_align;
if (!use_align::value) {
T* pointer = static_cast<T*>(alloc_newuserdata(L, sizeof(T)));
return pointer;
}
constexpr std::size_t initial_size = aligned_space_for<T>();
std::size_t allocated_size = initial_size;
void* unadjusted = alloc_newuserdata(L, allocated_size);
void* adjusted = align(std::alignment_of_v<T>, unadjusted, allocated_size);
if (adjusted == nullptr) {
lua_pop(L, 1);
luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data());
}
return static_cast<T*>(adjusted);
}
template <typename T>
int usertype_alloc_destroy(lua_State* L) noexcept {
void* memory = lua_touserdata(L, 1);
memory = align_usertype_pointer(memory);
T** pdata = static_cast<T**>(memory);
T* data = *pdata;
std::allocator<T> alloc {};
std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
return 0;
}
template <typename T>
int unique_destroy(lua_State* L) noexcept {
void* memory = lua_touserdata(L, 1);
memory = align_usertype_unique_destructor(memory);
unique_destructor& dx = *static_cast<unique_destructor*>(memory);
memory = align_usertype_unique_tag<true>(memory);
(dx)(memory);
return 0;
}
template <typename T>
int user_alloc_destroy(lua_State* L) noexcept {
void* memory = lua_touserdata(L, 1);
void* aligned_memory = align_user<T>(memory);
T* typed_memory = static_cast<T*>(aligned_memory);
std::allocator<T> alloc;
std::allocator_traits<std::allocator<T>>::destroy(alloc, typed_memory);
return 0;
}
template <typename T, typename Real>
void usertype_unique_alloc_destroy(void* memory) {
void* aligned_memory = align_usertype_unique<Real, true>(memory);
Real* typed_memory = static_cast<Real*>(aligned_memory);
std::allocator<Real> alloc;
std::allocator_traits<std::allocator<Real>>::destroy(alloc, typed_memory);
}
template <typename T>
int cannot_destroy(lua_State* L) {
return luaL_error(L,
"cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= "
"delete' and thusly this type is being destroyed without properly destroying, invoking undefined "
"behavior: please bind a usertype and specify a custom destructor to define the behavior properly",
detail::demangle<T>().data());
}
template <typename T>
void reserve(T&, std::size_t) {
}
template <typename T, typename Al>
void reserve(std::vector<T, Al>& vec, std::size_t hint) {
vec.reserve(hint);
}
template <typename T, typename Tr, typename Al>
void reserve(std::basic_string<T, Tr, Al>& str, std::size_t hint) {
str.reserve(hint);
}
inline bool property_always_true(meta_function) {
return true;
}
struct properties_enrollment_allowed {
int& times_through;
std::bitset<64>& properties;
automagic_enrollments& enrollments;
properties_enrollment_allowed(int& times_through_, std::bitset<64>& properties_, automagic_enrollments& enrollments_)
: times_through(times_through_), properties(properties_), enrollments(enrollments_) {
}
bool operator()(meta_function mf) const {
bool p = properties[static_cast<std::size_t>(mf)];
if (times_through > 0) {
return p;
}
switch (mf) {
case meta_function::length:
return enrollments.length_operator && !p;
case meta_function::pairs:
return enrollments.pairs_operator && !p;
case meta_function::call:
return enrollments.call_operator && !p;
case meta_function::less_than:
return enrollments.less_than_operator && !p;
case meta_function::less_than_or_equal_to:
return enrollments.less_than_or_equal_to_operator && !p;
case meta_function::equal_to:
return enrollments.equal_to_operator && !p;
default:
break;
}
return !p;
}
};
struct indexed_insert {
lua_reg_table& registration_table;
int& index;
indexed_insert(lua_reg_table& registration_table_, int& index_ref_) : registration_table(registration_table_), index(index_ref_) {
}
void operator()(meta_function meta_function_name_, lua_CFunction c_function_) {
registration_table[index] = luaL_Reg { to_string(meta_function_name_).c_str(), c_function_ };
++index;
}
};
} // namespace detail
namespace stack {
template <typename T, bool global = false, bool raw = false, typename = void>
struct field_getter;
template <typename T, typename P, bool global = false, bool raw = false, typename = void>
struct probe_field_getter;
template <typename T, bool global = false, bool raw = false, typename = void>
struct field_setter;
template <typename T, typename = void>
struct unqualified_getter;
template <typename T, typename = void>
struct qualified_getter;
template <typename T, typename = void>
struct qualified_interop_getter;
template <typename T, typename = void>
struct unqualified_interop_getter;
template <typename T, typename = void>
struct popper;
template <typename T, typename = void>
struct unqualified_pusher;
template <typename T, type t, typename = void>
struct unqualified_checker;
template <typename T, type t, typename = void>
struct qualified_checker;
template <typename T, typename = void>
struct unqualified_check_getter;
template <typename T, typename = void>
struct qualified_check_getter;
struct probe {
bool success;
int levels;
probe(bool s, int l) : success(s), levels(l) {
}
operator bool() const {
return success;
};
};
struct record {
int last;
int used;
record() noexcept : last(), used() {
}
void use(int count) noexcept {
last = count;
used += count;
}
};
namespace stack_detail {
template <typename Function>
Function* get_function_pointer(lua_State*, int, record&) noexcept;
template <typename Function, typename Handler>
bool check_function_pointer(lua_State* L, int index, Handler&& handler, record& tracking) noexcept;
} // namespace stack_detail
} // namespace stack
namespace meta { namespace meta_detail {
template <typename T>
using adl_sol_lua_get_test_t = decltype(sol_lua_get(types<T>(), static_cast<lua_State*>(nullptr), -1, std::declval<stack::record&>()));
template <typename T>
using adl_sol_lua_interop_get_test_t
= decltype(sol_lua_interop_get(types<T>(), static_cast<lua_State*>(nullptr), -1, static_cast<void*>(nullptr), std::declval<stack::record&>()));
template <typename T>
using adl_sol_lua_check_test_t = decltype(sol_lua_check(types<T>(), static_cast<lua_State*>(nullptr), -1, &no_panic, std::declval<stack::record&>()));
template <typename T>
using adl_sol_lua_interop_check_test_t
= decltype(sol_lua_interop_check(types<T>(), static_cast<lua_State*>(nullptr), -1, type::none, &no_panic, std::declval<stack::record&>()));
template <typename T>
using adl_sol_lua_check_get_test_t
= decltype(sol_lua_check_get(types<T>(), static_cast<lua_State*>(nullptr), -1, &no_panic, std::declval<stack::record&>()));
template <typename... Args>
using adl_sol_lua_push_test_t = decltype(sol_lua_push(static_cast<lua_State*>(nullptr), std::declval<Args>()...));
template <typename T, typename... Args>
using adl_sol_lua_push_exact_test_t = decltype(sol_lua_push(types<T>(), static_cast<lua_State*>(nullptr), std::declval<Args>()...));
template <typename T>
inline constexpr bool is_adl_sol_lua_get_v = meta::is_detected_v<adl_sol_lua_get_test_t, T>;
template <typename T>
inline constexpr bool is_adl_sol_lua_interop_get_v = meta::is_detected_v<adl_sol_lua_interop_get_test_t, T>;
template <typename T>
inline constexpr bool is_adl_sol_lua_check_v = meta::is_detected_v<adl_sol_lua_check_test_t, T>;
template <typename T>
inline constexpr bool is_adl_sol_lua_interop_check_v = meta::is_detected_v<adl_sol_lua_interop_check_test_t, T>;
template <typename T>
inline constexpr bool is_adl_sol_lua_check_get_v = meta::is_detected_v<adl_sol_lua_check_get_test_t, T>;
template <typename... Args>
inline constexpr bool is_adl_sol_lua_push_v = meta::is_detected_v<adl_sol_lua_push_test_t, Args...>;
template <typename T, typename... Args>
inline constexpr bool is_adl_sol_lua_push_exact_v = meta::is_detected_v<adl_sol_lua_push_exact_test_t, T, Args...>;
}} // namespace meta::meta_detail
namespace stack {
namespace stack_detail {
constexpr const char* not_enough_stack_space = "not enough space left on Lua stack";
constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number";
constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number";
constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string";
constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function";
constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol2 userdata";
constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees";
constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment";
template <typename T>
struct strip {
typedef T type;
};
template <typename T>
struct strip<std::reference_wrapper<T>> {
typedef T& type;
};
template <typename T>
struct strip<user<T>> {
typedef T& type;
};
template <typename T>
struct strip<non_null<T>> {
typedef T type;
};
template <typename T>
using strip_t = typename strip<T>::type;
template <typename C>
static int get_size_hint(C& c) {
return static_cast<int>(c.size());
}
template <typename V, typename Al>
static int get_size_hint(const std::forward_list<V, Al>&) {
// forward_list makes me sad
return static_cast<int>(32);
}
template <typename T>
decltype(auto) unchecked_unqualified_get(lua_State* L, int index, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<Tu>) {
return sol_lua_get(types<Tu>(), L, index, tracking);
}
else {
unqualified_getter<Tu> g {};
(void)g;
return g.get(L, index, tracking);
}
}
template <typename T>
decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) {
if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<T>) {
return sol_lua_get(types<T>(), L, index, tracking);
}
else {
qualified_getter<T> g {};
(void)g;
return g.get(L, index, tracking);
}
}
template <typename T>
decltype(auto) unqualified_interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<Tu>) {
return sol_lua_interop_get(types<Tu>(), L, index, unadjusted_pointer, tracking);
}
else {
(void)L;
(void)index;
(void)unadjusted_pointer;
(void)tracking;
using Ti = stack_detail::strip_t<Tu>;
return std::pair<bool, Ti*> { false, nullptr };
}
}
template <typename T>
decltype(auto) interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<T>) {
return sol_lua_interop_get(types<T>(), L, index, unadjusted_pointer, tracking);
}
else {
return unqualified_interop_get<T>(L, index, unadjusted_pointer, tracking);
}
}
template <typename T, typename Handler>
bool unqualified_interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<Tu>) {
return sol_lua_interop_check(types<Tu>(), L, index, index_type, std::forward<Handler>(handler), tracking);
}
else {
(void)L;
(void)index;
(void)index_type;
(void)handler;
(void)tracking;
return false;
}
}
template <typename T, typename Handler>
bool interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<T>) {
return sol_lua_interop_check(types<T>(), L, index, index_type, std::forward<Handler>(handler), tracking);
}
else {
return unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking);
}
}
using undefined_method_func = void (*)(stack_reference);
struct undefined_metatable {
lua_State* L;
const char* key;
undefined_method_func on_new_table;
undefined_metatable(lua_State* l, const char* k, undefined_method_func umf) : L(l), key(k), on_new_table(umf) {
}
void operator()() const {
if (luaL_newmetatable(L, key) == 1) {
on_new_table(stack_reference(L, -1));
}
lua_setmetatable(L, -2);
}
};
} // namespace stack_detail
inline bool maybe_indexable(lua_State* L, int index = -1) {
type t = type_of(L, index);
return t == type::userdata || t == type::table;
}
inline int top(lua_State* L) {
return lua_gettop(L);
}
inline bool is_main_thread(lua_State* L) {
int ismainthread = lua_pushthread(L);
lua_pop(L, 1);
return ismainthread == 1;
}
inline void coroutine_create_guard(lua_State* L) {
if (is_main_thread(L)) {
return;
}
int stacksize = lua_gettop(L);
if (stacksize < 1) {
return;
}
if (type_of(L, 1) != type::function) {
return;
}
// well now we're screwed...
// we can clean the stack and pray it doesn't destroy anything?
lua_pop(L, stacksize);
}
inline void clear(lua_State* L, int table_index) {
lua_pushnil(L);
while (lua_next(L, table_index) != 0) {
// remove value
lua_pop(L, 1);
// duplicate key to protect form rawset
lua_pushvalue(L, -1);
// push new value
lua_pushnil(L);
// table_index%[key] = nil
lua_rawset(L, table_index);
}
}
inline void clear(reference& r) {
auto pp = push_pop<false>(r);
int stack_index = pp.index_of(r);
clear(r.lua_state(), stack_index);
}
inline void clear(stack_reference& r) {
clear(r.lua_state(), r.stack_index());
}
inline void clear(lua_State* L_, stateless_reference& r) {
r.push(L_);
int stack_index = absolute_index(L_, -1);
clear(L_, stack_index);
r.pop(L_);
}
inline void clear(lua_State* L_, stateless_stack_reference& r) {
clear(L_, r.stack_index());
}
template <typename T, typename... Args>
int push(lua_State* L, T&& t, Args&&... args) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, T, Args...>) {
return sol_lua_push(types<T>(), L, std::forward<T>(t), std::forward<Args>(args)...);
}
else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, T, Args...>) {
return sol_lua_push(types<Tu>(), L, std::forward<T>(t), std::forward<Args>(args)...);
}
else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<T, Args...>) {
return sol_lua_push(L, std::forward<T>(t), std::forward<Args>(args)...);
}
else {
unqualified_pusher<Tu> p {};
(void)p;
return p.push(L, std::forward<T>(t), std::forward<Args>(args)...);
}
}
// overload allows to use a pusher of a specific type, but pass in any kind of args
template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
int push(lua_State* L, Arg&& arg, Args&&... args) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, Arg, Args...>) {
return sol_lua_push(types<T>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, Arg, Args...>) {
return sol_lua_push(types<Tu>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<Arg, Args...> && !detail::is_tagged_v<Tu>) {
return sol_lua_push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
else {
unqualified_pusher<Tu> p {};
(void)p;
return p.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
}
template <typename T, typename... Args>
int push_userdata(lua_State* L, T&& t, Args&&... args) {
using U = meta::unqualified_t<T>;
using Tr = meta::conditional_t<std::is_pointer_v<U>,
detail::as_pointer_tag<std::remove_pointer_t<U>>,
meta::conditional_t<is_unique_usertype_v<U>, detail::as_unique_tag<U>, detail::as_value_tag<U>>>;
return stack::push<Tr>(L, std::forward<T>(t), std::forward<Args>(args)...);
}
template <typename T, typename Arg, typename... Args>
int push_userdata(lua_State* L, Arg&& arg, Args&&... args) {
using U = meta::unqualified_t<T>;
using Tr = meta::conditional_t<std::is_pointer_v<U>,
detail::as_pointer_tag<std::remove_pointer_t<U>>,
meta::conditional_t<is_unique_usertype_v<U>, detail::as_unique_tag<U>, detail::as_value_tag<U>>>;
return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
namespace stack_detail {
template <typename T, typename Arg, typename... Args>
int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
// clang-format off
using use_reference_tag =
meta::all<
meta::neg<is_value_semantic_for_function<T>>
#if SOL_IS_OFF(SOL_FUNCTION_CALL_VALUE_SEMANTICS_I_)
, std::is_lvalue_reference<T>,
meta::neg<std::is_const<std::remove_reference_t<T>>>,
meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
meta::neg<is_unique_usertype<meta::unqualified_t<T>>>
#endif
>;
// clang-format on
using Tr = meta::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>;
return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
} // namespace stack_detail
template <typename T, typename... Args>
int push_reference(lua_State* L, T&& t, Args&&... args) {
return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...);
}
template <typename T, typename Arg, typename... Args>
int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
inline int multi_push(lua_State*) {
// do nothing
return 0;
}
template <typename T, typename... Args>
int multi_push(lua_State* L, T&& t, Args&&... args) {
int pushcount = push(L, std::forward<T>(t));
void(detail::swallow { (pushcount += stack::push(L, std::forward<Args>(args)), 0)... });
return pushcount;
}
inline int multi_push_reference(lua_State*) {
// do nothing
return 0;
}
template <typename T, typename... Args>
int multi_push_reference(lua_State* L, T&& t, Args&&... args) {
int pushcount = stack::push_reference(L, std::forward<T>(t));
void(detail::swallow { (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... });
return pushcount;
}
template <typename T, typename Handler>
bool unqualified_check(lua_State* L, int index, Handler&& handler, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<Tu>) {
return sol_lua_check(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
}
else {
unqualified_checker<Tu, lua_type_of_v<Tu>> c;
// VC++ has a bad warning here: shut it up
(void)c;
return c.check(L, index, std::forward<Handler>(handler), tracking);
}
}
template <typename T, typename Handler>
bool unqualified_check(lua_State* L, int index, Handler&& handler) {
record tracking {};
return unqualified_check<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool unqualified_check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = &no_panic;
return unqualified_check<T>(L, index, handler);
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<T>) {
return sol_lua_check(types<T>(), L, index, std::forward<Handler>(handler), tracking);
}
else {
using Tu = meta::unqualified_t<T>;
qualified_checker<T, lua_type_of_v<Tu>> c;
// VC++ has a bad warning here: shut it up
(void)c;
return c.check(L, index, std::forward<Handler>(handler), tracking);
}
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler) {
record tracking {};
return check<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = &no_panic;
return check<T>(L, index, handler);
}
template <typename T, typename Handler>
bool check_usertype(lua_State* L, int index, type, Handler&& handler, record& tracking) {
using Tu = meta::unqualified_t<T>;
using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) {
using Tu = meta::unqualified_t<T>;
using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check_usertype(lua_State* L, int index, Handler&& handler) {
record tracking {};
return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = &no_panic;
return check_usertype<T>(L, index, handler);
}
template <typename T, typename Handler>
decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
using Tu = meta::unqualified_t<T>;
if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
}
else if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<Tu>) {
return sol_lua_check_get(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
}
else {
unqualified_check_getter<Tu> cg {};
(void)cg;
return cg.get(L, index, std::forward<Handler>(handler), tracking);
}
}
template <typename T, typename Handler>
decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler) {
record tracking {};
return unqualified_check_get<T>(L, index, handler, tracking);
}
template <typename T>
decltype(auto) unqualified_check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = &no_panic;
return unqualified_check_get<T>(L, index, handler);
}
template <typename T, typename Handler>
decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
}
else {
qualified_check_getter<T> cg {};
(void)cg;
return cg.get(L, index, std::forward<Handler>(handler), tracking);
}
}
template <typename T, typename Handler>
decltype(auto) check_get(lua_State* L, int index, Handler&& handler) {
record tracking {};
return check_get<T>(L, index, handler, tracking);
}
template <typename T>
decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = &no_panic;
return check_get<T>(L, index, handler);
}
namespace stack_detail {
template <typename Handler>
bool check_types(lua_State*, int, Handler&&, record&) {
return true;
}
template <typename T, typename... Args, typename Handler>
bool check_types(lua_State* L, int firstargument, Handler&& handler, record& tracking) {
if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
return false;
return check_types<Args...>(L, firstargument, std::forward<Handler>(handler), tracking);
}
template <typename... Args, typename Handler>
bool check_types(types<Args...>, lua_State* L, int index, Handler&& handler, record& tracking) {
return check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
}
} // namespace stack_detail
template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack_detail::check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler) {
record tracking {};
return multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename... Args>
bool multi_check(lua_State* L, int index) {
return multi_check<Args...>(L, index);
}
template <typename T>
auto unqualified_get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_unqualified_get<T>(L, index, tracking)) {
#if SOL_IS_ON(SOL_SAFE_GETTER_I_)
static constexpr bool is_op = meta::is_optional_v<T>;
if constexpr (is_op) {
return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
}
else {
if (is_lua_reference<T>::value) {
return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
}
auto op = unqualified_check_get<T>(L, index, type_panic_c_str, tracking);
return *std::move(op);
}
#else
return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
#endif
}
template <typename T>
decltype(auto) unqualified_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking {};
return unqualified_get<T>(L, index, tracking);
}
template <typename T>
auto get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) {
#if SOL_IS_ON(SOL_SAFE_GETTER_I_)
static constexpr bool is_op = meta::is_optional_v<T>;
if constexpr (is_op) {
return stack_detail::unchecked_get<T>(L, index, tracking);
}
else {
if (is_lua_reference<T>::value) {
return stack_detail::unchecked_get<T>(L, index, tracking);
}
auto op = check_get<T>(L, index, type_panic_c_str, tracking);
return *std::move(op);
}
#else
return stack_detail::unchecked_get<T>(L, index, tracking);
#endif
}
template <typename T>
decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking {};
return get<T>(L, index, tracking);
}
template <typename T>
decltype(auto) get_usertype(lua_State* L, int index, record& tracking) {
using UT = meta::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>;
return get<UT>(L, index, tracking);
}
template <typename T>
decltype(auto) get_usertype(lua_State* L, int index = -lua_size_v<meta::unqualified_t<T>>) {
record tracking {};
return get_usertype<T>(L, index, tracking);
}
template <typename T>
decltype(auto) pop(lua_State* L) {
return popper<T> {}.pop(L);
}
template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key) {
field_getter<meta::unqualified_t<Key>, global, raw> {}.get(L, std::forward<Key>(key));
}
template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key, int tableindex) {
field_getter<meta::unqualified_t<Key>, global, raw> {}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key) {
get_field<global, true>(L, std::forward<Key>(key));
}
template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key, int tableindex) {
get_field<global, true>(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_get_field(lua_State* L, Key&& key) {
return probe_field_getter<meta::unqualified_t<Key>, C, global, raw> {}.get(L, std::forward<Key>(key));
}
template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_get_field(lua_State* L, Key&& key, int tableindex) {
return probe_field_getter<meta::unqualified_t<Key>, C, global, raw> {}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key) {
return probe_get_field<global, true, C>(L, std::forward<Key>(key));
}
template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) {
return probe_get_field<global, true, C>(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value) {
field_setter<meta::unqualified_t<Key>, global, raw> {}.set(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
field_setter<meta::unqualified_t<Key>, global, raw> {}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value) {
set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
template <typename T, typename F>
void modify_unique_usertype_as(const stack_reference& obj, F&& f) {
void* raw = lua_touserdata(obj.lua_state(), obj.stack_index());
void* ptr_memory = detail::align_usertype_pointer(raw);
void* uu_memory = detail::align_usertype_unique<T>(raw);
T& uu = *static_cast<T*>(uu_memory);
f(uu);
*static_cast<void**>(ptr_memory) = static_cast<void*>(detail::unique_get(obj.lua_state(), uu));
}
template <typename F>
void modify_unique_usertype(const stack_reference& obj, F&& f) {
using bt = meta::bind_traits<meta::unqualified_t<F>>;
using T = typename bt::template arg_at<0>;
using Tu = meta::unqualified_t<T>;
modify_unique_usertype_as<Tu>(obj, std::forward<F>(f));
}
namespace stack_detail {
template <typename T, typename Handler>
decltype(auto) check_get_arg(lua_State* L_, int index_, Handler&& handler_, record& tracking_) {
if constexpr (meta::meta_detail::is_adl_sol_lua_check_access_v<T>) {
sol_lua_check_access(types<meta::unqualified_t<T>>(), L_, index_, tracking_);
}
return check_get<T>(L_, index_, std::forward<Handler>(handler_), tracking_);
}
template <typename T>
decltype(auto) unchecked_get_arg(lua_State* L_, int index_, record& tracking_) {
if constexpr (meta::meta_detail::is_adl_sol_lua_check_access_v<T>) {
sol_lua_check_access(types<meta::unqualified_t<T>>(), L_, index_, tracking_);
}
return unchecked_get<T>(L_, index_, tracking_);
}
} // namespace stack_detail
} // namespace stack
namespace detail {
template <typename T>
lua_CFunction make_destructor(std::true_type) {
if constexpr (is_unique_usertype_v<T>) {
return &unique_destroy<T>;
}
else if constexpr (!std::is_pointer_v<T>) {
return &usertype_alloc_destroy<T>;
}
else {
return &cannot_destroy<T>;
}
}
template <typename T>
lua_CFunction make_destructor(std::false_type) {
return &cannot_destroy<T>;
}
template <typename T>
lua_CFunction make_destructor() {
return make_destructor<T>(std::is_destructible<T>());
}
struct no_comp {
template <typename A, typename B>
bool operator()(A&&, B&&) const {
return false;
}
};
template <typename T>
int is_check(lua_State* L) {
return stack::push(L, stack::check<T>(L, 1, &no_panic));
}
template <typename T>
int member_default_to_string(std::true_type, lua_State* L) {
decltype(auto) ts = stack::get<T>(L, 1).to_string();
return stack::push(L, std::forward<decltype(ts)>(ts));
}
template <typename T>
int member_default_to_string(std::false_type, lua_State* L) {
return luaL_error(L,
"cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member "
"function, or operator<<(ostream&, ...) present",
detail::demangle<T>().data());
}
template <typename T>
int adl_default_to_string(std::true_type, lua_State* L) {
using namespace std;
decltype(auto) ts = to_string(stack::get<T>(L, 1));
return stack::push(L, std::forward<decltype(ts)>(ts));
}
template <typename T>
int adl_default_to_string(std::false_type, lua_State* L) {
return member_default_to_string<T>(meta::supports_to_string_member<T>(), L);
}
template <typename T>
int oss_default_to_string(std::true_type, lua_State* L) {
std::ostringstream oss;
oss << stack::unqualified_get<T>(L, 1);
return stack::push(L, oss.str());
}
template <typename T>
int oss_default_to_string(std::false_type, lua_State* L) {
return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L);
}
template <typename T>
int default_to_string(lua_State* L) {
return oss_default_to_string<T>(meta::supports_op_left_shift<std::ostream, T>(), L);
}
template <typename T>
int default_size(lua_State* L) {
decltype(auto) self = stack::unqualified_get<T>(L, 1);
return stack::push(L, self.size());
}
template <typename T, typename Op>
int comparsion_operator_wrap(lua_State* L) {
if constexpr (std::is_void_v<T>) {
return stack::push(L, false);
}
else {
auto maybel = stack::unqualified_check_get<T>(L, 1);
if (!maybel) {
return stack::push(L, false);
}
auto mayber = stack::unqualified_check_get<T>(L, 2);
if (!mayber) {
return stack::push(L, false);
}
decltype(auto) l = *maybel;
decltype(auto) r = *mayber;
if constexpr (std::is_same_v<no_comp, Op>) {
std::equal_to<> op;
return stack::push(L, op(detail::ptr(l), detail::ptr(r)));
}
else {
if constexpr (std::is_same_v<std::equal_to<>, Op> // clang-format hack
|| std::is_same_v<std::less_equal<>, Op> //
|| std::is_same_v<std::less_equal<>, Op>) { //
if (detail::ptr(l) == detail::ptr(r)) {
return stack::push(L, true);
}
}
Op op;
return stack::push(L, op(detail::deref(l), detail::deref(r)));
}
}
}
template <typename T, typename IFx, typename Fx>
void insert_default_registrations(IFx&& ifx, Fx&& fx);
template <typename T, bool, bool>
struct get_is_primitive : is_lua_primitive<T> { };
template <typename T>
struct get_is_primitive<T, true, false>
: meta::neg<std::is_reference<decltype(sol_lua_get(types<T>(), nullptr, -1, std::declval<stack::record&>()))>> { };
template <typename T>
struct get_is_primitive<T, false, true>
: meta::neg<std::is_reference<decltype(sol_lua_get(types<meta::unqualified_t<T>>(), nullptr, -1, std::declval<stack::record&>()))>> { };
template <typename T>
struct get_is_primitive<T, true, true> : get_is_primitive<T, true, false> { };
} // namespace detail
template <typename T>
struct is_proxy_primitive
: detail::get_is_primitive<T, meta::meta_detail::is_adl_sol_lua_get_v<T>, meta::meta_detail::is_adl_sol_lua_get_v<meta::unqualified_t<T>>> { };
} // namespace sol
#endif // SOL_STACK_CORE_HPP