sol2/single/sol/sol.hpp

13551 lines
435 KiB
C++

// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// This file was generated with a script.
// Generated 2017-03-31 21:37:49.518087 UTC
// This header was generated with sol v2.16.0 (revision 1e367ab)
// https://github.com/ThePhD/sol2
#ifndef SOL_SINGLE_INCLUDE_HPP
#define SOL_SINGLE_INCLUDE_HPP
// beginning of sol.hpp
#ifndef SOL_HPP
#define SOL_HPP
#if defined(UE_BUILD_DEBUG) || defined(UE_BUILD_DEVELOPMENT) || defined(UE_BUILD_TEST) || defined(UE_BUILD_SHIPPING) || defined(UE_SERVER)
#define SOL_INSIDE_UNREAL
#endif // Unreal Engine 4 bullshit
#ifdef SOL_INSIDE_UNREAL
#ifdef check
#define SOL_INSIDE_UNREAL_REMOVED_CHECK
#undef check
#endif
#endif // Unreal Engine 4 Bullshit
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wconversion"
#elif defined _MSC_VER
#pragma warning( push )
#pragma warning( disable : 4324 ) // structure was padded due to alignment specifier
#endif // g++
// beginning of sol/state.hpp
// beginning of sol/state_view.hpp
// beginning of sol/error.hpp
#include <stdexcept>
#include <string>
namespace sol {
namespace detail {
struct direct_error_tag {};
const auto direct_error = direct_error_tag{};
} // detail
class error : public std::runtime_error {
private:
// Because VC++ is a fuccboi
std::string w;
public:
error(const std::string& str) : error(detail::direct_error, "lua: error: " + str) {}
error(std::string&& str) : error(detail::direct_error, "lua: error: " + std::move(str)) {}
error(detail::direct_error_tag, const std::string& str) : std::runtime_error(""), w(str) {}
error(detail::direct_error_tag, std::string&& str) : std::runtime_error(""), w(std::move(str)) {}
error(const error& e) = default;
error(error&& e) = default;
error& operator=(const error& e) = default;
error& operator=(error&& e) = default;
virtual const char* what() const noexcept override {
return w.c_str();
}
};
} // sol
// end of sol/error.hpp
// beginning of sol/table.hpp
// beginning of sol/table_core.hpp
// beginning of sol/proxy.hpp
// beginning of sol/traits.hpp
// beginning of sol/tuple.hpp
#include <tuple>
#include <cstddef>
namespace sol {
namespace detail {
using swallow = std::initializer_list<int>;
} // detail
template<typename... Args>
struct types { typedef std::make_index_sequence<sizeof...(Args)> indices; static constexpr std::size_t size() { return sizeof...(Args); } };
namespace meta {
namespace detail {
template<typename... Args>
struct tuple_types_ { typedef types<Args...> type; };
template<typename... Args>
struct tuple_types_<std::tuple<Args...>> { typedef types<Args...> type; };
} // detail
template<typename T>
using unqualified = std::remove_cv<std::remove_reference_t<T>>;
template<typename T>
using unqualified_t = typename unqualified<T>::type;
template<typename... Args>
using tuple_types = typename detail::tuple_types_<Args...>::type;
template<typename Arg>
struct pop_front_type;
template<typename Arg>
using pop_front_type_t = typename pop_front_type<Arg>::type;
template<typename... Args>
struct pop_front_type<types<Args...>> { typedef void front_type; typedef types<Args...> type; };
template<typename Arg, typename... Args>
struct pop_front_type<types<Arg, Args...>> { typedef Arg front_type; typedef types<Args...> type; };
template <std::size_t N, typename Tuple>
using tuple_element = std::tuple_element<N, unqualified_t<Tuple>>;
template <std::size_t N, typename Tuple>
using tuple_element_t = std::tuple_element_t<N, unqualified_t<Tuple>>;
template <std::size_t N, typename Tuple>
using unqualified_tuple_element = unqualified<tuple_element_t<N, Tuple>>;
template <std::size_t N, typename Tuple>
using unqualified_tuple_element_t = unqualified_t<tuple_element_t<N, Tuple>>;
} // meta
} // sol
// end of sol/tuple.hpp
// beginning of sol/bind_traits.hpp
namespace sol {
namespace meta {
namespace meta_detail {
template<class F>
struct check_deducible_signature {
struct nat {};
template<class G>
static auto test(int) -> decltype(&G::operator(), void());
template<class>
static auto test(...)->nat;
using type = std::is_void<decltype(test<F>(0))>;
};
} // meta_detail
template<class F>
struct has_deducible_signature : meta_detail::check_deducible_signature<F>::type { };
namespace meta_detail {
template <std::size_t I, typename T>
struct void_tuple_element : meta::tuple_element<I, T> {};
template <std::size_t I>
struct void_tuple_element<I, std::tuple<>> { typedef void type; };
template <std::size_t I, typename T>
using void_tuple_element_t = typename void_tuple_element<I, T>::type;
template <bool has_c_variadic, typename T, typename R, typename... Args>
struct basic_traits {
private:
typedef std::conditional_t<std::is_void<T>::value, int, T>& first_type;
public:
static const bool is_member_function = std::is_void<T>::value;
static const bool has_c_var_arg = has_c_variadic;
static const std::size_t arity = sizeof...(Args);
static const std::size_t free_arity = sizeof...(Args)+static_cast<std::size_t>(!std::is_void<T>::value);
typedef types<Args...> args_list;
typedef std::tuple<Args...> args_tuple;
typedef T object_type;
typedef R return_type;
typedef tuple_types<R> returns_list;
typedef R(function_type)(Args...);
typedef std::conditional_t<std::is_void<T>::value, args_list, types<first_type, Args...>> free_args_list;
typedef std::conditional_t<std::is_void<T>::value, R(Args...), R(first_type, Args...)> free_function_type;
typedef std::conditional_t<std::is_void<T>::value, R(*)(Args...), R(*)(first_type, Args...)> free_function_pointer_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template<std::size_t i>
using arg_at = void_tuple_element_t<i, args_tuple>;
};
template<typename Signature, bool b = has_deducible_signature<Signature>::value>
struct fx_traits : basic_traits<false, void, void> {};
// Free Functions
template<typename R, typename... Args>
struct fx_traits<R(Args...), false> : basic_traits<false, void, R, Args...> {
typedef R(*function_pointer_type)(Args...);
};
template<typename R, typename... Args>
struct fx_traits<R(*)(Args...), false> : basic_traits<false, void, R, Args...> {
typedef R(*function_pointer_type)(Args...);
};
template<typename R, typename... Args>
struct fx_traits<R(Args..., ...), false> : basic_traits<true, void, R, Args...> {
typedef R(*function_pointer_type)(Args..., ...);
};
template<typename R, typename... Args>
struct fx_traits<R(*)(Args..., ...), false> : basic_traits<true, void, R, Args...> {
typedef R(*function_pointer_type)(Args..., ...);
};
// Member Functions
/* C-Style Variadics */
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...), false> : basic_traits<false, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args...);
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args..., ...), false> : basic_traits<true, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args..., ...);
};
/* Const Volatile */
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) const, false> : basic_traits<false, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args...) const;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args..., ...) const, false> : basic_traits<true, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args..., ...) const;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) const volatile, false> : basic_traits<false, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args...) const volatile;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args..., ...) const volatile, false> : basic_traits<true, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args..., ...) const volatile;
};
/* Member Function Qualifiers */
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) &, false> : basic_traits<false, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args...) &;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args..., ...) &, false> : basic_traits<true, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args..., ...) &;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) const &, false> : basic_traits<false, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args...) const &;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args..., ...) const &, false> : basic_traits<true, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args..., ...) const &;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) const volatile &, false> : basic_traits<false, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args...) const volatile &;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args..., ...) const volatile &, false> : basic_traits<true, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args..., ...) const volatile &;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) && , false> : basic_traits<false, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args...) && ;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args..., ...) && , false> : basic_traits<true, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args..., ...) && ;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) const &&, false> : basic_traits<false, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args...) const &&;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args..., ...) const &&, false> : basic_traits<true, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args..., ...) const &&;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) const volatile &&, false> : basic_traits<false, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args...) const volatile &&;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args..., ...) const volatile &&, false> : basic_traits<true, T, R, Args...> {
typedef R(T::* function_pointer_type)(Args..., ...) const volatile &&;
};
template<typename Signature>
struct fx_traits<Signature, true> : fx_traits<typename fx_traits<decltype(&Signature::operator())>::function_type, false> {};
template<typename Signature, bool b = std::is_member_object_pointer<Signature>::value>
struct callable_traits : fx_traits<std::decay_t<Signature>> {
};
template<typename R, typename T>
struct callable_traits<R(T::*), true> {
typedef R Arg;
typedef T object_type;
using signature_type = R(T::*);
static const bool is_member_function = false;
static const std::size_t arity = 1;
static const std::size_t free_arity = 2;
typedef std::tuple<Arg> args_tuple;
typedef R return_type;
typedef types<Arg> args_list;
typedef types<T, Arg> free_args_list;
typedef meta::tuple_types<R> returns_list;
typedef R(function_type)(T&, R);
typedef R(*function_pointer_type)(T&, R);
typedef R(*free_function_pointer_type)(T&, R);
template<std::size_t i>
using arg_at = void_tuple_element_t<i, args_tuple>;
};
} // meta_detail
template<typename Signature>
struct bind_traits : meta_detail::callable_traits<Signature> {};
template<typename Signature>
using function_args_t = typename bind_traits<Signature>::args_list;
template<typename Signature>
using function_signature_t = typename bind_traits<Signature>::signature_type;
template<typename Signature>
using function_return_t = typename bind_traits<Signature>::return_type;
} // meta
} // sol
// end of sol/bind_traits.hpp
#include <type_traits>
#include <memory>
#include <functional>
namespace sol {
template<std::size_t I>
using index_value = std::integral_constant<std::size_t, I>;
namespace meta {
template<typename T>
struct identity { typedef T type; };
template<typename T>
using identity_t = typename identity<T>::type;
template<typename... Args>
struct is_tuple : std::false_type { };
template<typename... Args>
struct is_tuple<std::tuple<Args...>> : std::true_type { };
template <typename T>
struct is_builtin_type : std::integral_constant<bool, std::is_arithmetic<T>::value || std::is_pointer<T>::value || std::is_array<T>::value> {};
template<typename T>
struct unwrapped {
typedef T type;
};
template<typename T>
struct unwrapped<std::reference_wrapper<T>> {
typedef T type;
};
template<typename T>
using unwrapped_t = typename unwrapped<T>::type;
template <typename T>
struct unwrap_unqualified : unwrapped<unqualified_t<T>> {};
template <typename T>
using unwrap_unqualified_t = typename unwrap_unqualified<T>::type;
template<typename T>
struct remove_member_pointer;
template<typename R, typename T>
struct remove_member_pointer<R T::*> {
typedef R type;
};
template<typename R, typename T>
struct remove_member_pointer<R T::* const> {
typedef R type;
};
template<typename T>
using remove_member_pointer_t = remove_member_pointer<T>;
template<template<typename...> class Templ, typename T>
struct is_specialization_of : std::false_type { };
template<typename... T, template<typename...> class Templ>
struct is_specialization_of<Templ, Templ<T...>> : std::true_type { };
template<class T, class...>
struct all_same : std::true_type { };
template<class T, class U, class... Args>
struct all_same<T, U, Args...> : std::integral_constant <bool, std::is_same<T, U>::value && all_same<T, Args...>::value> { };
template<class T, class...>
struct any_same : std::false_type { };
template<class T, class U, class... Args>
struct any_same<T, U, Args...> : std::integral_constant <bool, std::is_same<T, U>::value || any_same<T, Args...>::value> { };
template<typename T>
using invoke_t = typename T::type;
template<bool B>
using boolean = std::integral_constant<bool, B>;
template<typename T>
using neg = boolean<!T::value>;
template<typename Condition, typename Then, typename Else>
using condition = std::conditional_t<Condition::value, Then, Else>;
template<typename... Args>
struct all : boolean<true> {};
template<typename T, typename... Args>
struct all<T, Args...> : condition<T, all<Args...>, boolean<false>> {};
template<typename... Args>
struct any : boolean<false> {};
template<typename T, typename... Args>
struct any<T, Args...> : condition<T, boolean<true>, any<Args...>> {};
enum class enable_t {
_
};
constexpr const auto enabler = enable_t::_;
template<bool value, typename T = void>
using disable_if_t = std::enable_if_t<!value, T>;
template<typename... Args>
using enable = std::enable_if_t<all<Args...>::value, enable_t>;
template<typename... Args>
using disable = std::enable_if_t<neg<all<Args...>>::value, enable_t>;
template<typename... Args>
using disable_any = std::enable_if_t<neg<any<Args...>>::value, enable_t>;
template<typename V, typename... Vs>
struct find_in_pack_v : boolean<false> { };
template<typename V, typename Vs1, typename... Vs>
struct find_in_pack_v<V, Vs1, Vs...> : any<boolean<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> { };
namespace meta_detail {
template<std::size_t I, typename T, typename... Args>
struct index_in_pack : std::integral_constant<std::size_t, SIZE_MAX> { };
template<std::size_t I, typename T, typename T1, typename... Args>
struct index_in_pack<I, T, T1, Args...> : std::conditional_t<std::is_same<T, T1>::value, std::integral_constant<std::ptrdiff_t, I>, index_in_pack<I + 1, T, Args...>> { };
}
template<typename T, typename... Args>
struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> { };
template<typename T, typename List>
struct index_in : meta_detail::index_in_pack<0, T, List> { };
template<typename T, typename... Args>
struct index_in<T, types<Args...>> : meta_detail::index_in_pack<0, T, Args...> { };
template<std::size_t I, typename... Args>
struct at_in_pack {};
template<std::size_t I, typename... Args>
using at_in_pack_t = typename at_in_pack<I, Args...>::type;
template<std::size_t I, typename Arg, typename... Args>
struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {};
template<typename Arg, typename... Args>
struct at_in_pack<0, Arg, Args...> { typedef Arg type; };
namespace meta_detail {
template<std::size_t Limit, std::size_t I, template<typename...> class Pred, typename... Ts>
struct count_for_pack : std::integral_constant<std::size_t, 0> {};
template<std::size_t Limit, std::size_t I, template<typename...> class Pred, typename T, typename... Ts>
struct count_for_pack<Limit, I, Pred, T, Ts...> : std::conditional_t < sizeof...(Ts) == 0 || Limit < 2,
std::integral_constant<std::size_t, I + static_cast<std::size_t>(Limit != 0 && Pred<T>::value)>,
count_for_pack<Limit - 1, I + static_cast<std::size_t>(Pred<T>::value), Pred, Ts...>
> { };
template<std::size_t I, template<typename...> class Pred, typename... Ts>
struct count_2_for_pack : std::integral_constant<std::size_t, 0> {};
template<std::size_t I, template<typename...> class Pred, typename T, typename U, typename... Ts>
struct count_2_for_pack<I, Pred, T, U, Ts...> : std::conditional_t<sizeof...(Ts) == 0,
std::integral_constant<std::size_t, I + static_cast<std::size_t>(Pred<T>::value)>,
count_2_for_pack<I + static_cast<std::size_t>(Pred<T>::value), Pred, Ts...>
> { };
} // meta_detail
template<template<typename...> class Pred, typename... Ts>
struct count_for_pack : meta_detail::count_for_pack<sizeof...(Ts), 0, Pred, Ts...> { };
template<template<typename...> class Pred, typename List>
struct count_for;
template<template<typename...> class Pred, typename... Args>
struct count_for<Pred, types<Args...>> : count_for_pack<Pred, Args...> {};
template<std::size_t Limit, template<typename...> class Pred, typename... Ts>
struct count_for_to_pack : meta_detail::count_for_pack<Limit, 0, Pred, Ts...> { };
template<template<typename...> class Pred, typename... Ts>
struct count_2_for_pack : meta_detail::count_2_for_pack<0, Pred, Ts...> { };
template<typename... Args>
struct return_type {
typedef std::tuple<Args...> type;
};
template<typename T>
struct return_type<T> {
typedef T type;
};
template<>
struct return_type<> {
typedef void type;
};
template <typename... Args>
using return_type_t = typename return_type<Args...>::type;
namespace meta_detail {
template <typename> struct always_true : std::true_type {};
struct is_invokable_tester {
template <typename Fun, typename... Args>
always_true<decltype(std::declval<Fun>()(std::declval<Args>()...))> static test(int);
template <typename...>
std::false_type static test(...);
};
} // meta_detail
template <typename T>
struct is_invokable;
template <typename Fun, typename... Args>
struct is_invokable<Fun(Args...)> : decltype(meta_detail::is_invokable_tester::test<Fun, Args...>(0)) {};
namespace meta_detail {
template<typename T, bool isclass = std::is_class<unqualified_t<T>>::value>
struct is_callable : std::is_function<std::remove_pointer_t<T>> {};
template<typename T>
struct is_callable<T, true> {
using yes = char;
using no = struct { char s[2]; };
struct F { void operator()(); };
struct Derived : T, F {};
template<typename U, U> struct Check;
template<typename V>
static no test(Check<void (F::*)(), &V::operator()>*);
template<typename>
static yes test(...);
static const bool value = sizeof(test<Derived>(0)) == sizeof(yes);
};
struct has_begin_end_impl {
template<typename T, typename U = unqualified_t<T>,
typename B = decltype(std::declval<U&>().begin()),
typename E = decltype(std::declval<U&>().end())>
static std::true_type test(int);
template<typename...>
static std::false_type test(...);
};
struct has_key_value_pair_impl {
template<typename T, typename U = unqualified_t<T>,
typename V = typename U::value_type,
typename F = decltype(std::declval<V&>().first),
typename S = decltype(std::declval<V&>().second)>
static std::true_type test(int);
template<typename...>
static std::false_type test(...);
};
template <typename T, typename U = T, typename = decltype(std::declval<T&>() < std::declval<U&>())>
std::true_type supports_op_less_test(const T&);
std::false_type supports_op_less_test(...);
template <typename T, typename U = T, typename = decltype(std::declval<T&>() == std::declval<U&>())>
std::true_type supports_op_equal_test(const T&);
std::false_type supports_op_equal_test(...);
template <typename T, typename U = T, typename = decltype(std::declval<T&>() <= std::declval<U&>())>
std::true_type supports_op_less_equal_test(const T&);
std::false_type supports_op_less_equal_test(...);
} // meta_detail
template <typename T>
using supports_op_less = decltype(meta_detail::supports_op_less_test(std::declval<T&>()));
template <typename T>
using supports_op_equal = decltype(meta_detail::supports_op_equal_test(std::declval<T&>()));
template <typename T>
using supports_op_less_equal = decltype(meta_detail::supports_op_less_equal_test(std::declval<T&>()));
template<typename T>
struct is_callable : boolean<meta_detail::is_callable<T>::value> {};
template<typename T>
struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test<T>(0)) {};
template<typename T>
struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test<T>(0)) {};
template <typename T>
using is_string_constructible = any<std::is_same<unqualified_t<T>, const char*>, std::is_same<unqualified_t<T>, char>, std::is_same<unqualified_t<T>, std::string>, std::is_same<unqualified_t<T>, std::initializer_list<char>>>;
template <typename T>
using is_c_str = any<
std::is_same<std::decay_t<unqualified_t<T>>, const char*>,
std::is_same<std::decay_t<unqualified_t<T>>, char*>,
std::is_same<unqualified_t<T>, std::string>
>;
template <typename T>
struct is_move_only : all<
neg<std::is_reference<T>>,
neg<std::is_copy_constructible<unqualified_t<T>>>,
std::is_move_constructible<unqualified_t<T>>
> {};
template <typename T>
using is_not_move_only = neg<is_move_only<T>>;
namespace meta_detail {
template <typename T, meta::disable<meta::is_specialization_of<std::tuple, meta::unqualified_t<T>>> = meta::enabler>
decltype(auto) force_tuple(T&& x) {
return std::forward_as_tuple(std::forward<T>(x));
}
template <typename T, meta::enable<meta::is_specialization_of<std::tuple, meta::unqualified_t<T>>> = meta::enabler>
decltype(auto) force_tuple(T&& x) {
return std::forward<T>(x);
}
} // meta_detail
template <typename... X>
decltype(auto) tuplefy(X&&... x) {
return std::tuple_cat(meta_detail::force_tuple(std::forward<X>(x))...);
}
} // meta
namespace detail {
template <std::size_t I, typename Tuple>
decltype(auto) forward_get(Tuple&& tuple) {
return std::forward<meta::tuple_element_t<I, Tuple>>(std::get<I>(tuple));
}
template <std::size_t... I, typename Tuple>
auto forward_tuple_impl(std::index_sequence<I...>, Tuple&& tuple) -> decltype(std::tuple<decltype(forward_get<I>(tuple))...>(forward_get<I>(tuple)...)) {
return std::tuple<decltype(forward_get<I>(tuple))...>(std::move(std::get<I>(tuple))...);
}
template <typename Tuple>
auto forward_tuple(Tuple&& tuple) {
auto x = forward_tuple_impl(std::make_index_sequence<std::tuple_size<meta::unqualified_t<Tuple>>::value>(), std::forward<Tuple>(tuple));
return x;
}
template<typename T>
auto unwrap(T&& item) -> decltype(std::forward<T>(item)) {
return std::forward<T>(item);
}
template<typename T>
T& unwrap(std::reference_wrapper<T> arg) {
return arg.get();
}
template<typename T>
auto deref(T&& item) -> decltype(std::forward<T>(item)) {
return std::forward<T>(item);
}
template<typename T>
inline T& deref(T* item) {
return *item;
}
template<typename T, typename Dx>
inline std::add_lvalue_reference_t<T> deref(std::unique_ptr<T, Dx>& item) {
return *item;
}
template<typename T>
inline std::add_lvalue_reference_t<T> deref(std::shared_ptr<T>& item) {
return *item;
}
template<typename T, typename Dx>
inline std::add_lvalue_reference_t<T> deref(const std::unique_ptr<T, Dx>& item) {
return *item;
}
template<typename T>
inline std::add_lvalue_reference_t<T> deref(const std::shared_ptr<T>& item) {
return *item;
}
template<typename T>
inline T* ptr(T& val) {
return std::addressof(val);
}
template<typename T>
inline T* ptr(std::reference_wrapper<T> val) {
return std::addressof(val.get());
}
template<typename T>
inline T* ptr(T* val) {
return val;
}
} // detail
} // sol
// end of sol/traits.hpp
// beginning of sol/object.hpp
// beginning of sol/reference.hpp
// beginning of sol/types.hpp
// beginning of sol/optional.hpp
// beginning of sol/compatibility.hpp
// beginning of sol/compatibility/version.hpp
#ifdef SOL_USING_CXX_LUA
#include <lua.h>
#include <lualib.h>
#include <lauxlib.h>
#else
#include <lua.hpp>
#endif // C++-compiler Lua
#if defined(_WIN32) || defined(_MSC_VER)
#ifndef SOL_CODECVT_SUPPORT
#define SOL_CODECVT_SUPPORT 1
#endif // sol codecvt support
#elif defined(__GNUC__)
#if __GNUC__ >= 5
#ifndef SOL_CODECVT_SUPPORT
#define SOL_CODECVT_SUPPORT 1
#endif // codecvt support
#endif // g++ 5.x.x (MinGW too)
#else
#endif // Windows/VC++ vs. g++ vs Others
#ifdef LUAJIT_VERSION
#ifndef SOL_LUAJIT
#define SOL_LUAJIT
#define SOL_LUAJIT_VERSION LUAJIT_VERSION_NUM
#endif // sol luajit
#endif // luajit
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502
#define SOL_LUA_VERSION LUA_VERSION_NUM
#elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
#define SOL_LUA_VERSION LUA_VERSION_NUM
#elif !defined(LUA_VERSION_NUM)
#define SOL_LUA_VERSION 500
#else
#define SOL_LUA_VERSION 502
#endif // Lua Version 502, 501 || luajit, 500
#ifdef _MSC_VER
#ifdef _DEBUG
#ifndef NDEBUG
#ifndef SOL_CHECK_ARGUMENTS
#endif // Check Arguments
#ifndef SOL_SAFE_USERTYPE
#define SOL_SAFE_USERTYPE
#endif // Safe Usertypes
#endif // NDEBUG
#endif // Debug
#ifndef _CPPUNWIND
#ifndef SOL_NO_EXCEPTIONS
#define SOL_NO_EXCEPTIONS 1
#endif
#endif // Automatic Exceptions
#ifndef _CPPRTTI
#ifndef SOL_NO_RTTI
#define SOL_NO_RTTI 1
#endif
#endif // Automatic RTTI
#elif defined(__GNUC__) || defined(__clang__)
#ifndef NDEBUG
#ifndef __OPTIMIZE__
#ifndef SOL_CHECK_ARGUMENTS
#endif // Check Arguments
#ifndef SOL_SAFE_USERTYPE
#define SOL_SAFE_USERTYPE
#endif // Safe Usertypes
#endif // g++ optimizer flag
#endif // Not Debug
#ifndef __EXCEPTIONS
#ifndef SOL_NO_EXCEPTIONS
#define SOL_NO_EXCEPTIONS 1
#endif
#endif // No Exceptions
#ifndef __GXX_RTTI
#ifndef SOL_NO_RTII
#define SOL_NO_RTTI 1
#endif
#endif // No RTTI
#endif // vc++ || clang++/g++
#ifndef SOL_SAFE_USERTYPE
#ifdef SOL_CHECK_ARGUMENTS
#define SOL_SAFE_USERTYPE
#endif // Turn on Safety for all
#endif // Safe Usertypes
// end of sol/compatibility/version.hpp
#ifndef SOL_NO_COMPAT
#ifdef __cplusplus
extern "C" {
#endif
// beginning of sol/compatibility/5.1.0.h
#ifndef SOL_5_1_0_H
#define SOL_5_1_0_H
#if SOL_LUA_VERSION == 501
/* Lua 5.1 */
#include <stddef.h>
#include <string.h>
#include <stdio.h>
/* LuaJIT doesn't define these unofficial macros ... */
#if !defined(LUAI_INT32)
#include <limits.h>
#if INT_MAX-20 < 32760
#define LUAI_INT32 long
#define LUAI_UINT32 unsigned long
#elif INT_MAX > 2147483640L
#define LUAI_INT32 int
#define LUAI_UINT32 unsigned int
#else
#error "could not detect suitable lua_Unsigned datatype"
#endif
#endif
/* LuaJIT does not have the updated error codes for thread status/function returns */
#ifndef LUA_ERRGCMM
#define LUA_ERRGCMM (LUA_ERRERR + 1)
#endif // LUA_ERRGCMM
/* LuaJIT does not support continuation contexts / return error codes? */
#ifndef LUA_KCONTEXT
#define LUA_KCONTEXT std::ptrdiff_t
typedef LUA_KCONTEXT lua_KContext;
typedef int(*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);
#endif // LUA_KCONTEXT
#define LUA_OPADD 0
#define LUA_OPSUB 1
#define LUA_OPMUL 2
#define LUA_OPDIV 3
#define LUA_OPMOD 4
#define LUA_OPPOW 5
#define LUA_OPUNM 6
#define LUA_OPEQ 0
#define LUA_OPLT 1
#define LUA_OPLE 2
typedef LUAI_UINT32 lua_Unsigned;
typedef struct luaL_Buffer_52 {
luaL_Buffer b; /* make incorrect code crash! */
char *ptr;
size_t nelems;
size_t capacity;
lua_State *L2;
} luaL_Buffer_52;
#define luaL_Buffer luaL_Buffer_52
#define lua_tounsigned(L, i) lua_tounsignedx(L, i, NULL)
#define lua_rawlen(L, i) lua_objlen(L, i)
inline void lua_callk(lua_State *L, int nargs, int nresults, lua_KContext, lua_KFunction) {
// should probably warn the user of Lua 5.1 that continuation isn't supported...
lua_call(L, nargs, nresults);
}
inline int lua_pcallk(lua_State *L, int nargs, int nresults, int errfunc, lua_KContext, lua_KFunction) {
// should probably warn the user of Lua 5.1 that continuation isn't supported...
return lua_pcall(L, nargs, nresults, errfunc);
}
void lua_arith(lua_State *L, int op);
int lua_compare(lua_State *L, int idx1, int idx2, int op);
void lua_pushunsigned(lua_State *L, lua_Unsigned n);
lua_Unsigned luaL_checkunsigned(lua_State *L, int i);
lua_Unsigned lua_tounsignedx(lua_State *L, int i, int *isnum);
lua_Unsigned luaL_optunsigned(lua_State *L, int i, lua_Unsigned def);
lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum);
void lua_len(lua_State *L, int i);
int luaL_len(lua_State *L, int i);
const char *luaL_tolstring(lua_State *L, int idx, size_t *len);
void luaL_requiref(lua_State *L, char const* modname, lua_CFunction openf, int glb);
#define luaL_buffinit luaL_buffinit_52
void luaL_buffinit(lua_State *L, luaL_Buffer_52 *B);
#define luaL_prepbuffsize luaL_prepbuffsize_52
char *luaL_prepbuffsize(luaL_Buffer_52 *B, size_t s);
#define luaL_addlstring luaL_addlstring_52
void luaL_addlstring(luaL_Buffer_52 *B, const char *s, size_t l);
#define luaL_addvalue luaL_addvalue_52
void luaL_addvalue(luaL_Buffer_52 *B);
#define luaL_pushresult luaL_pushresult_52
void luaL_pushresult(luaL_Buffer_52 *B);
#undef luaL_buffinitsize
#define luaL_buffinitsize(L, B, s) \
(luaL_buffinit(L, B), luaL_prepbuffsize(B, s))
#undef luaL_prepbuffer
#define luaL_prepbuffer(B) \
luaL_prepbuffsize(B, LUAL_BUFFERSIZE)
#undef luaL_addchar
#define luaL_addchar(B, c) \
((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize(B, 1)), \
((B)->ptr[(B)->nelems++] = (c)))
#undef luaL_addsize
#define luaL_addsize(B, s) \
((B)->nelems += (s))
#undef luaL_addstring
#define luaL_addstring(B, s) \
luaL_addlstring(B, s, strlen(s))
#undef luaL_pushresultsize
#define luaL_pushresultsize(B, s) \
(luaL_addsize(B, s), luaL_pushresult(B))
typedef struct kepler_lua_compat_get_string_view {
const char *s;
size_t size;
} kepler_lua_compat_get_string_view;
inline const char* kepler_lua_compat_get_string(lua_State* L, void* ud, size_t* size) {
kepler_lua_compat_get_string_view* ls = (kepler_lua_compat_get_string_view*) ud;
(void)L;
if (ls->size == 0) return NULL;
*size = ls->size;
ls->size = 0;
return ls->s;
}
#if !defined(SOL_LUAJIT) || (SOL_LUAJIT_VERSION < 20100)
inline int luaL_loadbufferx(lua_State* L, const char* buff, size_t size, const char* name, const char*) {
kepler_lua_compat_get_string_view ls;
ls.s = buff;
ls.size = size;
return lua_load(L, kepler_lua_compat_get_string, &ls, name/*, mode*/);
}
#endif // LuaJIT 2.1.x beta and beyond
#endif /* Lua 5.1 */
#endif // SOL_5_1_0_H
// end of sol/compatibility/5.1.0.h
// beginning of sol/compatibility/5.0.0.h
#ifndef SOL_5_0_0_H
#define SOL_5_0_0_H
#if SOL_LUA_VERSION < 501
/* Lua 5.0 */
#define LUA_QL(x) "'" x "'"
#define LUA_QS LUA_QL("%s")
#define luaL_Reg luaL_reg
#define luaL_opt(L, f, n, d) \
(lua_isnoneornil(L, n) ? (d) : f(L, n))
#define luaL_addchar(B,c) \
((void)((B)->p < ((B)->buffer+LUAL_BUFFERSIZE) || luaL_prepbuffer(B)), \
(*(B)->p++ = (char)(c)))
#endif // Lua 5.0
#endif // SOL_5_0_0_H
// end of sol/compatibility/5.0.0.h
// beginning of sol/compatibility/5.x.x.h
#ifndef SOL_5_X_X_H
#define SOL_5_X_X_H
#if SOL_LUA_VERSION < 502
#define LUA_RIDX_GLOBALS LUA_GLOBALSINDEX
#define LUA_OK 0
#define lua_pushglobaltable(L) \
lua_pushvalue(L, LUA_GLOBALSINDEX)
#define luaL_newlib(L, l) \
(lua_newtable((L)),luaL_setfuncs((L), (l), 0))
void luaL_checkversion(lua_State *L);
int lua_absindex(lua_State *L, int i);
void lua_copy(lua_State *L, int from, int to);
void lua_rawgetp(lua_State *L, int i, const void *p);
void lua_rawsetp(lua_State *L, int i, const void *p);
void *luaL_testudata(lua_State *L, int i, const char *tname);
lua_Number lua_tonumberx(lua_State *L, int i, int *isnum);
void lua_getuservalue(lua_State *L, int i);
void lua_setuservalue(lua_State *L, int i);
void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup);
void luaL_setmetatable(lua_State *L, const char *tname);
int luaL_getsubtable(lua_State *L, int i, const char *name);
void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level);
int luaL_fileresult(lua_State *L, int stat, const char *fname);
#endif // Lua 5.1 and below
#endif // SOL_5_X_X_H
// end of sol/compatibility/5.x.x.h
// beginning of sol/compatibility/5.x.x.inl
#ifndef SOL_5_X_X_INL
#define SOL_5_X_X_INL
// beginning of sol/compatibility/5.2.0.h
#ifndef SOL_5_2_0_H
#define SOL_5_2_0_H
#if SOL_LUA_VERSION < 503
inline int lua_isinteger(lua_State* L, int idx) {
if (lua_type(L, idx) != LUA_TNUMBER)
return 0;
// This is a very slipshod way to do the testing
// but lua_totingerx doesn't play ball nicely
// on older versions...
lua_Number n = lua_tonumber(L, idx);
lua_Integer i = lua_tointeger(L, idx);
if (i != n)
return 0;
// it's DEFINITELY an integer
return 1;
}
#endif // SOL_LUA_VERSION == 502
#endif // SOL_5_2_0_H
// end of sol/compatibility/5.2.0.h
#if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM == 501
#include <errno.h>
#define PACKAGE_KEY "_sol.package"
inline int lua_absindex(lua_State *L, int i) {
if (i < 0 && i > LUA_REGISTRYINDEX)
i += lua_gettop(L) + 1;
return i;
}
inline void lua_copy(lua_State *L, int from, int to) {
int abs_to = lua_absindex(L, to);
luaL_checkstack(L, 1, "not enough stack slots");
lua_pushvalue(L, from);
lua_replace(L, abs_to);
}
inline void lua_rawgetp(lua_State *L, int i, const void *p) {
int abs_i = lua_absindex(L, i);
lua_pushlightuserdata(L, (void*)p);
lua_rawget(L, abs_i);
}
inline void lua_rawsetp(lua_State *L, int i, const void *p) {
int abs_i = lua_absindex(L, i);
luaL_checkstack(L, 1, "not enough stack slots");
lua_pushlightuserdata(L, (void*)p);
lua_insert(L, -2);
lua_rawset(L, abs_i);
}
inline void *luaL_testudata(lua_State *L, int i, const char *tname) {
void *p = lua_touserdata(L, i);
luaL_checkstack(L, 2, "not enough stack slots");
if (p == NULL || !lua_getmetatable(L, i))
return NULL;
else {
int res = 0;
luaL_getmetatable(L, tname);
res = lua_rawequal(L, -1, -2);
lua_pop(L, 2);
if (!res)
p = NULL;
}
return p;
}
inline lua_Number lua_tonumberx(lua_State *L, int i, int *isnum) {
lua_Number n = lua_tonumber(L, i);
if (isnum != NULL) {
*isnum = (n != 0 || lua_isnumber(L, i));
}
return n;
}
inline static void push_package_table(lua_State *L) {
lua_pushliteral(L, PACKAGE_KEY);
lua_rawget(L, LUA_REGISTRYINDEX);
if (!lua_istable(L, -1)) {
lua_pop(L, 1);
/* try to get package table from globals */
lua_pushliteral(L, "package");
lua_rawget(L, LUA_GLOBALSINDEX);
if (lua_istable(L, -1)) {
lua_pushliteral(L, PACKAGE_KEY);
lua_pushvalue(L, -2);
lua_rawset(L, LUA_REGISTRYINDEX);
}
}
}
inline void lua_getuservalue(lua_State *L, int i) {
luaL_checktype(L, i, LUA_TUSERDATA);
luaL_checkstack(L, 2, "not enough stack slots");
lua_getfenv(L, i);
lua_pushvalue(L, LUA_GLOBALSINDEX);
if (lua_rawequal(L, -1, -2)) {
lua_pop(L, 1);
lua_pushnil(L);
lua_replace(L, -2);
}
else {
lua_pop(L, 1);
push_package_table(L);
if (lua_rawequal(L, -1, -2)) {
lua_pop(L, 1);
lua_pushnil(L);
lua_replace(L, -2);
}
else
lua_pop(L, 1);
}
}
inline void lua_setuservalue(lua_State *L, int i) {
luaL_checktype(L, i, LUA_TUSERDATA);
if (lua_isnil(L, -1)) {
luaL_checkstack(L, 1, "not enough stack slots");
lua_pushvalue(L, LUA_GLOBALSINDEX);
lua_replace(L, -2);
}
lua_setfenv(L, i);
}
/*
** Adapted from Lua 5.2.0
*/
inline void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup) {
luaL_checkstack(L, nup + 1, "too many upvalues");
for (; l->name != NULL; l++) { /* fill the table with given functions */
int i;
lua_pushstring(L, l->name);
for (i = 0; i < nup; i++) /* copy upvalues to the top */
lua_pushvalue(L, -(nup + 1));
lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */
lua_settable(L, -(nup + 3)); /* table must be below the upvalues, the name and the closure */
}
lua_pop(L, nup); /* remove upvalues */
}
inline void luaL_setmetatable(lua_State *L, const char *tname) {
luaL_checkstack(L, 1, "not enough stack slots");
luaL_getmetatable(L, tname);
lua_setmetatable(L, -2);
}
inline int luaL_getsubtable(lua_State *L, int i, const char *name) {
int abs_i = lua_absindex(L, i);
luaL_checkstack(L, 3, "not enough stack slots");
lua_pushstring(L, name);
lua_gettable(L, abs_i);
if (lua_istable(L, -1))
return 1;
lua_pop(L, 1);
lua_newtable(L);
lua_pushstring(L, name);
lua_pushvalue(L, -2);
lua_settable(L, abs_i);
return 0;
}
#ifndef SOL_LUAJIT
inline static int countlevels(lua_State *L) {
lua_Debug ar;
int li = 1, le = 1;
/* find an upper bound */
while (lua_getstack(L, le, &ar)) { li = le; le *= 2; }
/* do a binary search */
while (li < le) {
int m = (li + le) / 2;
if (lua_getstack(L, m, &ar)) li = m + 1;
else le = m;
}
return le - 1;
}
inline static int findfield(lua_State *L, int objidx, int level) {
if (level == 0 || !lua_istable(L, -1))
return 0; /* not found */
lua_pushnil(L); /* start 'next' loop */
while (lua_next(L, -2)) { /* for each pair in table */
if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */
if (lua_rawequal(L, objidx, -1)) { /* found object? */
lua_pop(L, 1); /* remove value (but keep name) */
return 1;
}
else if (findfield(L, objidx, level - 1)) { /* try recursively */
lua_remove(L, -2); /* remove table (but keep name) */
lua_pushliteral(L, ".");
lua_insert(L, -2); /* place '.' between the two names */
lua_concat(L, 3);
return 1;
}
}
lua_pop(L, 1); /* remove value */
}
return 0; /* not found */
}
inline static int pushglobalfuncname(lua_State *L, lua_Debug *ar) {
int top = lua_gettop(L);
lua_getinfo(L, "f", ar); /* push function */
lua_pushvalue(L, LUA_GLOBALSINDEX);
if (findfield(L, top + 1, 2)) {
lua_copy(L, -1, top + 1); /* move name to proper place */
lua_pop(L, 2); /* remove pushed values */
return 1;
}
else {
lua_settop(L, top); /* remove function and global table */
return 0;
}
}
inline static void pushfuncname(lua_State *L, lua_Debug *ar) {
if (*ar->namewhat != '\0') /* is there a name? */
lua_pushfstring(L, "function " LUA_QS, ar->name);
else if (*ar->what == 'm') /* main? */
lua_pushliteral(L, "main chunk");
else if (*ar->what == 'C') {
if (pushglobalfuncname(L, ar)) {
lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1));
lua_remove(L, -2); /* remove name */
}
else
lua_pushliteral(L, "?");
}
else
lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined);
}
#define LEVELS1 12 /* size of the first part of the stack */
#define LEVELS2 10 /* size of the second part of the stack */
inline void luaL_traceback(lua_State *L, lua_State *L1,
const char *msg, int level) {
lua_Debug ar;
int top = lua_gettop(L);
int numlevels = countlevels(L1);
int mark = (numlevels > LEVELS1 + LEVELS2) ? LEVELS1 : 0;
if (msg) lua_pushfstring(L, "%s\n", msg);
lua_pushliteral(L, "stack traceback:");
while (lua_getstack(L1, level++, &ar)) {
if (level == mark) { /* too many levels? */
lua_pushliteral(L, "\n\t..."); /* add a '...' */
level = numlevels - LEVELS2; /* and skip to last ones */
}
else {
lua_getinfo(L1, "Slnt", &ar);
lua_pushfstring(L, "\n\t%s:", ar.short_src);
if (ar.currentline > 0)
lua_pushfstring(L, "%d:", ar.currentline);
lua_pushliteral(L, " in ");
pushfuncname(L, &ar);
lua_concat(L, lua_gettop(L) - top);
}
}
lua_concat(L, lua_gettop(L) - top);
}
#endif
inline const lua_Number *lua_version(lua_State *L) {
static const lua_Number version = LUA_VERSION_NUM;
if (L == NULL) return &version;
// TODO: wonky hacks to get at the inside of the incomplete type lua_State?
//else return L->l_G->version;
else return &version;
}
inline static void luaL_checkversion_(lua_State *L, lua_Number ver) {
const lua_Number* v = lua_version(L);
if (v != lua_version(NULL))
luaL_error(L, "multiple Lua VMs detected");
else if (*v != ver)
luaL_error(L, "version mismatch: app. needs %f, Lua core provides %f",
ver, *v);
/* check conversions number -> integer types */
lua_pushnumber(L, -(lua_Number)0x1234);
if (lua_tointeger(L, -1) != -0x1234 ||
lua_tounsigned(L, -1) != (lua_Unsigned)-0x1234)
luaL_error(L, "bad conversion number->int;"
" must recompile Lua with proper settings");
lua_pop(L, 1);
}
inline void luaL_checkversion(lua_State* L) {
luaL_checkversion_(L, LUA_VERSION_NUM);
}
#ifndef SOL_LUAJIT
inline int luaL_fileresult(lua_State *L, int stat, const char *fname) {
int en = errno; /* calls to Lua API may change this value */
if (stat) {
lua_pushboolean(L, 1);
return 1;
}
else {
char buf[1024];
#if defined(__GLIBC__) || defined(_POSIX_VERSION)
strerror_r(en, buf, 1024);
#else
strerror_s(buf, 1024, en);
#endif
lua_pushnil(L);
if (fname)
lua_pushfstring(L, "%s: %s", fname, buf);
else
lua_pushstring(L, buf);
lua_pushnumber(L, (lua_Number)en);
return 3;
}
}
#endif // luajit
#endif // Lua 5.0 or Lua 5.1
#if SOL_LUA_VERSION == 501
typedef LUAI_INT32 LUA_INT32;
/********************************************************************/
/* extract of 5.2's luaconf.h */
/* detects proper defines for faster unsigned<->number conversion */
/* see copyright notice at the end of this file */
/********************************************************************/
#if !defined(LUA_ANSI) && defined(_WIN32) && !defined(_WIN32_WCE)
#define LUA_WIN /* enable goodies for regular Windows platforms */
#endif
#if defined(LUA_NUMBER_DOUBLE) && !defined(LUA_ANSI) /* { */
/* Microsoft compiler on a Pentium (32 bit) ? */
#if defined(LUA_WIN) && defined(_MSC_VER) && defined(_M_IX86) /* { */
#define LUA_MSASMTRICK
#define LUA_IEEEENDIAN 0
#define LUA_NANTRICK
/* pentium 32 bits? */
#elif defined(__i386__) || defined(__i386) || defined(__X86__) /* }{ */
#define LUA_IEEE754TRICK
#define LUA_IEEELL
#define LUA_IEEEENDIAN 0
#define LUA_NANTRICK
/* pentium 64 bits? */
#elif defined(__x86_64) /* }{ */
#define LUA_IEEE754TRICK
#define LUA_IEEEENDIAN 0
#elif defined(__POWERPC__) || defined(__ppc__) /* }{ */
#define LUA_IEEE754TRICK
#define LUA_IEEEENDIAN 1
#else /* }{ */
/* assume IEEE754 and a 32-bit integer type */
#define LUA_IEEE754TRICK
#endif /* } */
#endif /* } */
/********************************************************************/
/* extract of 5.2's llimits.h */
/* gives us lua_number2unsigned and lua_unsigned2number */
/* see copyright notice just below this one here */
/********************************************************************/
/*********************************************************************
* This file contains parts of Lua 5.2's source code:
*
* Copyright (C) 1994-2013 Lua.org, PUC-Rio.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*********************************************************************/
#if defined(MS_ASMTRICK) || defined(LUA_MSASMTRICK) /* { */
/* trick with Microsoft assembler for X86 */
#define lua_number2unsigned(i,n) \
{__int64 l; __asm {__asm fld n __asm fistp l} i = (unsigned int)l;}
#elif defined(LUA_IEEE754TRICK) /* }{ */
/* the next trick should work on any machine using IEEE754 with
a 32-bit int type */
union compat52_luai_Cast { double l_d; LUA_INT32 l_p[2]; };
#if !defined(LUA_IEEEENDIAN) /* { */
#define LUAI_EXTRAIEEE \
static const union compat52_luai_Cast ieeeendian = {-(33.0 + 6755399441055744.0)};
#define LUA_IEEEENDIANLOC (ieeeendian.l_p[1] == 33)
#else
#define LUA_IEEEENDIANLOC LUA_IEEEENDIAN
#define LUAI_EXTRAIEEE /* empty */
#endif /* } */
#define lua_number2int32(i,n,t) \
{ LUAI_EXTRAIEEE \
volatile union compat52_luai_Cast u; u.l_d = (n) + 6755399441055744.0; \
(i) = (t)u.l_p[LUA_IEEEENDIANLOC]; }
#define lua_number2unsigned(i,n) lua_number2int32(i, n, lua_Unsigned)
#endif /* } */
/* the following definitions always work, but may be slow */
#if !defined(lua_number2unsigned) /* { */
/* the following definition assures proper modulo behavior */
#if defined(LUA_NUMBER_DOUBLE) || defined(LUA_NUMBER_FLOAT)
#include <math.h>
#define SUPUNSIGNED ((lua_Number)(~(lua_Unsigned)0) + 1)
#define lua_number2unsigned(i,n) \
((i)=(lua_Unsigned)((n) - floor((n)/SUPUNSIGNED)*SUPUNSIGNED))
#else
#define lua_number2unsigned(i,n) ((i)=(lua_Unsigned)(n))
#endif
#endif /* } */
#if !defined(lua_unsigned2number)
/* on several machines, coercion from unsigned to double is slow,
so it may be worth to avoid */
#define lua_unsigned2number(u) \
(((u) <= (lua_Unsigned)INT_MAX) ? (lua_Number)(int)(u) : (lua_Number)(u))
#endif
/********************************************************************/
inline static void compat52_call_lua(lua_State *L, char const code[], size_t len,
int nargs, int nret) {
lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code);
if (lua_type(L, -1) != LUA_TFUNCTION) {
lua_pop(L, 1);
if (luaL_loadbuffer(L, code, len, "=none"))
lua_error(L);
lua_pushvalue(L, -1);
lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code);
}
lua_insert(L, -nargs - 1);
lua_call(L, nargs, nret);
}
static const char compat52_arith_code[] = {
"local op,a,b=...\n"
"if op==0 then return a+b\n"
"elseif op==1 then return a-b\n"
"elseif op==2 then return a*b\n"
"elseif op==3 then return a/b\n"
"elseif op==4 then return a%b\n"
"elseif op==5 then return a^b\n"
"elseif op==6 then return -a\n"
"end\n"
};
inline void lua_arith(lua_State *L, int op) {
if (op < LUA_OPADD || op > LUA_OPUNM)
luaL_error(L, "invalid 'op' argument for lua_arith");
luaL_checkstack(L, 5, "not enough stack slots");
if (op == LUA_OPUNM)
lua_pushvalue(L, -1);
lua_pushnumber(L, op);
lua_insert(L, -3);
compat52_call_lua(L, compat52_arith_code,
sizeof(compat52_arith_code) - 1, 3, 1);
}
static const char compat52_compare_code[] = {
"local a,b=...\n"
"return a<=b\n"
};
inline int lua_compare(lua_State *L, int idx1, int idx2, int op) {
int result = 0;
switch (op) {
case LUA_OPEQ:
return lua_equal(L, idx1, idx2);
case LUA_OPLT:
return lua_lessthan(L, idx1, idx2);
case LUA_OPLE:
luaL_checkstack(L, 5, "not enough stack slots");
idx1 = lua_absindex(L, idx1);
idx2 = lua_absindex(L, idx2);
lua_pushvalue(L, idx1);
lua_pushvalue(L, idx2);
compat52_call_lua(L, compat52_compare_code,
sizeof(compat52_compare_code) - 1, 2, 1);
result = lua_toboolean(L, -1);
lua_pop(L, 1);
return result;
default:
luaL_error(L, "invalid 'op' argument for lua_compare");
}
return 0;
}
inline void lua_pushunsigned(lua_State *L, lua_Unsigned n) {
lua_pushnumber(L, lua_unsigned2number(n));
}
inline lua_Unsigned luaL_checkunsigned(lua_State *L, int i) {
lua_Unsigned result;
lua_Number n = lua_tonumber(L, i);
if (n == 0 && !lua_isnumber(L, i))
luaL_checktype(L, i, LUA_TNUMBER);
lua_number2unsigned(result, n);
return result;
}
inline lua_Unsigned lua_tounsignedx(lua_State *L, int i, int *isnum) {
lua_Unsigned result;
lua_Number n = lua_tonumberx(L, i, isnum);
lua_number2unsigned(result, n);
return result;
}
inline lua_Unsigned luaL_optunsigned(lua_State *L, int i, lua_Unsigned def) {
return luaL_opt(L, luaL_checkunsigned, i, def);
}
inline lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum) {
lua_Integer n = lua_tointeger(L, i);
if (isnum != NULL) {
*isnum = (n != 0 || lua_isnumber(L, i));
}
return n;
}
inline void lua_len(lua_State *L, int i) {
switch (lua_type(L, i)) {
case LUA_TSTRING: /* fall through */
case LUA_TTABLE:
if (!luaL_callmeta(L, i, "__len"))
lua_pushnumber(L, (int)lua_objlen(L, i));
break;
case LUA_TUSERDATA:
if (luaL_callmeta(L, i, "__len"))
break;
/* maybe fall through */
default:
luaL_error(L, "attempt to get length of a %s value",
lua_typename(L, lua_type(L, i)));
}
}
inline int luaL_len(lua_State *L, int i) {
int res = 0, isnum = 0;
luaL_checkstack(L, 1, "not enough stack slots");
lua_len(L, i);
res = (int)lua_tointegerx(L, -1, &isnum);
lua_pop(L, 1);
if (!isnum)
luaL_error(L, "object length is not a number");
return res;
}
inline const char *luaL_tolstring(lua_State *L, int idx, size_t *len) {
if (!luaL_callmeta(L, idx, "__tostring")) {
int t = lua_type(L, idx);
switch (t) {
case LUA_TNIL:
lua_pushliteral(L, "nil");
break;
case LUA_TSTRING:
case LUA_TNUMBER:
lua_pushvalue(L, idx);
break;
case LUA_TBOOLEAN:
if (lua_toboolean(L, idx))
lua_pushliteral(L, "true");
else
lua_pushliteral(L, "false");
break;
default:
lua_pushfstring(L, "%s: %p", lua_typename(L, t),
lua_topointer(L, idx));
break;
}
}
return lua_tolstring(L, -1, len);
}
inline void luaL_requiref(lua_State *L, char const* modname,
lua_CFunction openf, int glb) {
luaL_checkstack(L, 3, "not enough stack slots");
lua_pushcfunction(L, openf);
lua_pushstring(L, modname);
lua_call(L, 1, 1);
lua_getglobal(L, "package");
if (lua_istable(L, -1) == 0) {
lua_pop(L, 1);
lua_createtable(L, 0, 16);
lua_setglobal(L, "package");
lua_getglobal(L, "package");
}
lua_getfield(L, -1, "loaded");
if (lua_istable(L, -1) == 0) {
lua_pop(L, 1);
lua_createtable(L, 0, 1);
lua_setfield(L, -2, "loaded");
lua_getfield(L, -1, "loaded");
}
lua_replace(L, -2);
lua_pushvalue(L, -2);
lua_setfield(L, -2, modname);
lua_pop(L, 1);
if (glb) {
lua_pushvalue(L, -1);
lua_setglobal(L, modname);
}
}
inline void luaL_buffinit(lua_State *L, luaL_Buffer_52 *B) {
/* make it crash if used via pointer to a 5.1-style luaL_Buffer */
B->b.p = NULL;
B->b.L = NULL;
B->b.lvl = 0;
/* reuse the buffer from the 5.1-style luaL_Buffer though! */
B->ptr = B->b.buffer;
B->capacity = LUAL_BUFFERSIZE;
B->nelems = 0;
B->L2 = L;
}
inline char *luaL_prepbuffsize(luaL_Buffer_52 *B, size_t s) {
if (B->capacity - B->nelems < s) { /* needs to grow */
char* newptr = NULL;
size_t newcap = B->capacity * 2;
if (newcap - B->nelems < s)
newcap = B->nelems + s;
if (newcap < B->capacity) /* overflow */
luaL_error(B->L2, "buffer too large");
newptr = (char*)lua_newuserdata(B->L2, newcap);
memcpy(newptr, B->ptr, B->nelems);
if (B->ptr != B->b.buffer)
lua_replace(B->L2, -2); /* remove old buffer */
B->ptr = newptr;
B->capacity = newcap;
}
return B->ptr + B->nelems;
}
inline void luaL_addlstring(luaL_Buffer_52 *B, const char *s, size_t l) {
memcpy(luaL_prepbuffsize(B, l), s, l);
luaL_addsize(B, l);
}
inline void luaL_addvalue(luaL_Buffer_52 *B) {
size_t len = 0;
const char *s = lua_tolstring(B->L2, -1, &len);
if (!s)
luaL_error(B->L2, "cannot convert value to string");
if (B->ptr != B->b.buffer)
lua_insert(B->L2, -2); /* userdata buffer must be at stack top */
luaL_addlstring(B, s, len);
lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1);
}
inline void luaL_pushresult(luaL_Buffer_52 *B) {
lua_pushlstring(B->L2, B->ptr, B->nelems);
if (B->ptr != B->b.buffer)
lua_replace(B->L2, -2); /* remove userdata buffer */
}
#endif /* SOL_LUA_VERSION == 501 */
#endif // SOL_5_X_X_INL
// end of sol/compatibility/5.x.x.inl
#ifdef __cplusplus
}
#endif
#endif // SOL_NO_COMPAT
// end of sol/compatibility.hpp
// beginning of sol/in_place.hpp
namespace sol {
namespace detail {
struct in_place_of {};
template <std::size_t I>
struct in_place_of_i {};
template <typename T>
struct in_place_of_t {};
} // detail
struct in_place_tag { struct init {}; constexpr in_place_tag(init) {} in_place_tag() = delete; };
constexpr inline in_place_tag in_place(detail::in_place_of) { return in_place_tag(in_place_tag::init()); }
template <typename T>
constexpr inline in_place_tag in_place(detail::in_place_of_t<T>) { return in_place_tag(in_place_tag::init()); }
template <std::size_t I>
constexpr inline in_place_tag in_place(detail::in_place_of_i<I>) { return in_place_tag(in_place_tag::init()); }
using in_place_t = in_place_tag(&)(detail::in_place_of);
template <typename T>
using in_place_type_t = in_place_tag(&)(detail::in_place_of_t<T>);
template <std::size_t I>
using in_place_index_t = in_place_tag(&)(detail::in_place_of_i<I>);
} // sol
// end of sol/in_place.hpp
#if defined(SOL_USE_BOOST)
#include <boost/optional.hpp>
#else
// beginning of sol/optional_implementation.hpp
# ifndef SOL_OPTIONAL_IMPLEMENTATION_HPP
# define SOL_OPTIONAL_IMPLEMENTATION_HPP
# include <utility>
# include <type_traits>
# include <initializer_list>
# include <cassert>
# include <functional>
# include <string>
# include <stdexcept>
#ifdef SOL_NO_EXCEPTIONS
#include <cstdlib>
#endif // Exceptions
# define TR2_OPTIONAL_REQUIRES(...) typename ::std::enable_if<__VA_ARGS__::value, bool>::type = false
# if defined __GNUC__ // NOTE: GNUC is also defined for Clang
# if (__GNUC__ >= 5)
# define TR2_OPTIONAL_GCC_5_0_AND_HIGHER___
# define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
# elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)
# define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
# elif (__GNUC__ > 4)
# define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
# endif
#
# if (__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)
# define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___
# elif (__GNUC__ > 4)
# define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___
# endif
#
# if (__GNUC__ == 4) && (__GNUC_MINOR__ == 8) && (__GNUC_PATCHLEVEL__ >= 1)
# define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
# elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 9)
# define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
# elif (__GNUC__ > 4)
# define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
# endif
# endif
#
# if defined __clang_major__
# if (__clang_major__ == 3 && __clang_minor__ >= 5)
# define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
# elif (__clang_major__ > 3)
# define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
# endif
# if defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
# define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
# elif (__clang_major__ == 3 && __clang_minor__ == 4 && __clang_patchlevel__ >= 2)
# define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
# endif
# endif
#
# if defined _MSC_VER
# if (_MSC_VER >= 1900)
# define TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
# endif
# endif
# if defined __clang__
# if (__clang_major__ > 2) || (__clang_major__ == 2) && (__clang_minor__ >= 9)
# define OPTIONAL_HAS_THIS_RVALUE_REFS 1
# else
# define OPTIONAL_HAS_THIS_RVALUE_REFS 0
# endif
# elif defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
# define OPTIONAL_HAS_THIS_RVALUE_REFS 1
# elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
# define OPTIONAL_HAS_THIS_RVALUE_REFS 1
# else
# define OPTIONAL_HAS_THIS_RVALUE_REFS 0
# endif
# if defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
# define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 1
# define OPTIONAL_CONSTEXPR_INIT_LIST constexpr
# else
# define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 0
# define OPTIONAL_CONSTEXPR_INIT_LIST
# endif
# if defined(TR2_OPTIONAL_MSVC_2015_AND_HIGHER___) || (defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ && (defined __cplusplus) && (__cplusplus != 201103L))
# define OPTIONAL_HAS_MOVE_ACCESSORS 1
# else
# define OPTIONAL_HAS_MOVE_ACCESSORS 0
# endif
# // In C++11 constexpr implies const, so we need to make non-const members also non-constexpr
# if defined(TR2_OPTIONAL_MSVC_2015_AND_HIGHER___) || ((defined __cplusplus) && (__cplusplus == 201103L))
# define OPTIONAL_MUTABLE_CONSTEXPR
# else
# define OPTIONAL_MUTABLE_CONSTEXPR constexpr
# endif
# if defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
#pragma warning( push )
#pragma warning( disable : 4814 )
#endif
namespace sol {
// BEGIN workaround for missing is_trivially_destructible
# if defined TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
// leave it: it is already there
# elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
// leave it: it is already there
# elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
// leave it: it is already there
# elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS
// leave it: the user doesn't want it
# else
template <typename T>
using is_trivially_destructible = ::std::has_trivial_destructor<T>;
# endif
// END workaround for missing is_trivially_destructible
# if (defined TR2_OPTIONAL_GCC_4_7_AND_HIGHER___)
// leave it; our metafunctions are already defined.
# elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
// leave it; our metafunctions are already defined.
# elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
// leave it: it is already there
# elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS
// leave it: the user doesn't want it
# else
template <class T>
struct is_nothrow_move_constructible
{
constexpr static bool value = ::std::is_nothrow_constructible<T, T&&>::value;
};
template <class T, class U>
struct is_assignable
{
template <class X, class Y>
constexpr static bool has_assign(...) { return false; }
template <class X, class Y, size_t S = sizeof((::std::declval<X>() = ::std::declval<Y>(), true)) >
// the comma operator is necessary for the cases where operator= returns void
constexpr static bool has_assign(bool) { return true; }
constexpr static bool value = has_assign<T, U>(true);
};
template <class T>
struct is_nothrow_move_assignable
{
template <class X, bool has_any_move_assign>
struct has_nothrow_move_assign {
constexpr static bool value = false;
};
template <class X>
struct has_nothrow_move_assign<X, true> {
constexpr static bool value = noexcept(::std::declval<X&>() = ::std::declval<X&&>());
};
constexpr static bool value = has_nothrow_move_assign<T, is_assignable<T&, T&&>::value>::value;
};
// end workaround
# endif
template <class T> class optional;
// 20.5.5, optional for lvalue reference types
template <class T> class optional<T&>;
// workaround: std utility functions aren't constexpr yet
template <class T> inline constexpr T&& constexpr_forward(typename ::std::remove_reference<T>::type& t) noexcept
{
return static_cast<T&&>(t);
}
template <class T> inline constexpr T&& constexpr_forward(typename ::std::remove_reference<T>::type&& t) noexcept
{
static_assert(!::std::is_lvalue_reference<T>::value, "!!");
return static_cast<T&&>(t);
}
template <class T> inline constexpr typename ::std::remove_reference<T>::type&& constexpr_move(T&& t) noexcept
{
return static_cast<typename ::std::remove_reference<T>::type&&>(t);
}
#if defined NDEBUG
# define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) (EXPR)
#else
# define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) ((CHECK) ? (EXPR) : ([]{assert(!#CHECK);}(), (EXPR)))
#endif
namespace detail_
{
// static_addressof: a constexpr version of addressof
template <typename T>
struct has_overloaded_addressof
{
template <class X>
constexpr static bool has_overload(...) { return false; }
template <class X, size_t S = sizeof(::std::declval<X&>().operator&()) >
constexpr static bool has_overload(bool) { return true; }
constexpr static bool value = has_overload<T>(true);
};
template <typename T, TR2_OPTIONAL_REQUIRES(!has_overloaded_addressof<T>)>
constexpr T* static_addressof(T& ref)
{
return &ref;
}
template <typename T, TR2_OPTIONAL_REQUIRES(has_overloaded_addressof<T>)>
T* static_addressof(T& ref)
{
return ::std::addressof(ref);
}
// the call to convert<A>(b) has return type A and converts b to type A iff b decltype(b) is implicitly convertible to A
template <class U>
constexpr U convert(U v) { return v; }
} // namespace detail_
constexpr struct trivial_init_t {} trivial_init{};
// 20.5.7, Disengaged state indicator
struct nullopt_t
{
struct init {};
constexpr explicit nullopt_t(init) {}
};
constexpr nullopt_t nullopt{ nullopt_t::init() };
// 20.5.8, class bad_optional_access
class bad_optional_access : public ::std::logic_error {
public:
explicit bad_optional_access(const ::std::string& what_arg) : ::std::logic_error{ what_arg } {}
explicit bad_optional_access(const char* what_arg) : ::std::logic_error{ what_arg } {}
};
template <class T>
struct alignas(T) optional_base {
char storage_[sizeof(T)];
bool init_;
constexpr optional_base() noexcept : storage_(), init_(false) {};
explicit optional_base(const T& v) : storage_(), init_(true) {
new (&storage())T(v);
}
explicit optional_base(T&& v) : storage_(), init_(true) {
new (&storage())T(constexpr_move(v));
}
template <class... Args> explicit optional_base(in_place_t, Args&&... args)
: init_(true), storage_() {
new (&storage())T(constexpr_forward<Args>(args)...);
}
template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
explicit optional_base(in_place_t, ::std::initializer_list<U> il, Args&&... args)
: init_(true), storage_() {
new (&storage())T(il, constexpr_forward<Args>(args)...);
}
#if defined __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
T& storage() {
return *reinterpret_cast<T*>(&storage_[0]);
}
constexpr const T& storage() const {
return *reinterpret_cast<T const*>(&storage_[0]);
}
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif
~optional_base() { if (init_) { storage().T::~T(); } }
};
#if defined __GNUC__ && !defined TR2_OPTIONAL_GCC_5_0_AND_HIGHER___
// Sorry, GCC 4.x; you're just a piece of shit
template <typename T>
using constexpr_optional_base = optional_base<T>;
#else
template <class T>
struct alignas(T) constexpr_optional_base {
char storage_[sizeof(T)];
bool init_;
constexpr constexpr_optional_base() noexcept : storage_(), init_(false) {}
explicit constexpr constexpr_optional_base(const T& v) : storage_(), init_(true) {
new (&storage())T(v);
}
explicit constexpr constexpr_optional_base(T&& v) : storage_(), init_(true) {
new (&storage())T(constexpr_move(v));
}
template <class... Args> explicit constexpr constexpr_optional_base(in_place_t, Args&&... args)
: init_(true), storage_() {
new (&storage())T(constexpr_forward<Args>(args)...);
}
template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
OPTIONAL_CONSTEXPR_INIT_LIST explicit constexpr_optional_base(in_place_t, ::std::initializer_list<U> il, Args&&... args)
: init_(true), storage_() {
new (&storage())T(il, constexpr_forward<Args>(args)...);
}
#if defined __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
T& storage() {
return (*reinterpret_cast<T*>(&storage_[0]));
}
constexpr const T& storage() const {
return (*reinterpret_cast<T const*>(&storage_[0]));
}
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif
~constexpr_optional_base() = default;
};
#endif
template <class T>
using OptionalBase = typename ::std::conditional<
::std::is_trivially_destructible<T>::value,
constexpr_optional_base<typename ::std::remove_const<T>::type>,
optional_base<typename ::std::remove_const<T>::type>
>::type;
template <class T>
class optional : private OptionalBase<T>
{
static_assert(!::std::is_same<typename ::std::decay<T>::type, nullopt_t>::value, "bad T");
static_assert(!::std::is_same<typename ::std::decay<T>::type, in_place_t>::value, "bad T");
constexpr bool initialized() const noexcept { return OptionalBase<T>::init_; }
typename ::std::remove_const<T>::type* dataptr() { return ::std::addressof(OptionalBase<T>::storage()); }
constexpr const T* dataptr() const { return detail_::static_addressof(OptionalBase<T>::storage()); }
# if OPTIONAL_HAS_THIS_RVALUE_REFS == 1
constexpr const T& contained_val() const& { return OptionalBase<T>::storage(); }
# if OPTIONAL_HAS_MOVE_ACCESSORS == 1
OPTIONAL_MUTABLE_CONSTEXPR T&& contained_val() && { return ::std::move(OptionalBase<T>::storage()); }
OPTIONAL_MUTABLE_CONSTEXPR T& contained_val() & { return OptionalBase<T>::storage(); }
# else
T& contained_val() & { return OptionalBase<T>::storage(); }
T&& contained_val() && { return ::std::move(OptionalBase<T>::storage()); }
# endif
# else
constexpr const T& contained_val() const { return OptionalBase<T>::storage(); }
T& contained_val() { return OptionalBase<T>::storage(); }
# endif
void clear() noexcept {
if (initialized()) dataptr()->T::~T();
OptionalBase<T>::init_ = false;
}
template <class... Args>
void initialize(Args&&... args) noexcept(noexcept(T(::std::forward<Args>(args)...)))
{
assert(!OptionalBase<T>::init_);
::new (static_cast<void*>(dataptr())) T(::std::forward<Args>(args)...);
OptionalBase<T>::init_ = true;
}
template <class U, class... Args>
void initialize(::std::initializer_list<U> il, Args&&... args) noexcept(noexcept(T(il, ::std::forward<Args>(args)...)))
{
assert(!OptionalBase<T>::init_);
::new (static_cast<void*>(dataptr())) T(il, ::std::forward<Args>(args)...);
OptionalBase<T>::init_ = true;
}
public:
typedef T value_type;
// 20.5.5.1, constructors
constexpr optional() noexcept : OptionalBase<T>() {};
constexpr optional(nullopt_t) noexcept : OptionalBase<T>() {};
optional(const optional& rhs)
: OptionalBase<T>()
{
if (rhs.initialized()) {
::new (static_cast<void*>(dataptr())) T(*rhs);
OptionalBase<T>::init_ = true;
}
}
optional(const optional<T&>& rhs) : optional()
{
if (rhs) {
::new (static_cast<void*>(dataptr())) T(*rhs);
OptionalBase<T>::init_ = true;
}
}
optional(optional&& rhs) noexcept(::std::is_nothrow_move_constructible<T>::value)
: OptionalBase<T>()
{
if (rhs.initialized()) {
::new (static_cast<void*>(dataptr())) T(::std::move(*rhs));
OptionalBase<T>::init_ = true;
}
}
constexpr optional(const T& v) : OptionalBase<T>(v) {}
constexpr optional(T&& v) : OptionalBase<T>(constexpr_move(v)) {}
template <class... Args>
explicit constexpr optional(in_place_t, Args&&... args)
: OptionalBase<T>(in_place, constexpr_forward<Args>(args)...) {}
template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
OPTIONAL_CONSTEXPR_INIT_LIST explicit optional(in_place_t, ::std::initializer_list<U> il, Args&&... args)
: OptionalBase<T>(in_place, il, constexpr_forward<Args>(args)...) {}
// 20.5.4.2, Destructor
~optional() = default;
// 20.5.4.3, assignment
optional& operator=(nullopt_t) noexcept
{
clear();
return *this;
}
optional& operator=(const optional& rhs)
{
if (initialized() == true && rhs.initialized() == false) clear();
else if (initialized() == false && rhs.initialized() == true) initialize(*rhs);
else if (initialized() == true && rhs.initialized() == true) contained_val() = *rhs;
return *this;
}
optional& operator=(optional&& rhs)
noexcept(::std::is_nothrow_move_assignable<T>::value && ::std::is_nothrow_move_constructible<T>::value)
{
if (initialized() == true && rhs.initialized() == false) clear();
else if (initialized() == false && rhs.initialized() == true) initialize(::std::move(*rhs));
else if (initialized() == true && rhs.initialized() == true) contained_val() = ::std::move(*rhs);
return *this;
}
template <class U>
auto operator=(U&& v)
-> typename ::std::enable_if
<
::std::is_same<typename ::std::decay<U>::type, T>::value,
optional&
>::type
{
if (initialized()) { contained_val() = ::std::forward<U>(v); }
else { initialize(::std::forward<U>(v)); }
return *this;
}
template <class... Args>
void emplace(Args&&... args)
{
clear();
initialize(::std::forward<Args>(args)...);
}
template <class U, class... Args>
void emplace(::std::initializer_list<U> il, Args&&... args)
{
clear();
initialize<U, Args...>(il, ::std::forward<Args>(args)...);
}
// 20.5.4.4, Swap
void swap(optional<T>& rhs) noexcept(::std::is_nothrow_move_constructible<T>::value && noexcept(swap(::std::declval<T&>(), ::std::declval<T&>())))
{
if (initialized() == true && rhs.initialized() == false) { rhs.initialize(::std::move(**this)); clear(); }
else if (initialized() == false && rhs.initialized() == true) { initialize(::std::move(*rhs)); rhs.clear(); }
else if (initialized() == true && rhs.initialized() == true) { using ::std::swap; swap(**this, *rhs); }
}
// 20.5.4.5, Observers
explicit constexpr operator bool() const noexcept { return initialized(); }
constexpr T const* operator ->() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), dataptr());
}
# if OPTIONAL_HAS_MOVE_ACCESSORS == 1
OPTIONAL_MUTABLE_CONSTEXPR T* operator ->() {
assert(initialized());
return dataptr();
}
constexpr T const& operator *() const& {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val());
}
OPTIONAL_MUTABLE_CONSTEXPR T& operator *() & {
assert(initialized());
return contained_val();
}
OPTIONAL_MUTABLE_CONSTEXPR T&& operator *() && {
assert(initialized());
return constexpr_move(contained_val());
}
constexpr T const& value() const& {
return initialized() ?
contained_val()
#ifdef SOL_NO_EXCEPTIONS
// we can't abort here
// because there's no constexpr abort
: *(T*)nullptr;
#else
: (throw bad_optional_access("bad optional access"), contained_val());
#endif
}
OPTIONAL_MUTABLE_CONSTEXPR T& value() & {
return initialized() ?
contained_val()
#ifdef SOL_NO_EXCEPTIONS
: *(T*)nullptr;
#else
: (throw bad_optional_access("bad optional access"), contained_val());
#endif
}
OPTIONAL_MUTABLE_CONSTEXPR T&& value() && {
return initialized() ?
contained_val()
#ifdef SOL_NO_EXCEPTIONS
// we can't abort here
// because there's no constexpr abort
: std::move(*(T*)nullptr);
#else
: (throw bad_optional_access("bad optional access"), contained_val());
#endif
}
# else
T* operator ->() {
assert(initialized());
return dataptr();
}
constexpr T const& operator *() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val());
}
T& operator *() {
assert(initialized());
return contained_val();
}
constexpr T const& value() const {
return initialized() ?
contained_val()
#ifdef SOL_NO_EXCEPTIONS
// we can't abort here
// because there's no constexpr abort
: *(T*)nullptr;
#else
: (throw bad_optional_access("bad optional access"), contained_val());
#endif
}
T& value() {
return initialized() ?
contained_val()
#ifdef SOL_NO_EXCEPTIONS
// we can abort here
// but the others are constexpr, so we can't...
: (std::abort(), *(T*)nullptr);
#else
: (throw bad_optional_access("bad optional access"), contained_val());
#endif
}
# endif
# if OPTIONAL_HAS_THIS_RVALUE_REFS == 1
template <class V>
constexpr T value_or(V&& v) const&
{
return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v));
}
# if OPTIONAL_HAS_MOVE_ACCESSORS == 1
template <class V>
OPTIONAL_MUTABLE_CONSTEXPR T value_or(V&& v) &&
{
return *this ? constexpr_move(const_cast<optional<T>&>(*this).contained_val()) : detail_::convert<T>(constexpr_forward<V>(v));
}
# else
template <class V>
T value_or(V&& v) &&
{
return *this ? constexpr_move(const_cast<optional<T>&>(*this).contained_val()) : detail_::convert<T>(constexpr_forward<V>(v));
}
# endif
# else
template <class V>
constexpr T value_or(V&& v) const
{
return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v));
}
# endif
};
template <class T>
class optional<T&>
{
static_assert(!::std::is_same<T, nullopt_t>::value, "bad T");
static_assert(!::std::is_same<T, in_place_t>::value, "bad T");
T* ref;
public:
// 20.5.5.1, construction/destruction
constexpr optional() noexcept : ref(nullptr) {}
constexpr optional(nullopt_t) noexcept : ref(nullptr) {}
constexpr optional(T& v) noexcept : ref(detail_::static_addressof(v)) {}
optional(T&&) = delete;
constexpr optional(const optional& rhs) noexcept : ref(rhs.ref) {}
explicit constexpr optional(in_place_t, T& v) noexcept : ref(detail_::static_addressof(v)) {}
explicit optional(in_place_t, T&&) = delete;
~optional() = default;
// 20.5.5.2, mutation
optional& operator=(nullopt_t) noexcept {
ref = nullptr;
return *this;
}
// optional& operator=(const optional& rhs) noexcept {
// ref = rhs.ref;
// return *this;
// }
// optional& operator=(optional&& rhs) noexcept {
// ref = rhs.ref;
// return *this;
// }
template <typename U>
auto operator=(U&& rhs) noexcept
-> typename ::std::enable_if
<
::std::is_same<typename ::std::decay<U>::type, optional<T&>>::value,
optional&
>::type
{
ref = rhs.ref;
return *this;
}
template <typename U>
auto operator=(U&& rhs) noexcept
-> typename ::std::enable_if
<
!::std::is_same<typename ::std::decay<U>::type, optional<T&>>::value,
optional&
>::type
= delete;
void emplace(T& v) noexcept {
ref = detail_::static_addressof(v);
}
void emplace(T&&) = delete;
void swap(optional<T&>& rhs) noexcept
{
::std::swap(ref, rhs.ref);
}
// 20.5.5.3, observers
constexpr T* operator->() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, ref);
}
constexpr T& operator*() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, *ref);
}
constexpr T& value() const {
#ifdef SOL_NO_EXCEPTIONS
return *ref;
#else
return ref ? *ref
: (throw bad_optional_access("bad optional access"), *ref);
#endif // Exceptions
}
explicit constexpr operator bool() const noexcept {
return ref != nullptr;
}
template <typename V>
constexpr T& value_or(V&& v) const
{
return *this ? **this : detail_::convert<T&>(constexpr_forward<V>(v));
}
};
template <class T>
class optional<T&&>
{
static_assert(sizeof(T) == 0, "optional rvalue references disallowed");
};
// 20.5.8, Relational operators
template <class T> constexpr bool operator==(const optional<T>& x, const optional<T>& y)
{
return bool(x) != bool(y) ? false : bool(x) == false ? true : *x == *y;
}
template <class T> constexpr bool operator!=(const optional<T>& x, const optional<T>& y)
{
return !(x == y);
}
template <class T> constexpr bool operator<(const optional<T>& x, const optional<T>& y)
{
return (!y) ? false : (!x) ? true : *x < *y;
}
template <class T> constexpr bool operator>(const optional<T>& x, const optional<T>& y)
{
return (y < x);
}
template <class T> constexpr bool operator<=(const optional<T>& x, const optional<T>& y)
{
return !(y < x);
}
template <class T> constexpr bool operator>=(const optional<T>& x, const optional<T>& y)
{
return !(x < y);
}
// 20.5.9, Comparison with nullopt
template <class T> constexpr bool operator==(const optional<T>& x, nullopt_t) noexcept
{
return (!x);
}
template <class T> constexpr bool operator==(nullopt_t, const optional<T>& x) noexcept
{
return (!x);
}
template <class T> constexpr bool operator!=(const optional<T>& x, nullopt_t) noexcept
{
return bool(x);
}
template <class T> constexpr bool operator!=(nullopt_t, const optional<T>& x) noexcept
{
return bool(x);
}
template <class T> constexpr bool operator<(const optional<T>&, nullopt_t) noexcept
{
return false;
}
template <class T> constexpr bool operator<(nullopt_t, const optional<T>& x) noexcept
{
return bool(x);
}
template <class T> constexpr bool operator<=(const optional<T>& x, nullopt_t) noexcept
{
return (!x);
}
template <class T> constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept
{
return true;
}
template <class T> constexpr bool operator>(const optional<T>& x, nullopt_t) noexcept
{
return bool(x);
}
template <class T> constexpr bool operator>(nullopt_t, const optional<T>&) noexcept
{
return false;
}
template <class T> constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept
{
return true;
}
template <class T> constexpr bool operator>=(nullopt_t, const optional<T>& x) noexcept
{
return (!x);
}
// 20.5.10, Comparison with T
template <class T> constexpr bool operator==(const optional<T>& x, const T& v)
{
return bool(x) ? *x == v : false;
}
template <class T> constexpr bool operator==(const T& v, const optional<T>& x)
{
return bool(x) ? v == *x : false;
}
template <class T> constexpr bool operator!=(const optional<T>& x, const T& v)
{
return bool(x) ? *x != v : true;
}
template <class T> constexpr bool operator!=(const T& v, const optional<T>& x)
{
return bool(x) ? v != *x : true;
}
template <class T> constexpr bool operator<(const optional<T>& x, const T& v)
{
return bool(x) ? *x < v : true;
}
template <class T> constexpr bool operator>(const T& v, const optional<T>& x)
{
return bool(x) ? v > *x : true;
}
template <class T> constexpr bool operator>(const optional<T>& x, const T& v)
{
return bool(x) ? *x > v : false;
}
template <class T> constexpr bool operator<(const T& v, const optional<T>& x)
{
return bool(x) ? v < *x : false;
}
template <class T> constexpr bool operator>=(const optional<T>& x, const T& v)
{
return bool(x) ? *x >= v : false;
}
template <class T> constexpr bool operator<=(const T& v, const optional<T>& x)
{
return bool(x) ? v <= *x : false;
}
template <class T> constexpr bool operator<=(const optional<T>& x, const T& v)
{
return bool(x) ? *x <= v : true;
}
template <class T> constexpr bool operator>=(const T& v, const optional<T>& x)
{
return bool(x) ? v >= *x : true;
}
// Comparison of optional<T&> with T
template <class T> constexpr bool operator==(const optional<T&>& x, const T& v)
{
return bool(x) ? *x == v : false;
}
template <class T> constexpr bool operator==(const T& v, const optional<T&>& x)
{
return bool(x) ? v == *x : false;
}
template <class T> constexpr bool operator!=(const optional<T&>& x, const T& v)
{
return bool(x) ? *x != v : true;
}
template <class T> constexpr bool operator!=(const T& v, const optional<T&>& x)
{
return bool(x) ? v != *x : true;
}
template <class T> constexpr bool operator<(const optional<T&>& x, const T& v)
{
return bool(x) ? *x < v : true;
}
template <class T> constexpr bool operator>(const T& v, const optional<T&>& x)
{
return bool(x) ? v > *x : true;
}
template <class T> constexpr bool operator>(const optional<T&>& x, const T& v)
{
return bool(x) ? *x > v : false;
}
template <class T> constexpr bool operator<(const T& v, const optional<T&>& x)
{
return bool(x) ? v < *x : false;
}
template <class T> constexpr bool operator>=(const optional<T&>& x, const T& v)
{
return bool(x) ? *x >= v : false;
}
template <class T> constexpr bool operator<=(const T& v, const optional<T&>& x)
{
return bool(x) ? v <= *x : false;
}
template <class T> constexpr bool operator<=(const optional<T&>& x, const T& v)
{
return bool(x) ? *x <= v : true;
}
template <class T> constexpr bool operator>=(const T& v, const optional<T&>& x)
{
return bool(x) ? v >= *x : true;
}
// Comparison of optional<T const&> with T
template <class T> constexpr bool operator==(const optional<const T&>& x, const T& v)
{
return bool(x) ? *x == v : false;
}
template <class T> constexpr bool operator==(const T& v, const optional<const T&>& x)
{
return bool(x) ? v == *x : false;
}
template <class T> constexpr bool operator!=(const optional<const T&>& x, const T& v)
{
return bool(x) ? *x != v : true;
}
template <class T> constexpr bool operator!=(const T& v, const optional<const T&>& x)
{
return bool(x) ? v != *x : true;
}
template <class T> constexpr bool operator<(const optional<const T&>& x, const T& v)
{
return bool(x) ? *x < v : true;
}
template <class T> constexpr bool operator>(const T& v, const optional<const T&>& x)
{
return bool(x) ? v > *x : true;
}
template <class T> constexpr bool operator>(const optional<const T&>& x, const T& v)
{
return bool(x) ? *x > v : false;
}
template <class T> constexpr bool operator<(const T& v, const optional<const T&>& x)
{
return bool(x) ? v < *x : false;
}
template <class T> constexpr bool operator>=(const optional<const T&>& x, const T& v)
{
return bool(x) ? *x >= v : false;
}
template <class T> constexpr bool operator<=(const T& v, const optional<const T&>& x)
{
return bool(x) ? v <= *x : false;
}
template <class T> constexpr bool operator<=(const optional<const T&>& x, const T& v)
{
return bool(x) ? *x <= v : true;
}
template <class T> constexpr bool operator>=(const T& v, const optional<const T&>& x)
{
return bool(x) ? v >= *x : true;
}
// 20.5.12, Specialized algorithms
template <class T>
void swap(optional<T>& x, optional<T>& y) noexcept(noexcept(x.swap(y))) {
x.swap(y);
}
template <class T>
constexpr optional<typename ::std::decay<T>::type> make_optional(T&& v) {
return optional<typename ::std::decay<T>::type>(constexpr_forward<T>(v));
}
template <class X>
constexpr optional<X&> make_optional(::std::reference_wrapper<X> v) {
return optional<X&>(v.get());
}
} // namespace
namespace std
{
template <typename T>
struct hash<sol::optional<T>> {
typedef typename hash<T>::result_type result_type;
typedef sol::optional<T> argument_type;
constexpr result_type operator()(argument_type const& arg) const {
return arg ? ::std::hash<T>{}(*arg) : result_type{};
}
};
template <typename T>
struct hash<sol::optional<T&>> {
typedef typename hash<T>::result_type result_type;
typedef sol::optional<T&> argument_type;
constexpr result_type operator()(argument_type const& arg) const {
return arg ? ::std::hash<T>{}(*arg) : result_type{};
}
};
}
# if defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
#pragma warning( pop )
#endif
# undef TR2_OPTIONAL_REQUIRES
# undef TR2_OPTIONAL_ASSERTED_EXPRESSION
# endif // SOL_OPTIONAL_IMPLEMENTATION_HPP
// end of sol/optional_implementation.hpp
#endif // Boost vs. Better optional
namespace sol {
#if defined(SOL_USE_BOOST)
template <typename T>
using optional = boost::optional<T>;
using nullopt_t = boost::none_t;
const nullopt_t nullopt = boost::none;
#endif // Boost vs. Better optional
} // sol
// end of sol/optional.hpp
// beginning of sol/string_shim.hpp
namespace sol {
namespace string_detail {
struct string_shim {
std::size_t s;
const char* p;
string_shim(const std::string& r) : string_shim(r.data(), r.size()) {}
string_shim(const char* ptr) : string_shim(ptr, std::char_traits<char>::length(ptr)) {}
string_shim(const char* ptr, std::size_t sz) : s(sz), p(ptr) {}
static int compare(const char* lhs_p, std::size_t lhs_sz, const char* rhs_p, std::size_t rhs_sz) {
int result = std::char_traits<char>::compare(lhs_p, rhs_p, lhs_sz < rhs_sz ? lhs_sz : rhs_sz);
if (result != 0)
return result;
if (lhs_sz < rhs_sz)
return -1;
if (lhs_sz > rhs_sz)
return 1;
return 0;
}
const char* c_str() const {
return p;
}
const char* data() const {
return p;
}
std::size_t size() const {
return s;
}
bool operator==(const string_shim& r) const {
return compare(p, s, r.data(), r.size()) == 0;
}
bool operator==(const char* r) const {
return compare(r, std::char_traits<char>::length(r), p, s) == 0;
}
bool operator==(const std::string& r) const {
return compare(r.data(), r.size(), p, s) == 0;
}
bool operator!=(const string_shim& r) const {
return !(*this == r);
}
bool operator!=(const char* r) const {
return !(*this == r);
}
bool operator!=(const std::string& r) const {
return !(*this == r);
}
};
}
}
// end of sol/string_shim.hpp
#include <array>
namespace sol {
namespace detail {
#ifdef SOL_NO_EXCEPTIONS
template <lua_CFunction f>
int static_trampoline(lua_State* L) {
return f(L);
}
template <typename Fx, typename... Args>
int trampoline(lua_State* L, Fx&& f, Args&&... args) {
return f(L, std::forward<Args>(args)...);
}
inline int c_trampoline(lua_State* L, lua_CFunction f) {
return trampoline(L, f);
}
#else
template <lua_CFunction f>
int static_trampoline(lua_State* L) {
try {
return f(L);
}
catch (const char *s) {
lua_pushstring(L, s);
}
catch (const std::exception& e) {
lua_pushstring(L, e.what());
}
#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
catch (...) {
lua_pushstring(L, "caught (...) exception");
}
#endif
return lua_error(L);
}
template <typename Fx, typename... Args>
int trampoline(lua_State* L, Fx&& f, Args&&... args) {
try {
return f(L, std::forward<Args>(args)...);
}
catch (const char *s) {
lua_pushstring(L, s);
}
catch (const std::exception& e) {
lua_pushstring(L, e.what());
}
#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
catch (...) {
lua_pushstring(L, "caught (...) exception");
}
#endif
return lua_error(L);
}
inline int c_trampoline(lua_State* L, lua_CFunction f) {
return trampoline(L, f);
}
#endif // Exceptions vs. No Exceptions
template <typename T>
struct unique_usertype {};
template <typename T>
struct implicit_wrapper {
T& item;
implicit_wrapper(T* item) : item(*item) {}
implicit_wrapper(T& item) : item(item) {}
operator T& () {
return item;
}
operator T* () {
return std::addressof(item);
}
};
} // detail
struct lua_nil_t {};
const lua_nil_t lua_nil{};
inline bool operator==(lua_nil_t, lua_nil_t) { return true; }
inline bool operator!=(lua_nil_t, lua_nil_t) { return false; }
#ifndef __OBJC__
typedef lua_nil_t nil_t;
const nil_t nil{};
#endif
struct metatable_key_t {};
const metatable_key_t metatable_key = {};
struct no_metatable_t {};
const no_metatable_t no_metatable = {};
typedef std::remove_pointer_t<lua_CFunction> lua_r_CFunction;
template <typename T>
struct unique_usertype_traits {
typedef T type;
typedef T actual_type;
static const bool value = false;
template <typename U>
static bool is_null(U&&) {
return false;
}
template <typename U>
static auto get(U&& value) {
return std::addressof(detail::deref(value));
}
};
template <typename T>
struct unique_usertype_traits<std::shared_ptr<T>> {
typedef T type;
typedef std::shared_ptr<T> actual_type;
static const bool value = true;
static bool is_null(const actual_type& p) {
return p == nullptr;
}
static type* get(const actual_type& p) {
return p.get();
}
};
template <typename T, typename D>
struct unique_usertype_traits<std::unique_ptr<T, D>> {
typedef T type;
typedef std::unique_ptr<T, D> actual_type;
static const bool value = true;
static bool is_null(const actual_type& p) {
return p == nullptr;
}
static type* get(const actual_type& p) {
return p.get();
}
};
template <typename T>
struct non_null {};
template <typename... Args>
struct function_sig {};
struct upvalue_index {
int index;
upvalue_index(int idx) : index(lua_upvalueindex(idx)) {}
operator int() const { return index; }
};
struct raw_index {
int index;
raw_index(int i) : index(i) {}
operator int() const { return index; }
};
struct absolute_index {
int index;
absolute_index(lua_State* L, int idx) : index(lua_absindex(L, idx)) {}
operator int() const { return index; }
};
struct ref_index {
int index;
ref_index(int idx) : index(idx) {}
operator int() const { return index; }
};
struct lightuserdata_value {
void* value;
lightuserdata_value(void* data) : value(data) {}
operator void*() const { return value; }
};
struct userdata_value {
void* value;
userdata_value(void* data) : value(data) {}
operator void*() const { return value; }
};
template <typename L>
struct light {
L* value;
light(L& x) : value(std::addressof(x)) {}
light(L* x) : value(x) {}
light(void* x) : value(static_cast<L*>(x)) {}
operator L* () const { return value; }
operator L& () const { return *value; }
};
template <typename T>
auto make_light(T& l) {
typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L;
return light<L>(l);
}
template <typename U>
struct user {
U value;
user(U x) : value(std::move(x)) {}
operator U* () { return std::addressof(value); }
operator U& () { return value; }
operator const U& () const { return value; }
};
template <typename T>
auto make_user(T&& u) {
typedef meta::unwrapped_t<meta::unqualified_t<T>> U;
return user<U>(std::forward<T>(u));
}
template <typename T>
struct metatable_registry_key {
T key;
metatable_registry_key(T key) : key(std::forward<T>(key)) {}
};
template <typename T>
auto meta_registry_key(T&& key) {
typedef meta::unqualified_t<T> K;
return metatable_registry_key<K>(std::forward<T>(key));
}
template <typename... Upvalues>
struct closure {
lua_CFunction c_function;
std::tuple<Upvalues...> upvalues;
closure(lua_CFunction f, Upvalues... targetupvalues) : c_function(f), upvalues(std::forward<Upvalues>(targetupvalues)...) {}
};
template <>
struct closure<> {
lua_CFunction c_function;
int upvalues;
closure(lua_CFunction f, int upvalue_count = 0) : c_function(f), upvalues(upvalue_count) {}
};
typedef closure<> c_closure;
template <typename... Args>
closure<Args...> make_closure(lua_CFunction f, Args&&... args) {
return closure<Args...>(f, std::forward<Args>(args)...);
}
template <typename Sig, typename... Ps>
struct function_arguments {
std::tuple<Ps...> arguments;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler>
function_arguments(Arg&& arg, Args&&... args) : arguments(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
};
template <typename Sig = function_sig<>, typename... Args>
auto as_function(Args&&... args) {
return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...);
}
template <typename Sig = function_sig<>, typename... Args>
auto as_function_reference(Args&&... args) {
return function_arguments<Sig, Args...>(std::forward<Args>(args)...);
}
template <typename T>
struct as_table_t {
T source;
template <typename... Args>
as_table_t(Args&&... args) : source(std::forward<Args>(args)...) {}
operator std::add_lvalue_reference_t<T> () {
return source;
}
};
template <typename T>
struct nested {
T source;
template <typename... Args>
nested(Args&&... args) : source(std::forward<Args>(args)...) {}
operator std::add_lvalue_reference_t<T>() {
return source;
}
};
template <typename T>
as_table_t<T> as_table(T&& container) {
return as_table_t<T>(std::forward<T>(container));
}
struct this_state {
lua_State* L;
operator lua_State* () const {
return L;
}
lua_State* operator-> () const {
return L;
}
};
enum class call_syntax {
dot = 0,
colon = 1
};
enum class call_status : int {
ok = LUA_OK,
yielded = LUA_YIELD,
runtime = LUA_ERRRUN,
memory = LUA_ERRMEM,
handler = LUA_ERRERR,
gc = LUA_ERRGCMM,
syntax = LUA_ERRSYNTAX,
file = LUA_ERRFILE,
};
enum class thread_status : int {
ok = LUA_OK,
yielded = LUA_YIELD,
runtime = LUA_ERRRUN,
memory = LUA_ERRMEM,
gc = LUA_ERRGCMM,
handler = LUA_ERRERR,
dead = -1,
};
enum class load_status : int {
ok = LUA_OK,
syntax = LUA_ERRSYNTAX,
memory = LUA_ERRMEM,
gc = LUA_ERRGCMM,
file = LUA_ERRFILE,
};
enum class type : int {
none = LUA_TNONE,
lua_nil = LUA_TNIL,
#ifndef __OBJC__
nil = lua_nil,
#endif // Objective C++ Keyword
string = LUA_TSTRING,
number = LUA_TNUMBER,
thread = LUA_TTHREAD,
boolean = LUA_TBOOLEAN,
function = LUA_TFUNCTION,
userdata = LUA_TUSERDATA,
lightuserdata = LUA_TLIGHTUSERDATA,
table = LUA_TTABLE,
poly = none | lua_nil | string | number | thread |
table | boolean | function | userdata | lightuserdata
};
inline const std::string& to_string(call_status c) {
static const std::array<std::string, 8> names{{
"ok",
"yielded",
"runtime",
"memory",
"handler",
"gc",
"syntax",
"file",
}};
switch (c) {
case call_status::ok:
return names[0];
case call_status::yielded:
return names[1];
case call_status::runtime:
return names[2];
case call_status::memory:
return names[3];
case call_status::handler:
return names[4];
case call_status::gc:
return names[5];
case call_status::syntax:
return names[6];
case call_status::file:
return names[7];
}
return names[0];
}
inline const std::string& to_string(load_status c) {
static const std::array<std::string, 8> names{ {
"ok",
"memory",
"gc",
"syntax",
"file",
} };
switch (c) {
case load_status::ok:
return names[0];
case load_status::memory:
return names[1];
case load_status::gc:
return names[2];
case load_status::syntax:
return names[3];
case load_status::file:
return names[4];
}
return names[0];
}
enum class meta_function {
construct,
index,
new_index,
mode,
call,
call_function = call,
metatable,
to_string,
length,
unary_minus,
addition,
subtraction,
multiplication,
division,
modulus,
power_of,
involution = power_of,
concatenation,
equal_to,
less_than,
less_than_or_equal_to,
garbage_collect,
floor_division,
bitwise_left_shift,
bitwise_right_shift,
bitwise_not,
bitwise_and,
bitwise_or,
bitwise_xor,
pairs,
next
};
typedef meta_function meta_method;
const std::array<std::string, 2> meta_variable_names = { {
"__index",
"__newindex",
} };
const std::array<std::string, 29> meta_function_names = { {
"new",
"__index",
"__newindex",
"__mode",
"__call",
"__mt",
"__tostring",
"__len",
"__unm",
"__add",
"__sub",
"__mul",
"__div",
"__mod",
"__pow",
"__concat",
"__eq",
"__lt",
"__le",
"__gc",
"__idiv",
"__shl",
"__shr",
"__bnot",
"__band",
"__bor",
"__bxor",
"__pairs",
"__next"
} };
inline const std::string& name_of(meta_function mf) {
return meta_function_names[static_cast<int>(mf)];
}
inline type type_of(lua_State* L, int index) {
return static_cast<type>(lua_type(L, index));
}
inline int type_panic(lua_State* L, int index, type expected, type actual) {
return luaL_error(L, "stack index %d, expected %s, received %s", index,
expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)),
expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(actual))
);
}
// Specify this function as the handler for lua::check if you know there's nothing wrong
inline int no_panic(lua_State*, int, type, type) noexcept {
return 0;
}
inline void type_error(lua_State* L, int expected, int actual) {
luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual));
}
inline void type_error(lua_State* L, type expected, type actual) {
type_error(L, static_cast<int>(expected), static_cast<int>(actual));
}
inline void type_assert(lua_State* L, int index, type expected, type actual) {
if (expected != type::poly && expected != actual) {
type_panic(L, index, expected, actual);
}
}
inline void type_assert(lua_State* L, int index, type expected) {
type actual = type_of(L, index);
type_assert(L, index, expected, actual);
}
inline std::string type_name(lua_State* L, type t) {
return lua_typename(L, static_cast<int>(t));
}
class reference;
class stack_reference;
template <typename Table, typename Key>
struct proxy;
template<typename T>
class usertype;
template <bool, typename T>
class basic_table_core;
template <bool b>
using table_core = basic_table_core<b, reference>;
template <bool b>
using stack_table_core = basic_table_core<b, stack_reference>;
typedef table_core<false> table;
typedef table_core<true> global_table;
typedef stack_table_core<false> stack_table;
typedef stack_table_core<true> stack_global_table;
template <typename T>
class basic_function;
template <typename T>
class basic_protected_function;
using protected_function = basic_protected_function<reference>;
using stack_protected_function = basic_protected_function<stack_reference>;
using unsafe_function = basic_function<reference>;
using safe_function = basic_protected_function<reference>;
using stack_unsafe_function = basic_function<stack_reference>;
using stack_safe_function = basic_protected_function<stack_reference>;
#ifdef SOL_SAFE_FUNCTIONS
using function = protected_function;
using stack_function = stack_protected_function;
#else
using function = unsafe_function;
using stack_function = stack_unsafe_function;
#endif
template <typename base_t>
class basic_object;
template <typename base_t>
class basic_userdata;
template <typename base_t>
class basic_lightuserdata;
struct variadic_args;
using object = basic_object<reference>;
using stack_object = basic_object<stack_reference>;
using userdata = basic_userdata<reference>;
using stack_userdata = basic_userdata<stack_reference>;
using lightuserdata = basic_lightuserdata<reference>;
using stack_lightuserdata = basic_lightuserdata<stack_reference>;
class coroutine;
class thread;
struct variadic_args;
struct this_state;
namespace detail {
template <typename T, typename = void>
struct lua_type_of : std::integral_constant<type, type::userdata> {};
template <>
struct lua_type_of<std::string> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<std::wstring> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<std::u16string> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<std::u32string> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<char[N]> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<char> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<char16_t> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<char32_t> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<const char*> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<string_detail::string_shim> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<bool> : std::integral_constant<type, type::boolean> {};
template <>
struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> { };
template <>
struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> { };
template <>
struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> { };
template <>
struct lua_type_of<sol::error> : std::integral_constant<type, type::string> { };
template <bool b, typename Base>
struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> { };
template <typename T>
struct lua_type_of<as_table_t<T>> : std::integral_constant<type, type::table> {};
template <>
struct lua_type_of<reference> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> {};
template <typename Base>
struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> {};
template <typename... Args>
struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> {};
template <typename A, typename B>
struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> {};
template <>
struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> {};
template <>
struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> {};
template <typename T>
struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> {};
template <typename T>
struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> {};
template <typename Base>
struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> {};
template <typename Base>
struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> {};
template <>
struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> {};
template <>
struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> {};
template <typename Base>
struct lua_type_of<basic_function<Base>> : std::integral_constant<type, type::function> {};
template <typename Base>
struct lua_type_of<basic_protected_function<Base>> : std::integral_constant<type, type::function> {};
template <>
struct lua_type_of<coroutine> : std::integral_constant<type, type::function> {};
template <>
struct lua_type_of<thread> : std::integral_constant<type, type::thread> {};
template <typename Signature>
struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> {};
template <typename T>
struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<this_state> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<type> : std::integral_constant<type, type::poly> {};
template <typename T>
struct lua_type_of<T*> : std::integral_constant<type, type::userdata> {};
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_arithmetic<T>::value>> : std::integral_constant<type, type::number> {};
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_enum<T>::value>> : std::integral_constant<type, type::number> {};
template <typename T, typename C = void>
struct is_container : std::false_type {};
template <>
struct is_container<std::string> : std::false_type {};
template <>
struct is_container<std::wstring> : std::false_type {};
template <>
struct is_container<std::u16string> : std::false_type {};
template <>
struct is_container<std::u32string> : std::false_type {};
template <typename T>
struct is_container<T, std::enable_if_t<meta::has_begin_end<meta::unqualified_t<T>>::value>> : std::true_type {};
template <>
struct lua_type_of<meta_function> : std::integral_constant<type, type::string> {};
template <typename C, C v, template <typename...> class V, typename... Args>
struct accumulate : std::integral_constant<C, v> {};
template <typename C, C v, template <typename...> class V, typename T, typename... Args>
struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> {};
} // detail
template <typename T>
struct is_unique_usertype : std::integral_constant<bool, unique_usertype_traits<T>::value> {};
template <typename T>
struct lua_type_of : detail::lua_type_of<T> {
typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
};
template <typename T>
struct lua_size : std::integral_constant<int, 1> {
typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
};
template <typename A, typename B>
struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> { };
template <typename... Args>
struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> { };
namespace detail {
template <typename...>
struct void_ { typedef void type; };
template <typename T, typename = void>
struct has_internal_marker_impl : std::false_type {};
template <typename T>
struct has_internal_marker_impl<T, typename void_<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>::type> : std::true_type {};
template <typename T>
struct has_internal_marker : has_internal_marker_impl<T> {};
}
template <typename T>
struct is_lua_primitive : std::integral_constant<bool,
type::userdata != lua_type_of<meta::unqualified_t<T>>::value
|| ((type::userdata == lua_type_of<meta::unqualified_t<T>>::value)
&& detail::has_internal_marker<lua_type_of<meta::unqualified_t<T>>>::value
&& !detail::has_internal_marker<lua_size<meta::unqualified_t<T>>>::value)
|| std::is_base_of<reference, meta::unqualified_t<T>>::value
|| std::is_base_of<stack_reference, meta::unqualified_t<T>>::value
|| meta::is_specialization_of<std::tuple, meta::unqualified_t<T>>::value
|| meta::is_specialization_of<std::pair, meta::unqualified_t<T>>::value
> { };
template <typename T>
struct is_lua_reference : std::integral_constant<bool,
std::is_base_of<reference, meta::unqualified_t<T>>::value
|| std::is_base_of<stack_reference, meta::unqualified_t<T>>::value
|| meta::is_specialization_of<proxy, meta::unqualified_t<T>>::value
> { };
template <typename T>
struct is_lua_primitive<T*> : std::true_type {};
template <typename T>
struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type { };
template <typename T>
struct is_lua_primitive<user<T>> : std::true_type { };
template <typename T>
struct is_lua_primitive<light<T>> : is_lua_primitive<T*> { };
template <typename T>
struct is_lua_primitive<optional<T>> : std::true_type {};
template <>
struct is_lua_primitive<userdata_value> : std::true_type {};
template <>
struct is_lua_primitive<lightuserdata_value> : std::true_type {};
template <typename T>
struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> {};
template <typename T>
struct is_proxy_primitive : is_lua_primitive<T> { };
template <typename T>
struct is_transparent_argument : std::false_type {};
template <>
struct is_transparent_argument<this_state> : std::true_type {};
template <>
struct is_transparent_argument<variadic_args> : std::true_type {};
template <typename T>
struct is_variadic_arguments : std::is_same<T, variadic_args> {};
template <typename Signature>
struct lua_bind_traits : meta::bind_traits<Signature> {
private:
typedef meta::bind_traits<Signature> base_t;
public:
typedef std::integral_constant<bool, meta::count_for<is_transparent_argument, typename base_t::args_list>::value != 0> runtime_variadics_t;
static const std::size_t true_arity = base_t::arity;
static const std::size_t arity = base_t::arity - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
static const std::size_t true_free_arity = base_t::free_arity;
static const std::size_t free_arity = base_t::free_arity - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
};
template <typename T>
struct is_table : std::false_type {};
template <bool x, typename T>
struct is_table<basic_table_core<x, T>> : std::true_type {};
template <typename T>
struct is_function : std::false_type {};
template <typename T>
struct is_function<basic_function<T>> : std::true_type {};
template <typename T>
struct is_function<basic_protected_function<T>> : std::true_type {};
template <typename T>
struct is_lightuserdata : std::false_type {};
template <typename T>
struct is_lightuserdata<basic_lightuserdata<T>> : std::true_type {};
template <typename T>
struct is_userdata : std::false_type {};
template <typename T>
struct is_userdata<basic_userdata<T>> : std::true_type {};
template <typename T>
struct is_container : detail::is_container<T>{};
template<typename T>
inline type type_of() {
return lua_type_of<meta::unqualified_t<T>>::value;
}
namespace detail {
template <typename T>
struct lua_type_of<nested<T>, std::enable_if_t<::sol::is_container<T>::value>> : std::integral_constant<type, type::table> {};
template <typename T>
struct lua_type_of<nested<T>, std::enable_if_t<!::sol::is_container<T>::value>> : lua_type_of<T> {};
} // detail
} // sol
// end of sol/types.hpp
// beginning of sol/stack_reference.hpp
namespace sol {
class stack_reference {
private:
lua_State* L = nullptr;
int index = 0;
protected:
int registry_index() const noexcept {
return LUA_NOREF;
}
public:
stack_reference() noexcept = default;
stack_reference(lua_nil_t) noexcept : stack_reference() {};
stack_reference(lua_State* L, int i) noexcept : L(L), index(lua_absindex(L, i)) {}
stack_reference(lua_State* L, absolute_index i) noexcept : L(L), index(i) {}
stack_reference(lua_State* L, raw_index i) noexcept : L(L), index(i) {}
stack_reference(lua_State* L, ref_index i) noexcept = delete;
stack_reference(stack_reference&& o) noexcept = default;
stack_reference& operator=(stack_reference&&) noexcept = default;
stack_reference(const stack_reference&) noexcept = default;
stack_reference& operator=(const stack_reference&) noexcept = default;
int push() const noexcept {
return push(lua_state());
}
int push(lua_State* Ls) const noexcept {
lua_pushvalue(lua_state(), index);
if (Ls != lua_state()) {
lua_xmove(lua_state(), Ls, 1);
}
return 1;
}
void pop() const noexcept {
pop(lua_state());
}
void pop(lua_State* Ls, int n = 1) const noexcept {
lua_pop(Ls, n);
}
int stack_index() const noexcept {
return index;
}
type get_type() const noexcept {
int result = lua_type(L, index);
return static_cast<type>(result);
}
lua_State* lua_state() const noexcept {
return L;
}
bool valid() const noexcept {
type t = get_type();
return t != type::lua_nil && t != type::none;
}
};
inline bool operator== (const stack_reference& l, const stack_reference& r) {
return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 0;
}
inline bool operator!= (const stack_reference& l, const stack_reference& r) {
return !operator==(l, r);
}
} // sol
// end of sol/stack_reference.hpp
namespace sol {
namespace stack {
template <bool top_level>
struct push_popper_n {
lua_State* L;
int t;
push_popper_n(lua_State* luastate, int x) : L(luastate), t(x) { }
~push_popper_n() { lua_pop(L, t); }
};
template <>
struct push_popper_n<true> {
push_popper_n(lua_State*, int) { }
};
template <bool top_level, typename T>
struct push_popper {
T t;
push_popper(T x) : t(x) { t.push(); }
~push_popper() { t.pop(); }
};
template <typename T>
struct push_popper<true, T> {
push_popper(T) {}
~push_popper() {}
};
template <bool top_level = false, typename T>
push_popper<top_level, T> push_pop(T&& x) {
return push_popper<top_level, T>(std::forward<T>(x));
}
template <bool top_level = false>
push_popper_n<top_level> pop_n(lua_State* L, int x) {
return push_popper_n<top_level>(L, x);
}
} // stack
namespace detail {
struct global_tag { } const global_{};
} // detail
class reference {
private:
lua_State* luastate = nullptr; // non-owning
int ref = LUA_NOREF;
int copy() const noexcept {
if (ref == LUA_NOREF)
return LUA_NOREF;
push();
return luaL_ref(lua_state(), LUA_REGISTRYINDEX);
}
protected:
reference(lua_State* L, detail::global_tag) noexcept : luastate(L) {
lua_pushglobaltable(lua_state());
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
}
int stack_index() const noexcept {
return -1;
}
void deref() const noexcept {
luaL_unref(lua_state(), LUA_REGISTRYINDEX, ref);
}
public:
reference() noexcept = default;
reference(lua_nil_t) noexcept : reference() {}
reference(const stack_reference& r) noexcept : reference(r.lua_state(), r.stack_index()) {}
reference(stack_reference&& r) noexcept : reference(r.lua_state(), r.stack_index()) {}
reference(lua_State* L, int index = -1) noexcept : luastate(L) {
lua_pushvalue(lua_state(), index);
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
}
reference(lua_State* L, ref_index index) noexcept : luastate(L) {
lua_rawgeti(L, LUA_REGISTRYINDEX, index.index);
ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
}
~reference() noexcept {
deref();
}
reference(reference&& o) noexcept {
luastate = o.luastate;
ref = o.ref;
o.luastate = nullptr;
o.ref = LUA_NOREF;
}
reference& operator=(reference&& o) noexcept {
if (valid()) {
deref();
}
luastate = o.luastate;
ref = o.ref;
o.luastate = nullptr;
o.ref = LUA_NOREF;
return *this;
}
reference(const reference& o) noexcept {
luastate = o.luastate;
ref = o.copy();
}
reference& operator=(const reference& o) noexcept {
luastate = o.luastate;
deref();
ref = o.copy();
return *this;
}
int push() const noexcept {
return push(lua_state());
}
int push(lua_State* Ls) const noexcept {
lua_rawgeti(Ls, LUA_REGISTRYINDEX, ref);
return 1;
}
void pop() const noexcept {
pop(lua_state());
}
void pop(lua_State* Ls, int n = 1) const noexcept {
lua_pop(Ls, n);
}
int registry_index() const noexcept {
return ref;
}
bool valid() const noexcept {
return !(ref == LUA_NOREF || ref == LUA_REFNIL);
}
explicit operator bool() const noexcept {
return valid();
}
type get_type() const noexcept {
auto pp = stack::push_pop(*this);
int result = lua_type(lua_state(), -1);
return static_cast<type>(result);
}
lua_State* lua_state() const noexcept {
return luastate;
}
};
inline bool operator== (const reference& l, const reference& r) {
auto ppl = stack::push_pop(l);
auto ppr = stack::push_pop(r);
return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1;
}
inline bool operator!= (const reference& l, const reference& r) {
return !operator==(l, r);
}
} // sol
// end of sol/reference.hpp
// beginning of sol/stack.hpp
// beginning of sol/stack_core.hpp
// beginning of sol/userdata.hpp
namespace sol {
template <typename base_t>
class basic_userdata : public base_t {
public:
basic_userdata() noexcept = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_userdata>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
basic_userdata(T&& r) noexcept : base_t(std::forward<T>(r)) {
#ifdef SOL_CHECK_ARGUMENTS
if (!is_userdata<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
type_assert(base_t::lua_state(), -1, type::userdata);
}
#endif // Safety
}
basic_userdata(const basic_userdata&) = default;
basic_userdata(basic_userdata&&) = default;
basic_userdata& operator=(const basic_userdata&) = default;
basic_userdata& operator=(basic_userdata&&) = default;
basic_userdata(const stack_reference& r) : basic_userdata(r.lua_state(), r.stack_index()) {}
basic_userdata(stack_reference&& r) : basic_userdata(r.lua_state(), r.stack_index()) {}
template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
basic_userdata(lua_State* L, T&& r) : basic_userdata(L, sol::ref_index(r.registry_index())) {}
basic_userdata(lua_State* L, int index = -1) : base_t(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
type_assert(L, index, type::userdata);
#endif // Safety
}
basic_userdata(lua_State* L, ref_index index) : base_t(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
auto pp = stack::push_pop(*this);
type_assert(L, -1, type::userdata);
#endif // Safety
}
};
template <typename base_t>
class basic_lightuserdata : public base_t {
public:
basic_lightuserdata() noexcept = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_lightuserdata>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
basic_lightuserdata(T&& r) noexcept : base_t(std::forward<T>(r)) {
#ifdef SOL_CHECK_ARGUMENTS
if (!is_userdata<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
type_assert(base_t::lua_state(), -1, type::lightuserdata);
}
#endif // Safety
}
basic_lightuserdata(const basic_lightuserdata&) = default;
basic_lightuserdata(basic_lightuserdata&&) = default;
basic_lightuserdata& operator=(const basic_lightuserdata&) = default;
basic_lightuserdata& operator=(basic_lightuserdata&&) = default;
basic_lightuserdata(const stack_reference& r) : basic_lightuserdata(r.lua_state(), r.stack_index()) {}
basic_lightuserdata(stack_reference&& r) : basic_lightuserdata(r.lua_state(), r.stack_index()) {}
template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
basic_lightuserdata(lua_State* L, T&& r) : basic_lightuserdata(L, sol::ref_index(r.registry_index())) {}
basic_lightuserdata(lua_State* L, int index = -1) : base_t(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
type_assert(L, index, type::lightuserdata);
#endif // Safety
}
basic_lightuserdata(lua_State* L, ref_index index) : base_t(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
auto pp = stack::push_pop(*this);
type_assert(L, -1, type::lightuserdata);
#endif // Safety
}
};
} // sol
// end of sol/userdata.hpp
// beginning of sol/tie.hpp
namespace sol {
namespace detail {
template <typename T>
struct is_speshul : std::false_type {};
}
template <typename T>
struct tie_size : std::tuple_size<T> {};
template <typename T>
struct is_tieable : std::integral_constant<bool, (::sol::tie_size<T>::value > 0)> {};
template <typename... Tn>
struct tie_t : public std::tuple<std::add_lvalue_reference_t<Tn>...> {
private:
typedef std::tuple<std::add_lvalue_reference_t<Tn>...> base_t;
template <typename T>
void set(std::false_type, T&& target) {
std::get<0>(*this) = std::forward<T>(target);
}
template <typename T>
void set(std::true_type, T&& target) {
typedef tie_size<meta::unqualified_t<T>> value_size;
typedef tie_size<std::tuple<Tn...>> tie_size;
typedef std::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size;
typedef std::make_index_sequence<indices_size::value> indices;
set_extra(detail::is_speshul<meta::unqualified_t<T>>(), indices(), std::forward<T>(target));
}
template <std::size_t... I, typename T>
void set_extra(std::true_type, std::index_sequence<I...>, T&& target) {
using std::get;
(void)detail::swallow{ 0,
(get<I>(static_cast<base_t&>(*this)) = get<I>(types<Tn...>(), target), 0)...
, 0 };
}
template <std::size_t... I, typename T>
void set_extra(std::false_type, std::index_sequence<I...>, T&& target) {
using std::get;
(void)detail::swallow{ 0,
(get<I>(static_cast<base_t&>(*this)) = get<I>(target), 0)...
, 0 };
}
public:
using base_t::base_t;
template <typename T>
tie_t& operator= (T&& value) {
typedef is_tieable<meta::unqualified_t<T>> tieable;
set(tieable(), std::forward<T>(value));
return *this;
}
};
template <typename... Tn>
struct tie_size< tie_t<Tn...> > : std::tuple_size< std::tuple<Tn...> > { };
namespace adl_barrier_detail {
template <typename... Tn>
inline tie_t<std::remove_reference_t<Tn>...> tie(Tn&&... argn) {
return tie_t<std::remove_reference_t<Tn>...>(std::forward<Tn>(argn)...);
}
}
using namespace adl_barrier_detail;
} // sol
// end of sol/tie.hpp
// beginning of sol/stack_guard.hpp
namespace sol {
namespace detail {
inline void stack_fail(int, int) {
#ifndef SOL_NO_EXCEPTIONS
throw error(detail::direct_error, "imbalanced stack after operation finish");
#else
// Lol, what do you want, an error printout? :3c
// There's no sane default here. The right way would be C-style abort(), and that's not acceptable, so
// hopefully someone will register their own stack_fail thing for the `fx` parameter of stack_guard.
#endif // No Exceptions
}
} // detail
struct stack_guard {
lua_State* L;
int top;
std::function<void(int, int)> on_mismatch;
stack_guard(lua_State* L) : stack_guard(L, lua_gettop(L)) {}
stack_guard(lua_State* L, int top, std::function<void(int, int)> fx = detail::stack_fail) : L(L), top(top), on_mismatch(std::move(fx)) {}
bool check_stack(int modification = 0) const {
int bottom = lua_gettop(L) + modification;
if (top == bottom) {
return true;
}
on_mismatch(top, bottom);
return false;
}
~stack_guard() {
check_stack();
}
};
} // sol
// end of sol/stack_guard.hpp
#include <vector>
namespace sol {
namespace detail {
struct as_reference_tag {};
template <typename T>
struct as_pointer_tag {};
template <typename T>
struct as_value_tag {};
using special_destruct_func = void(*)(void*);
template <typename T, typename Real>
inline void special_destruct(void* memory) {
T** pointerpointer = static_cast<T**>(memory);
special_destruct_func* dx = static_cast<special_destruct_func*>(static_cast<void*>(pointerpointer + 1));
Real* target = static_cast<Real*>(static_cast<void*>(dx + 1));
target->~Real();
}
template <typename T>
inline int unique_destruct(lua_State* L) {
void* memory = lua_touserdata(L, 1);
T** pointerpointer = static_cast<T**>(memory);
special_destruct_func& dx = *static_cast<special_destruct_func*>(static_cast<void*>(pointerpointer + 1));
(dx)(memory);
return 0;
}
template <typename T>
inline int user_alloc_destroy(lua_State* L) {
void* rawdata = lua_touserdata(L, 1);
T* data = static_cast<T*>(rawdata);
std::allocator<T> alloc;
alloc.destroy(data);
return 0;
}
template <typename T>
inline int usertype_alloc_destroy(lua_State* L) {
void* rawdata = lua_touserdata(L, 1);
T** pdata = static_cast<T**>(rawdata);
T* data = *pdata;
std::allocator<T> alloc{};
alloc.destroy(data);
return 0;
}
template <typename T>
void reserve(T&, std::size_t) {}
template <typename T, typename Al>
void reserve(std::vector<T, Al>& arr, std::size_t hint) {
arr.reserve(hint);
}
template <typename T, typename Tr, typename Al>
void reserve(std::basic_string<T, Tr, Al>& arr, std::size_t hint) {
arr.reserve(hint);
}
} // detail
namespace stack {
template<typename T, bool global = false, bool raw = false, typename = void>
struct field_getter;
template <typename T, bool global = false, bool raw = false, typename = void>
struct probe_field_getter;
template<typename T, bool global = false, bool raw = false, typename = void>
struct field_setter;
template<typename T, typename = void>
struct getter;
template<typename T, typename = void>
struct popper;
template<typename T, typename = void>
struct pusher;
template<typename T, type = lua_type_of<T>::value, typename = void>
struct checker;
template<typename T, typename = void>
struct check_getter;
struct probe {
bool success;
int levels;
probe(bool s, int l) : success(s), levels(l) {}
operator bool() const { return success; };
};
struct record {
int last;
int used;
record() : last(), used() {}
void use(int count) {
last = count;
used += count;
}
};
namespace stack_detail {
template <typename T>
struct strip {
typedef T type;
};
template <typename T>
struct strip<std::reference_wrapper<T>> {
typedef T& type;
};
template <typename T>
struct strip<user<T>> {
typedef T& type;
};
template <typename T>
struct strip<non_null<T>> {
typedef T type;
};
template <typename T>
using strip_t = typename strip<T>::type;
const bool default_check_arguments =
#ifdef SOL_CHECK_ARGUMENTS
true;
#else
false;
#endif
template<typename T>
inline decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) {
return getter<meta::unqualified_t<T>>{}.get(L, index, tracking);
}
} // stack_detail
inline bool maybe_indexable(lua_State* L, int index = -1) {
type t = type_of(L, index);
return t == type::userdata || t == type::table;
}
template<typename T, typename... Args>
inline int push(lua_State* L, T&& t, Args&&... args) {
return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<T>(t), std::forward<Args>(args)...);
}
// overload allows to use a pusher of a specific type, but pass in any kind of args
template<typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
inline int push(lua_State* L, Arg&& arg, Args&&... args) {
return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
template<typename T, typename... Args>
inline int push_reference(lua_State* L, T&& t, Args&&... args) {
typedef meta::all<
std::is_lvalue_reference<T>,
meta::neg<std::is_const<T>>,
meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
meta::neg<is_unique_usertype<meta::unqualified_t<T>>>
> use_reference_tag;
return pusher<std::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>>{}.push(L, std::forward<T>(t), std::forward<Args>(args)...);
}
inline int multi_push(lua_State*) {
// do nothing
return 0;
}
template<typename T, typename... Args>
inline int multi_push(lua_State* L, T&& t, Args&&... args) {
int pushcount = push(L, std::forward<T>(t));
void(sol::detail::swallow{ (pushcount += sol::stack::push(L, std::forward<Args>(args)), 0)... });
return pushcount;
}
inline int multi_push_reference(lua_State*) {
// do nothing
return 0;
}
template<typename T, typename... Args>
inline int multi_push_reference(lua_State* L, T&& t, Args&&... args) {
int pushcount = push_reference(L, std::forward<T>(t));
void(sol::detail::swallow{ (pushcount += sol::stack::push_reference(L, std::forward<Args>(args)), 0)... });
return pushcount;
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
typedef meta::unqualified_t<T> Tu;
checker<Tu> c;
// VC++ has a bad warning here: shut it up
(void)c;
return c.check(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler) {
record tracking{};
return check<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check<T>(L, index, handler);
}
template<typename T, typename Handler>
inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
return check_getter<meta::unqualified_t<T>>{}.get(L, index, std::forward<Handler>(handler), tracking);
}
template<typename T, typename Handler>
inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler) {
record tracking{};
return check_get<T>(L, index, handler, tracking);
}
template<typename T>
inline decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check_get<T>(L, index, handler);
}
namespace stack_detail {
#ifdef SOL_CHECK_ARGUMENTS
template <typename T>
inline auto tagged_get(types<T>, lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) {
auto op = check_get<T>(L, index, type_panic, tracking);
return *std::move(op);
}
#else
template <typename T>
inline decltype(auto) tagged_get(types<T>, lua_State* L, int index, record& tracking) {
return stack_detail::unchecked_get<T>(L, index, tracking);
}
#endif
template <typename T>
inline decltype(auto) tagged_get(types<optional<T>>, lua_State* L, int index, record& tracking) {
return stack_detail::unchecked_get<optional<T>>(L, index, tracking);
}
template <bool b>
struct check_types {
template <typename T, typename... Args, typename Handler>
static bool check(types<T, Args...>, lua_State* L, int firstargument, Handler&& handler, record& tracking) {
if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
return false;
return check(types<Args...>(), L, firstargument, std::forward<Handler>(handler), tracking);
}
template <typename Handler>
static bool check(types<>, lua_State*, int, Handler&&, record&) {
return true;
}
};
template <>
struct check_types<false> {
template <typename... Args, typename Handler>
static bool check(types<Args...>, lua_State*, int, Handler&&, record&) {
return true;
}
};
} // stack_detail
template <bool b, typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack_detail::check_types<b>{}.check(types<meta::unqualified_t<Args>...>(), L, index, std::forward<Handler>(handler), tracking);
}
template <bool b, typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler) {
record tracking{};
return multi_check<b, Args...>(L, index, std::forward<Handler>(handler), tracking);
}
template <bool b, typename... Args>
bool multi_check(lua_State* L, int index) {
auto handler = no_panic;
return multi_check<b, Args...>(L, index, handler);
}
template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
return multi_check<true, Args...>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler) {
return multi_check<true, Args...>(L, index, std::forward<Handler>(handler));
}
template <typename... Args>
bool multi_check(lua_State* L, int index) {
return multi_check<true, Args...>(L, index);
}
template<typename T>
inline decltype(auto) get(lua_State* L, int index, record& tracking) {
return stack_detail::tagged_get(types<T>(), L, index, tracking);
}
template<typename T>
inline decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking{};
return get<T>(L, index, tracking);
}
template<typename T>
inline decltype(auto) pop(lua_State* L) {
return popper<meta::unqualified_t<T>>{}.pop(L);
}
template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key) {
field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
}
template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key, int tableindex) {
field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key) {
get_field<global, true>(L, std::forward<Key>(key));
}
template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key, int tableindex) {
get_field<global, true>(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, bool raw = false, typename Key>
probe probe_get_field(lua_State* L, Key&& key) {
return probe_field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
}
template <bool global = false, bool raw = false, typename Key>
probe probe_get_field(lua_State* L, Key&& key, int tableindex) {
return probe_field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key) {
return probe_get_field<global, true>(L, std::forward<Key>(key));
}
template <bool global = false, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) {
return probe_get_field<global, true>(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value) {
field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value) {
set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
} // stack
} // sol
// end of sol/stack_core.hpp
// beginning of sol/stack_check.hpp
// beginning of sol/usertype_traits.hpp
// beginning of sol/demangle.hpp
#include <cctype>
#include <locale>
namespace sol {
namespace detail {
#if defined(__GNUC__) || defined(__clang__)
template <typename T, class seperator_mark = int>
inline std::string ctti_get_type_name() {
const static std::array<std::string, 2> removals = { { "{anonymous}", "(anonymous namespace)" } };
std::string name = __PRETTY_FUNCTION__;
std::size_t start = name.find_first_of('[');
start = name.find_first_of('=', start);
std::size_t end = name.find_last_of(']');
if (end == std::string::npos)
end = name.size();
if (start == std::string::npos)
start = 0;
if (start < name.size() - 1)
start += 1;
name = name.substr(start, end - start);
start = name.rfind("seperator_mark");
if (start != std::string::npos) {
name.erase(start - 2, name.length());
}
while (!name.empty() && std::isblank(name.front())) name.erase(name.begin());
while (!name.empty() && std::isblank(name.back())) name.pop_back();
for (std::size_t r = 0; r < removals.size(); ++r) {
auto found = name.find(removals[r]);
while (found != std::string::npos) {
name.erase(found, removals[r].size());
found = name.find(removals[r]);
}
}
return name;
}
#elif defined(_MSC_VER)
template <typename T>
inline std::string ctti_get_type_name() {
const static std::array<std::string, 7> removals = { { "public:", "private:", "protected:", "struct ", "class ", "`anonymous-namespace'", "`anonymous namespace'" } };
std::string name = __FUNCSIG__;
std::size_t start = name.find("get_type_name");
if (start == std::string::npos)
start = 0;
else
start += 13;
if (start < name.size() - 1)
start += 1;
std::size_t end = name.find_last_of('>');
if (end == std::string::npos)
end = name.size();
name = name.substr(start, end - start);
if (name.find("struct", 0) == 0)
name.replace(0, 6, "", 0);
if (name.find("class", 0) == 0)
name.replace(0, 5, "", 0);
while (!name.empty() && std::isblank(name.front())) name.erase(name.begin());
while (!name.empty() && std::isblank(name.back())) name.pop_back();
for (std::size_t r = 0; r < removals.size(); ++r) {
auto found = name.find(removals[r]);
while (found != std::string::npos) {
name.erase(found, removals[r].size());
found = name.find(removals[r]);
}
}
return name;
}
#else
#error Compiler not supported for demangling
#endif // compilers
template <typename T>
inline std::string demangle_once() {
std::string realname = ctti_get_type_name<T>();
return realname;
}
template <typename T>
inline std::string short_demangle_once() {
std::string realname = ctti_get_type_name<T>();
// This isn't the most complete but it'll do for now...?
static const std::array<std::string, 10> ops = { { "operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*" } };
int level = 0;
std::ptrdiff_t idx = 0;
for (idx = static_cast<std::ptrdiff_t>(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) {
if (level == 0 && realname[idx] == ':') {
break;
}
bool isleft = realname[idx] == '<';
bool isright = realname[idx] == '>';
if (!isleft && !isright)
continue;
bool earlybreak = false;
for (const auto& op : ops) {
std::size_t nisop = realname.rfind(op, idx);
if (nisop == std::string::npos)
continue;
std::size_t nisopidx = idx - op.size() + 1;
if (nisop == nisopidx) {
idx = static_cast<std::ptrdiff_t>(nisopidx);
earlybreak = true;
}
break;
}
if (earlybreak) {
continue;
}
level += isleft ? -1 : 1;
}
if (idx > 0) {
realname.erase(0, realname.length() < static_cast<std::size_t>(idx) ? realname.length() : idx + 1);
}
return realname;
}
template <typename T>
inline const std::string& demangle() {
static const std::string d = demangle_once<T>();
return d;
}
template <typename T>
inline const std::string& short_demangle() {
static const std::string d = short_demangle_once<T>();
return d;
}
} // detail
} // sol
// end of sol/demangle.hpp
namespace sol {
template<typename T>
struct usertype_traits {
static const std::string& name() {
static const std::string& n = detail::short_demangle<T>();
return n;
}
static const std::string& qualified_name() {
static const std::string& q_n = detail::demangle<T>();
return q_n;
}
static const std::string& metatable() {
static const std::string m = std::string("sol.").append(detail::demangle<T>());
return m;
}
static const std::string& user_metatable() {
static const std::string u_m = std::string("sol.").append(detail::demangle<T>()).append(".user");
return u_m;
}
static const std::string& user_gc_metatable() {
static const std::string u_g_m = std::string("sol.").append(detail::demangle<T>()).append(".user\xE2\x99\xBB");
return u_g_m;
}
static const std::string& gc_table() {
static const std::string g_t = std::string("sol.").append(detail::demangle<T>()).append(".\xE2\x99\xBB");
return g_t;
}
};
}
// end of sol/usertype_traits.hpp
// beginning of sol/inheritance.hpp
#include <atomic>
namespace sol {
template <typename... Args>
struct base_list { };
template <typename... Args>
using bases = base_list<Args...>;
typedef bases<> base_classes_tag;
const auto base_classes = base_classes_tag();
namespace detail {
template <typename T>
struct has_derived {
static bool value;
};
template <typename T>
bool has_derived<T>::value = false;
inline std::size_t unique_id() {
static std::atomic<std::size_t> x(0);
return ++x;
}
template <typename T>
struct id_for {
static const std::size_t value;
};
template <typename T>
const std::size_t id_for<T>::value = unique_id();
inline decltype(auto) base_class_check_key() {
static const auto& key = "class_check";
return key;
}
inline decltype(auto) base_class_cast_key() {
static const auto& key = "class_cast";
return key;
}
inline decltype(auto) base_class_index_propogation_key() {
static const auto& key = u8"\xF0\x9F\x8C\xB2.index";
return key;
}
inline decltype(auto) base_class_new_index_propogation_key() {
static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index";
return key;
}
template <typename T, typename... Bases>
struct inheritance {
static bool type_check_bases(types<>, std::size_t) {
return false;
}
template <typename Base, typename... Args>
static bool type_check_bases(types<Base, Args...>, std::size_t ti) {
return ti == id_for<Base>::value || type_check_bases(types<Args...>(), ti);
}
static bool type_check(std::size_t ti) {
return ti == id_for<T>::value || type_check_bases(types<Bases...>(), ti);
}
static void* type_cast_bases(types<>, T*, std::size_t) {
return nullptr;
}
template <typename Base, typename... Args>
static void* type_cast_bases(types<Base, Args...>, T* data, std::size_t ti) {
// Make sure to convert to T first, and then dynamic cast to the proper type
return ti != id_for<Base>::value ? type_cast_bases(types<Args...>(), data, ti) : static_cast<void*>(static_cast<Base*>(data));
}
static void* type_cast(void* voiddata, std::size_t ti) {
T* data = static_cast<T*>(voiddata);
return static_cast<void*>(ti != id_for<T>::value ? type_cast_bases(types<Bases...>(), data, ti) : data);
}
};
using inheritance_check_function = decltype(&inheritance<void>::type_check);
using inheritance_cast_function = decltype(&inheritance<void>::type_cast);
} // detail
} // sol
// end of sol/inheritance.hpp
#include <utility>
namespace sol {
namespace stack {
namespace stack_detail {
template <typename T, bool poptable = true>
inline bool check_metatable(lua_State* L, int index = -2) {
const auto& metakey = usertype_traits<T>::metatable();
luaL_getmetatable(L, &metakey[0]);
const type expectedmetatabletype = static_cast<type>(lua_type(L, -1));
if (expectedmetatabletype != type::lua_nil) {
if (lua_rawequal(L, -1, index) == 1) {
lua_pop(L, 1 + static_cast<int>(poptable));
return true;
}
}
lua_pop(L, 1);
return false;
}
template <type expected, int(*check_func)(lua_State*, int)>
struct basic_check {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
bool success = check_func(L, index) == 1;
if (!success) {
// expected type, actual type
handler(L, index, expected, type_of(L, index));
}
return success;
}
};
} // stack_detail
template <typename T, type expected, typename>
struct checker {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
const type indextype = type_of(L, index);
bool success = expected == indextype;
if (!success) {
// expected type, actual type
handler(L, index, expected, indextype);
}
return success;
}
};
template<typename T>
struct checker<T, type::number, std::enable_if_t<std::is_integral<T>::value>> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
bool success = lua_isinteger(L, index) == 1;
if (!success) {
// expected type, actual type
handler(L, index, type::number, type_of(L, index));
}
return success;
}
};
template<typename T>
struct checker<T, type::number, std::enable_if_t<std::is_floating_point<T>::value>> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
bool success = lua_isnumber(L, index) == 1;
if (!success) {
// expected type, actual type
handler(L, index, type::number, type_of(L, index));
}
return success;
}
};
template <type expected, typename C>
struct checker<lua_nil_t, expected, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
bool success = lua_isnil(L, index);
if (success) {
tracking.use(1);
return success;
}
tracking.use(0);
success = lua_isnone(L, index);
if (!success) {
// expected type, actual type
handler(L, index, expected, type_of(L, index));
}
return success;
}
};
template <type expected, typename C>
struct checker<nullopt_t, expected, C> : checker<lua_nil_t> {};
template <typename C>
struct checker<this_state, type::poly, C> {
template <typename Handler>
static bool check(lua_State*, int, Handler&&, record& tracking) {
tracking.use(0);
return true;
}
};
template <typename C>
struct checker<variadic_args, type::poly, C> {
template <typename Handler>
static bool check(lua_State*, int, Handler&&, record& tracking) {
tracking.use(0);
return true;
}
};
template <typename C>
struct checker<type, type::poly, C> {
template <typename Handler>
static bool check(lua_State*, int, Handler&&, record& tracking) {
tracking.use(0);
return true;
}
};
template <typename T, typename C>
struct checker<T, type::poly, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
bool success = !lua_isnone(L, index);
if (!success) {
// expected type, actual type
handler(L, index, type::none, type_of(L, index));
}
return success;
}
};
template <typename T, typename C>
struct checker<T, type::lightuserdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
type t = type_of(L, index);
bool success = t == type::userdata || t == type::lightuserdata;
if (!success) {
// expected type, actual type
handler(L, index, type::lightuserdata, t);
}
return success;
}
};
template <typename C>
struct checker<userdata_value, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
type t = type_of(L, index);
bool success = t == type::userdata;
if (!success) {
// expected type, actual type
handler(L, index, type::userdata, t);
}
return success;
}
};
template <typename T, typename C>
struct checker<user<T>, type::userdata, C> : checker<user<T>, type::lightuserdata, C> {};
template <typename T, typename C>
struct checker<non_null<T>, type::userdata, C> : checker<T, lua_type_of<T>::value, C> {};
template <typename C>
struct checker<lua_CFunction, type::function, C> : stack_detail::basic_check<type::function, lua_iscfunction> {};
template <typename C>
struct checker<std::remove_pointer_t<lua_CFunction>, type::function, C> : checker<lua_CFunction, type::function, C> {};
template <typename C>
struct checker<c_closure, type::function, C> : checker<lua_CFunction, type::function, C> {};
template <typename T, typename C>
struct checker<T, type::function, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
type t = type_of(L, index);
if (t == type::lua_nil || t == type::none || t == type::function) {
// allow for lua_nil to be returned
return true;
}
if (t != type::userdata && t != type::table) {
handler(L, index, type::function, t);
return false;
}
// Do advanced check for call-style userdata?
static const auto& callkey = name_of(meta_function::call);
if (lua_getmetatable(L, index) == 0) {
// No metatable, no __call key possible
handler(L, index, type::function, t);
return false;
}
if (lua_isnoneornil(L, -1)) {
lua_pop(L, 1);
handler(L, index, type::function, t);
return false;
}
lua_getfield(L, -1, &callkey[0]);
if (lua_isnoneornil(L, -1)) {
lua_pop(L, 2);
handler(L, index, type::function, t);
return false;
}
// has call, is definitely a function
lua_pop(L, 2);
return true;
}
};
template <typename T, typename C>
struct checker<T, type::table, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
tracking.use(1);
type t = type_of(L, index);
if (t == type::table) {
return true;
}
if (t != type::userdata) {
handler(L, index, type::table, t);
return false;
}
return true;
}
};
template <typename T, typename C>
struct checker<detail::as_value_tag<T>, type::userdata, C> {
template <typename U, typename Handler>
static bool check(types<U>, lua_State* L, type indextype, int index, Handler&& handler, record& tracking) {
tracking.use(1);
if (indextype != type::userdata) {
handler(L, index, type::userdata, indextype);
return false;
}
if (meta::any<std::is_same<T, lightuserdata_value>, std::is_same<T, userdata_value>, std::is_same<T, userdata>, std::is_same<T, lightuserdata>>::value)
return true;
if (lua_getmetatable(L, index) == 0) {
return true;
}
int metatableindex = lua_gettop(L);
if (stack_detail::check_metatable<U>(L, metatableindex))
return true;
if (stack_detail::check_metatable<U*>(L, metatableindex))
return true;
if (stack_detail::check_metatable<detail::unique_usertype<U>>(L, metatableindex))
return true;
bool success = false;
if (detail::has_derived<T>::value) {
auto pn = stack::pop_n(L, 1);
lua_pushstring(L, &detail::base_class_check_key()[0]);
lua_rawget(L, metatableindex);
if (type_of(L, -1) != type::lua_nil) {
void* basecastdata = lua_touserdata(L, -1);
detail::inheritance_check_function ic = (detail::inheritance_check_function)basecastdata;
success = ic(detail::id_for<T>::value);
}
}
if (!success) {
lua_pop(L, 1);
handler(L, index, type::userdata, indextype);
return false;
}
lua_pop(L, 1);
return true;
}
};
template <typename T, typename C>
struct checker<T, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
const type indextype = type_of(L, index);
return checker<detail::as_value_tag<T>, type::userdata, C>{}.check(types<T>(), L, indextype, index, std::forward<Handler>(handler), tracking);
}
};
template <typename T, typename C>
struct checker<T*, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
const type indextype = type_of(L, index);
// Allow lua_nil to be transformed to nullptr
if (indextype == type::lua_nil) {
tracking.use(1);
return true;
}
return checker<meta::unqualified_t<T>, type::userdata, C>{}.check(L, index, std::forward<Handler>(handler), tracking);
}
};
template<typename T>
struct checker<T, type::userdata, std::enable_if_t<is_unique_usertype<T>::value>> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return checker<typename unique_usertype_traits<T>::type, type::userdata>{}.check(L, index, std::forward<Handler>(handler), tracking);
}
};
template<typename T, typename C>
struct checker<std::reference_wrapper<T>, type::userdata, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return checker<T, type::userdata, C>{}.check(L, index, std::forward<Handler>(handler), tracking);
}
};
template<typename... Args, typename C>
struct checker<std::tuple<Args...>, type::poly, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack::multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
}
};
template<typename A, typename B, typename C>
struct checker<std::pair<A, B>, type::poly, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack::multi_check<A, B>(L, index, std::forward<Handler>(handler), tracking);
}
};
template<typename T, typename C>
struct checker<optional<T>, type::poly, C> {
template <typename Handler>
static bool check(lua_State* L, int index, Handler&&, record& tracking) {
type t = type_of(L, index);
if (t == type::none) {
tracking.use(0);
return true;
}
if (t == type::lua_nil) {
tracking.use(1);
return true;
}
return stack::check<T>(L, index, no_panic, tracking);
}
};
} // stack
} // sol
// end of sol/stack_check.hpp
// beginning of sol/stack_get.hpp
// beginning of sol/overload.hpp
namespace sol {
template <typename... Functions>
struct overload_set {
std::tuple<Functions...> functions;
template <typename Arg, typename... Args, meta::disable<std::is_same<overload_set, meta::unqualified_t<Arg>>> = meta::enabler>
overload_set (Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
overload_set(const overload_set&) = default;
overload_set(overload_set&&) = default;
overload_set& operator=(const overload_set&) = default;
overload_set& operator=(overload_set&&) = default;
};
template <typename... Args>
decltype(auto) overload(Args&&... args) {
return overload_set<std::decay_t<Args>...>(std::forward<Args>(args)...);
}
}
// end of sol/overload.hpp
#ifdef SOL_CODECVT_SUPPORT
#include <codecvt>
#endif
namespace sol {
namespace stack {
template<typename T, typename>
struct getter {
static T& get(lua_State* L, int index, record& tracking) {
return getter<sol::detail::as_value_tag<T>>{}.get(L, index, tracking);
}
};
template<typename T>
struct getter<T, std::enable_if_t<std::is_floating_point<T>::value>> {
static T get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return static_cast<T>(lua_tonumber(L, index));
}
};
template<typename T>
struct getter<T, std::enable_if_t<meta::all<std::is_integral<T>, std::is_signed<T>>::value>> {
static T get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return static_cast<T>(lua_tointeger(L, index));
}
};
template<typename T>
struct getter<T, std::enable_if_t<meta::all<std::is_integral<T>, std::is_unsigned<T>>::value>> {
static T get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return static_cast<T>(lua_tointeger(L, index));
}
};
template<typename T>
struct getter<T, std::enable_if_t<std::is_enum<T>::value>> {
static T get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return static_cast<T>(lua_tointegerx(L, index, nullptr));
}
};
template<typename T>
struct getter<as_table_t<T>, std::enable_if_t<!meta::has_key_value_pair<meta::unqualified_t<T>>::value>> {
static T get(lua_State* L, int relindex, record& tracking) {
typedef typename T::value_type V;
return get(types<V>(), L, relindex, tracking);
}
template <typename V>
static T get(types<V>, lua_State* L, int relindex, record& tracking) {
tracking.use(1);
int index = lua_absindex(L, relindex);
T arr;
#if SOL_LUA_VERSION >= 503
// This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3
for (lua_Integer i = 0; ; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
bool isnil = false;
for (int vi = 0; vi < lua_size<V>::value; ++vi) {
type t = static_cast<type>(lua_geti(L, index, i + vi));
isnil = t == type::lua_nil;
if (isnil) {
if (i == 0) {
break;
}
lua_pop(L, (vi + 1));
return arr;
}
}
if (isnil)
continue;
arr.push_back(stack::get<V>(L, -lua_size<V>::value));
}
#else
// Zzzz slower but necessary thanks to the lower version API and missing functions qq
for (lua_Integer i = 0; ; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
bool isnil = false;
for (int vi = 0; vi < lua_size<V>::value; ++vi) {
lua_pushinteger(L, i);
lua_gettable(L, index);
type t = type_of(L, -1);
isnil = t == type::lua_nil;
if (isnil) {
if (i == 0) {
break;
}
lua_pop(L, (vi + 1));
return arr;
}
}
if (isnil)
continue;
arr.push_back(stack::get<V>(L, -1));
}
#endif
return arr;
}
};
template<typename T>
struct getter<as_table_t<T>, std::enable_if_t<meta::has_key_value_pair<meta::unqualified_t<T>>::value>> {
static T get(lua_State* L, int index, record& tracking) {
typedef typename T::value_type P;
typedef typename P::first_type K;
typedef typename P::second_type V;
return get(types<K, V>(), L, index, tracking);
}
template <typename K, typename V>
static T get(types<K, V>, lua_State* L, int relindex, record& tracking) {
tracking.use(1);
T associative;
int index = lua_absindex(L, relindex);
lua_pushnil(L);
while (lua_next(L, index) != 0) {
decltype(auto) key = stack::check_get<K>(L, -2);
if (!key) {
lua_pop(L, 1);
continue;
}
associative.emplace(std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
lua_pop(L, 1);
}
return associative;
}
};
template<typename T>
struct getter<nested<T>, std::enable_if_t<!is_container<T>::value>> {
static T get(lua_State* L, int index, record& tracking) {
getter<T> g;
// VC++ has a bad warning here: shut it up
(void)g;
return g.get(L, index, tracking);
}
};
template<typename T>
struct getter<nested<T>, std::enable_if_t<meta::all<is_container<T>, meta::neg<meta::has_key_value_pair<meta::unqualified_t<T>>>>::value>> {
static T get(lua_State* L, int index, record& tracking) {
typedef typename T::value_type V;
getter<as_table_t<T>> g;
// VC++ has a bad warning here: shut it up
(void)g;
return g.get(types<nested<V>>(), L, index, tracking);
}
};
template<typename T>
struct getter<nested<T>, std::enable_if_t<meta::all<is_container<T>, meta::has_key_value_pair<meta::unqualified_t<T>>>::value>> {
static T get(lua_State* L, int index, record& tracking) {
typedef typename T::value_type P;
typedef typename P::first_type K;
typedef typename P::second_type V;
getter<as_table_t<T>> g;
// VC++ has a bad warning here: shut it up
(void)g;
return g.get(types<K, nested<V>>(), L, index, tracking);
}
};
template<typename T>
struct getter<T, std::enable_if_t<std::is_base_of<reference, T>::value || std::is_base_of<stack_reference, T>::value>> {
static T get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return T(L, index);
}
};
template<>
struct getter<userdata_value> {
static userdata_value get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return userdata_value(lua_touserdata(L, index));
}
};
template<>
struct getter<lightuserdata_value> {
static lightuserdata_value get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lightuserdata_value(lua_touserdata(L, index));
}
};
template<typename T>
struct getter<light<T>> {
static light<T> get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return light<T>(static_cast<T*>(lua_touserdata(L, index)));
}
};
template<typename T>
struct getter<user<T>> {
static T& get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return *static_cast<T*>(lua_touserdata(L, index));
}
};
template<typename T>
struct getter<user<T*>> {
static T* get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return static_cast<T*>(lua_touserdata(L, index));
}
};
template<>
struct getter<type> {
static type get(lua_State *L, int index, record& tracking) {
tracking.use(1);
return static_cast<type>(lua_type(L, index));
}
};
template<>
struct getter<bool> {
static bool get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lua_toboolean(L, index) != 0;
}
};
template<>
struct getter<std::string> {
static std::string get(lua_State* L, int index, record& tracking) {
tracking.use(1);
std::size_t len;
auto str = lua_tolstring(L, index, &len);
return std::string( str, len );
}
};
template <>
struct getter<string_detail::string_shim> {
string_detail::string_shim get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t len;
const char* p = lua_tolstring(L, index, &len);
return string_detail::string_shim(p, len);
}
};
template<>
struct getter<const char*> {
static const char* get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lua_tostring(L, index);
}
};
template<>
struct getter<char> {
static char get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t len;
auto str = lua_tolstring(L, index, &len);
return len > 0 ? str[0] : '\0';
}
};
#ifdef SOL_CODECVT_SUPPORT
template<>
struct getter<std::wstring> {
static std::wstring get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t len;
auto str = lua_tolstring(L, index, &len);
if (len < 1)
return std::wstring();
if (sizeof(wchar_t) == 2) {
static std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> convert;
std::wstring r = convert.from_bytes(str, str + len);
#ifdef __MINGW32__
// Fuck you, MinGW, and fuck you libstdc++ for introducing this absolutely asinine bug
// https://sourceforge.net/p/mingw-w64/bugs/538/
// http://chat.stackoverflow.com/transcript/message/32271369#32271369
for (auto& c : r) {
uint8_t* b = reinterpret_cast<uint8_t*>(&c);
std::swap(b[0], b[1]);
}
#endif
return r;
}
static std::wstring_convert<std::codecvt_utf8<wchar_t>> convert;
std::wstring r = convert.from_bytes(str, str + len);
return r;
}
};
template<>
struct getter<std::u16string> {
static std::u16string get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t len;
auto str = lua_tolstring(L, index, &len);
if (len < 1)
return std::u16string();
#ifdef _MSC_VER
static std::wstring_convert<std::codecvt_utf8_utf16<int16_t>, int16_t> convert;
auto intd = convert.from_bytes(str, str + len);
std::u16string r(intd.size(), '\0');
std::memcpy(&r[0], intd.data(), intd.size() * sizeof(char16_t));
#else
static std::wstring_convert<std::codecvt_utf8_utf16<char16_t>, char16_t> convert;
std::u16string r = convert.from_bytes(str, str + len);
#endif // VC++ is a shit
return r;
}
};
template<>
struct getter<std::u32string> {
static std::u32string get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t len;
auto str = lua_tolstring(L, index, &len);
if (len < 1)
return std::u32string();
#ifdef _MSC_VER
static std::wstring_convert<std::codecvt_utf8<int32_t>, int32_t> convert;
auto intd = convert.from_bytes(str, str + len);
std::u32string r(intd.size(), '\0');
std::memcpy(&r[0], intd.data(), r.size() * sizeof(char32_t));
#else
static std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> convert;
std::u32string r = convert.from_bytes(str, str + len);
#endif // VC++ is a shit
return r;
}
};
template<>
struct getter<wchar_t> {
static wchar_t get(lua_State* L, int index, record& tracking) {
auto str = getter<std::wstring>{}.get(L, index, tracking);
return str.size() > 0 ? str[0] : wchar_t(0);
}
};
template<>
struct getter<char16_t> {
static char16_t get(lua_State* L, int index, record& tracking) {
auto str = getter<std::u16string>{}.get(L, index, tracking);
return str.size() > 0 ? str[0] : char16_t(0);
}
};
template<>
struct getter<char32_t> {
static char32_t get(lua_State* L, int index, record& tracking) {
auto str = getter<std::u32string>{}.get(L, index, tracking);
return str.size() > 0 ? str[0] : char32_t(0);
}
};
#endif // codecvt header support
template<>
struct getter<meta_function> {
static meta_function get(lua_State *L, int index, record& tracking) {
tracking.use(1);
const char* name = getter<const char*>{}.get(L, index, tracking);
for (std::size_t i = 0; i < meta_function_names.size(); ++i)
if (meta_function_names[i] == name)
return static_cast<meta_function>(i);
return meta_function::construct;
}
};
template<>
struct getter<lua_nil_t> {
static lua_nil_t get(lua_State*, int, record& tracking) {
tracking.use(1);
return lua_nil;
}
};
template<>
struct getter<std::nullptr_t> {
static std::nullptr_t get(lua_State*, int, record& tracking) {
tracking.use(1);
return nullptr;
}
};
template<>
struct getter<nullopt_t> {
static nullopt_t get(lua_State*, int, record& tracking) {
tracking.use(1);
return nullopt;
}
};
template<>
struct getter<this_state> {
static this_state get(lua_State* L, int, record& tracking) {
tracking.use(0);
return this_state{ L };
}
};
template<>
struct getter<lua_CFunction> {
static lua_CFunction get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lua_tocfunction(L, index);
}
};
template<>
struct getter<c_closure> {
static c_closure get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return c_closure(lua_tocfunction(L, index), -1);
}
};
template<>
struct getter<error> {
static error get(lua_State* L, int index, record& tracking) {
tracking.use(1);
size_t sz = 0;
const char* err = lua_tolstring(L, index, &sz);
if (err == nullptr) {
return error(detail::direct_error, "");
}
return error(detail::direct_error, std::string(err, sz));
}
};
template<>
struct getter<void*> {
static void* get(lua_State* L, int index, record& tracking) {
tracking.use(1);
return lua_touserdata(L, index);
}
};
template<typename T>
struct getter<detail::as_value_tag<T>> {
static T* get_no_lua_nil(lua_State* L, int index, record& tracking) {
tracking.use(1);
void** pudata = static_cast<void**>(lua_touserdata(L, index));
void* udata = *pudata;
return get_no_lua_nil_from(L, udata, index, tracking);
}
static T* get_no_lua_nil_from(lua_State* L, void* udata, int index, record&) {
if (detail::has_derived<T>::value && luaL_getmetafield(L, index, &detail::base_class_cast_key()[0]) != 0) {
void* basecastdata = lua_touserdata(L, -1);
detail::inheritance_cast_function ic = (detail::inheritance_cast_function)basecastdata;
// use the casting function to properly adjust the pointer for the desired T
udata = ic(udata, detail::id_for<T>::value);
lua_pop(L, 1);
}
T* obj = static_cast<T*>(udata);
return obj;
}
static T& get(lua_State* L, int index, record& tracking) {
return *get_no_lua_nil(L, index, tracking);
}
};
template<typename T>
struct getter<detail::as_pointer_tag<T>> {
static T* get(lua_State* L, int index, record& tracking) {
type t = type_of(L, index);
if (t == type::lua_nil) {
tracking.use(1);
return nullptr;
}
getter<detail::as_value_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get_no_lua_nil(L, index, tracking);
}
};
template<typename T>
struct getter<non_null<T*>> {
static T* get(lua_State* L, int index, record& tracking) {
getter<detail::as_value_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get_no_lua_nil(L, index, tracking);
}
};
template<typename T>
struct getter<T&> {
static T& get(lua_State* L, int index, record& tracking) {
getter<detail::as_value_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get(L, index, tracking);
}
};
template<typename T>
struct getter<std::reference_wrapper<T>> {
static T& get(lua_State* L, int index, record& tracking) {
getter<T&> g;
// Avoid VC++ warning
(void)g;
return g.get(L, index, tracking);
}
};
template<typename T>
struct getter<T*> {
static T* get(lua_State* L, int index, record& tracking) {
getter<detail::as_pointer_tag<T>> g;
// Avoid VC++ warning
(void)g;
return g.get(L, index, tracking);
}
};
template<typename T>
struct getter<T, std::enable_if_t<is_unique_usertype<T>::value>> {
typedef typename unique_usertype_traits<T>::type P;
typedef typename unique_usertype_traits<T>::actual_type Real;
static Real& get(lua_State* L, int index, record& tracking) {
tracking.use(1);
P** pref = static_cast<P**>(lua_touserdata(L, index));
detail::special_destruct_func* fx = static_cast<detail::special_destruct_func*>(static_cast<void*>(pref + 1));
Real* mem = static_cast<Real*>(static_cast<void*>(fx + 1));
return *mem;
}
};
template<typename... Args>
struct getter<std::tuple<Args...>> {
typedef std::tuple<decltype(stack::get<Args>(nullptr, 0))...> R;
template <typename... TArgs>
static R apply(std::index_sequence<>, lua_State*, int, record&, TArgs&&... args) {
// Fuck you too, VC++
return R{std::forward<TArgs>(args)...};
}
template <std::size_t I, std::size_t... Ix, typename... TArgs>
static R apply(std::index_sequence<I, Ix...>, lua_State* L, int index, record& tracking, TArgs&&... args) {
// Fuck you too, VC++
typedef std::tuple_element_t<I, std::tuple<Args...>> T;
return apply(std::index_sequence<Ix...>(), L, index, tracking, std::forward<TArgs>(args)..., stack::get<T>(L, index + tracking.used, tracking));
}
static R get(lua_State* L, int index, record& tracking) {
return apply(std::make_index_sequence<sizeof...(Args)>(), L, index, tracking);
}
};
template<typename A, typename B>
struct getter<std::pair<A, B>> {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
return std::pair<decltype(stack::get<A>(L, index)), decltype(stack::get<B>(L, index))>{stack::get<A>(L, index, tracking), stack::get<B>(L, index + tracking.used, tracking)};
}
};
} // stack
} // sol
// end of sol/stack_get.hpp
// beginning of sol/stack_check_get.hpp
namespace sol {
namespace stack {
template <typename T, typename>
struct check_getter {
typedef decltype(stack_detail::unchecked_get<T>(nullptr, 0, std::declval<record&>())) R;
template <typename Handler>
static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) {
if (!check<T>(L, index, std::forward<Handler>(handler))) {
tracking.use(static_cast<int>(!lua_isnone(L, index)));
return nullopt;
}
return stack_detail::unchecked_get<T>(L, index, tracking);
}
};
template <typename T>
struct check_getter<optional<T>> {
template <typename Handler>
static decltype(auto) get(lua_State* L, int index, Handler&&, record& tracking) {
return check_get<T>(L, index, no_panic, tracking);
}
};
template <typename T>
struct check_getter<T, std::enable_if_t<std::is_integral<T>::value && lua_type_of<T>::value == type::number>> {
template <typename Handler>
static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) {
int isnum = 0;
lua_Integer value = lua_tointegerx(L, index, &isnum);
if (isnum == 0) {
type t = type_of(L, index);
tracking.use(static_cast<int>(t != type::none));
handler(L, index, type::number, t);
return nullopt;
}
tracking.use(1);
return static_cast<T>(value);
}
};
template <typename T>
struct check_getter<T, std::enable_if_t<std::is_enum<T>::value && !meta::any_same<T, meta_function, type>::value>> {
template <typename Handler>
static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) {
int isnum = 0;
lua_Integer value = lua_tointegerx(L, index, &isnum);
if (isnum == 0) {
type t = type_of(L, index);
tracking.use(static_cast<int>(t != type::none));
handler(L, index, type::number, t);
return nullopt;
}
tracking.use(1);
return static_cast<T>(value);
}
};
template <typename T>
struct check_getter<T, std::enable_if_t<std::is_floating_point<T>::value>> {
template <typename Handler>
static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) {
int isnum = 0;
lua_Number value = lua_tonumberx(L, index, &isnum);
if (isnum == 0) {
type t = type_of(L, index);
tracking.use(static_cast<int>(t != type::none));
handler(L, index, type::number, t);
return nullopt;
}
tracking.use(1);
return static_cast<T>(value);
}
};
template <typename T>
struct getter<optional<T>> {
static decltype(auto) get(lua_State* L, int index, record& tracking) {
return check_get<T>(L, index, no_panic, tracking);
}
};
} // stack
} // sol
// end of sol/stack_check_get.hpp
// beginning of sol/stack_push.hpp
// beginning of sol/raii.hpp
namespace sol {
namespace detail {
struct default_construct {
template<typename T, typename... Args>
static void construct(T&& obj, Args&&... args) {
std::allocator<meta::unqualified_t<T>> alloc{};
alloc.construct(obj, std::forward<Args>(args)...);
}
template<typename T, typename... Args>
void operator()(T&& obj, Args&&... args) const {
construct(std::forward<T>(obj), std::forward<Args>(args)...);
}
};
struct default_destruct {
template<typename T>
static void destroy(T&& obj) {
std::allocator<meta::unqualified_t<T>> alloc{};
alloc.destroy(obj);
}
template<typename T>
void operator()(T&& obj) const {
destroy(std::forward<T>(obj));
}
};
struct deleter {
template <typename T>
void operator()(T* p) const {
delete p;
}
};
template <typename T, typename Dx, typename... Args>
inline std::unique_ptr<T, Dx> make_unique_deleter(Args&&... args) {
return std::unique_ptr<T, Dx>(new T(std::forward<Args>(args)...));
}
template <typename Tag, typename T>
struct tagged {
T value;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, tagged>> = meta::enabler>
tagged(Arg&& arg, Args&&... args) : value(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
};
} // detail
template <typename... Args>
struct constructor_list {};
template<typename... Args>
using constructors = constructor_list<Args...>;
const auto default_constructor = constructors<types<>>{};
struct no_construction {};
const auto no_constructor = no_construction{};
struct call_construction {};
const auto call_constructor = call_construction{};
template <typename... Functions>
struct constructor_wrapper {
std::tuple<Functions...> functions;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler>
constructor_wrapper(Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
};
template <typename... Functions>
inline auto initializers(Functions&&... functions) {
return constructor_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
}
template <typename... Functions>
struct factory_wrapper {
std::tuple<Functions...> functions;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, factory_wrapper>> = meta::enabler>
factory_wrapper(Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
};
template <typename... Functions>
inline auto factories(Functions&&... functions) {
return factory_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
}
template <typename Function>
struct destructor_wrapper {
Function fx;
destructor_wrapper(Function f) : fx(std::move(f)) {}
};
template <>
struct destructor_wrapper<void> {};
const destructor_wrapper<void> default_destructor{};
template <typename Fx>
inline auto destructor(Fx&& fx) {
return destructor_wrapper<std::decay_t<Fx>>(std::forward<Fx>(fx));
}
} // sol
// end of sol/raii.hpp
#ifdef SOL_CODECVT_SUPPORT
#endif
namespace sol {
namespace stack {
template <typename T>
struct pusher<detail::as_value_tag<T>> {
template <typename F, typename... Args>
static int push_fx(lua_State* L, F&& f, Args&&... args) {
// Basically, we store all user-data like this:
// If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new
// data in the first sizeof(T*) bytes, and then however many bytes it takes to
// do the actual object. Things that are std::ref or plain T* are stored as
// just the sizeof(T*), and nothing else.
T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& referencereference = *pointerpointer;
T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
referencereference = allocationtarget;
std::allocator<T> alloc{};
alloc.construct(allocationtarget, std::forward<Args>(args)...);
f();
return 1;
}
template <typename K, typename... Args>
static int push_keyed(lua_State* L, K&& k, Args&&... args) {
return push_fx(L, [&L, &k]() {
luaL_newmetatable(L, &k[0]);
lua_setmetatable(L, -2);
}, std::forward<Args>(args)...);
}
template <typename... Args>
static int push(lua_State* L, Args&&... args) {
return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Args>(args)...);
}
};
template <typename T>
struct pusher<detail::as_pointer_tag<T>> {
template <typename F>
static int push_fx(lua_State* L, F&& f, T* obj) {
if (obj == nullptr)
return stack::push(L, lua_nil);
T** pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*)));
*pref = obj;
f();
return 1;
}
template <typename K>
static int push_keyed(lua_State* L, K&& k, T* obj) {
return push_fx(L, [&L, &k]() {
luaL_newmetatable(L, &k[0]);
lua_setmetatable(L, -2);
}, obj);
}
static int push(lua_State* L, T* obj) {
return push_keyed(L, usertype_traits<meta::unqualified_t<T>*>::metatable(), obj);
}
};
template <>
struct pusher<detail::as_reference_tag> {
template <typename T>
static int push(lua_State* L, T&& obj) {
return stack::push(L, detail::ptr(obj));
}
};
template<typename T, typename>
struct pusher {
template <typename... Args>
static int push(lua_State* L, Args&&... args) {
return pusher<detail::as_value_tag<T>>{}.push(L, std::forward<Args>(args)...);
}
};
template<typename T>
struct pusher<T*, meta::disable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<meta::any<std::is_base_of<reference, meta::unqualified_t<T>>, std::is_base_of<stack_reference, meta::unqualified_t<T>>>>>::value>> {
template <typename... Args>
static int push(lua_State* L, Args&&... args) {
return pusher<detail::as_pointer_tag<T>>{}.push(L, std::forward<Args>(args)...);
}
};
template<typename T>
struct pusher<T, std::enable_if_t<is_unique_usertype<T>::value>> {
typedef typename unique_usertype_traits<T>::type P;
typedef typename unique_usertype_traits<T>::actual_type Real;
template <typename Arg, meta::enable<std::is_base_of<Real, meta::unqualified_t<Arg>>> = meta::enabler>
static int push(lua_State* L, Arg&& arg) {
if (unique_usertype_traits<T>::is_null(arg))
return stack::push(L, lua_nil);
return push_deep(L, std::forward<Arg>(arg));
}
template <typename Arg0, typename Arg1, typename... Args>
static int push(lua_State* L, Arg0&& arg0, Arg0&& arg1, Args&&... args) {
return push_deep(L, std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...);
}
template <typename... Args>
static int push_deep(lua_State* L, Args&&... args) {
P** pref = static_cast<P**>(lua_newuserdata(L, sizeof(P*) + sizeof(detail::special_destruct_func) + sizeof(Real)));
detail::special_destruct_func* fx = static_cast<detail::special_destruct_func*>(static_cast<void*>(pref + 1));
Real* mem = static_cast<Real*>(static_cast<void*>(fx + 1));
*fx = detail::special_destruct<P, Real>;
detail::default_construct::construct(mem, std::forward<Args>(args)...);
*pref = unique_usertype_traits<T>::get(*mem);
if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<P>>::metatable()[0]) == 1) {
set_field(L, "__gc", detail::unique_destruct<P>);
}
lua_setmetatable(L, -2);
return 1;
}
};
template<typename T>
struct pusher<std::reference_wrapper<T>> {
static int push(lua_State* L, const std::reference_wrapper<T>& t) {
return stack::push(L, std::addressof(detail::deref(t.get())));
}
};
template<typename T>
struct pusher<T, std::enable_if_t<std::is_floating_point<T>::value>> {
static int push(lua_State* L, const T& value) {
lua_pushnumber(L, value);
return 1;
}
};
template<typename T>
struct pusher<T, std::enable_if_t<meta::all<std::is_integral<T>, std::is_signed<T>>::value>> {
static int push(lua_State* L, const T& value) {
lua_pushinteger(L, static_cast<lua_Integer>(value));
return 1;
}
};
template<typename T>
struct pusher<T, std::enable_if_t<std::is_enum<T>::value>> {
static int push(lua_State* L, const T& value) {
if (std::is_same<char, T>::value) {
return stack::push(L, static_cast<int>(value));
}
return stack::push(L, static_cast<std::underlying_type_t<T>>(value));
}
};
template<typename T>
struct pusher<T, std::enable_if_t<meta::all<std::is_integral<T>, std::is_unsigned<T>>::value>> {
static int push(lua_State* L, const T& value) {
lua_pushinteger(L, static_cast<lua_Integer>(value));
return 1;
}
};
template<typename T>
struct pusher<as_table_t<T>, std::enable_if_t<!meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>::value>> {
static int push(lua_State* L, const as_table_t<T>& tablecont) {
auto& cont = detail::deref(detail::unwrap(tablecont.source));
lua_createtable(L, static_cast<int>(cont.size()), 0);
int tableindex = lua_gettop(L);
std::size_t index = 1;
for (const auto& i : cont) {
#if SOL_LUA_VERSION >= 503
int p = stack::push(L, i);
for (int pi = 0; pi < p; ++pi) {
lua_seti(L, tableindex, static_cast<lua_Integer>(index++));
}
#else
lua_pushinteger(L, static_cast<lua_Integer>(index));
int p = stack::push(L, i);
if (p == 1) {
++index;
lua_settable(L, tableindex);
}
else {
int firstindex = tableindex + 1 + 1;
for (int pi = 0; pi < p; ++pi) {
stack::push(L, index);
lua_pushvalue(L, firstindex);
lua_settable(L, tableindex);
++index;
++firstindex;
}
lua_pop(L, 1 + p);
}
#endif
}
// TODO: figure out a better way to do this...?
//set_field(L, -1, cont.size());
return 1;
}
};
template<typename T>
struct pusher<as_table_t<T>, std::enable_if_t<meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>::value>> {
static int push(lua_State* L, const as_table_t<T>& tablecont) {
auto& cont = detail::deref(detail::unwrap(tablecont.source));
lua_createtable(L, static_cast<int>(cont.size()), 0);
int tableindex = lua_gettop(L);
for (const auto& pair : cont) {
set_field(L, pair.first, pair.second, tableindex);
}
return 1;
}
};
template<typename T>
struct pusher<T, std::enable_if_t<std::is_base_of<reference, T>::value || std::is_base_of<stack_reference, T>::value>> {
static int push(lua_State* L, const T& ref) {
return ref.push(L);
}
static int push(lua_State* L, T&& ref) {
return ref.push(L);
}
};
template<>
struct pusher<bool> {
static int push(lua_State* L, bool b) {
lua_pushboolean(L, b);
return 1;
}
};
template<>
struct pusher<lua_nil_t> {
static int push(lua_State* L, lua_nil_t) {
lua_pushnil(L);
return 1;
}
};
template<>
struct pusher<metatable_key_t> {
static int push(lua_State* L, metatable_key_t) {
lua_pushlstring(L, "__mt", 4);
return 1;
}
};
template<>
struct pusher<std::remove_pointer_t<lua_CFunction>> {
static int push(lua_State* L, lua_CFunction func, int n = 0) {
lua_pushcclosure(L, func, n);
return 1;
}
};
template<>
struct pusher<lua_CFunction> {
static int push(lua_State* L, lua_CFunction func, int n = 0) {
lua_pushcclosure(L, func, n);
return 1;
}
};
template<>
struct pusher<c_closure> {
static int push(lua_State* L, c_closure cc) {
lua_pushcclosure(L, cc.c_function, cc.upvalues);
return 1;
}
};
template<typename Arg, typename... Args>
struct pusher<closure<Arg, Args...>> {
template <std::size_t... I, typename T>
static int push(std::index_sequence<I...>, lua_State* L, T&& c) {
int pushcount = multi_push(L, detail::forward_get<I>(c.upvalues)...);
return stack::push(L, c_closure(c.c_function, pushcount));
}
template <typename T>
static int push(lua_State* L, T&& c) {
return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c));
}
};
template<>
struct pusher<void*> {
static int push(lua_State* L, void* userdata) {
lua_pushlightuserdata(L, userdata);
return 1;
}
};
template<>
struct pusher<lightuserdata_value> {
static int push(lua_State* L, lightuserdata_value userdata) {
lua_pushlightuserdata(L, userdata);
return 1;
}
};
template<typename T>
struct pusher<light<T>> {
static int push(lua_State* L, light<T> l) {
lua_pushlightuserdata(L, static_cast<void*>(l.value));
return 1;
}
};
template<typename T>
struct pusher<user<T>> {
template <bool with_meta = true, typename Key, typename... Args>
static int push_with(lua_State* L, Key&& name, Args&&... args) {
// A dumb pusher
void* rawdata = lua_newuserdata(L, sizeof(T));
T* data = static_cast<T*>(rawdata);
std::allocator<T> alloc;
alloc.construct(data, std::forward<Args>(args)...);
if (with_meta) {
lua_CFunction cdel = detail::user_alloc_destroy<T>;
// Make sure we have a plain GC set for this data
if (luaL_newmetatable(L, name) != 0) {
lua_pushcclosure(L, cdel, 0);
lua_setfield(L, -2, "__gc");
}
lua_setmetatable(L, -2);
}
return 1;
}
template <typename Arg, typename... Args, meta::disable<meta::any_same<meta::unqualified_t<Arg>, no_metatable_t, metatable_key_t>> = meta::enabler>
static int push(lua_State* L, Arg&& arg, Args&&... args) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
template <typename... Args>
static int push(lua_State* L, no_metatable_t, Args&&... args) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with<false>(L, name, std::forward<Args>(args)...);
}
template <typename Key, typename... Args>
static int push(lua_State* L, metatable_key_t, Key&& key, Args&&... args) {
const auto name = &key[0];
return push_with<true>(L, name, std::forward<Args>(args)...);
}
static int push(lua_State* L, const user<T>& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with(L, name, u.value);
}
static int push(lua_State* L, user<T>&& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with(L, name, std::move(u.value));
}
static int push(lua_State* L, no_metatable_t, const user<T>& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with<false>(L, name, u.value);
}
static int push(lua_State* L, no_metatable_t, user<T>&& u) {
const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
return push_with<false>(L, name, std::move(u.value));
}
};
template<>
struct pusher<userdata_value> {
static int push(lua_State* L, userdata_value data) {
void** ud = static_cast<void**>(lua_newuserdata(L, sizeof(void*)));
*ud = data.value;
return 1;
}
};
template<>
struct pusher<const char*> {
static int push_sized(lua_State* L, const char* str, std::size_t len) {
lua_pushlstring(L, str, len);
return 1;
}
static int push(lua_State* L, const char* str) {
if (str == nullptr)
return stack::push(L, lua_nil);
return push_sized(L, str, std::char_traits<char>::length(str));
}
static int push(lua_State* L, const char* strb, const char* stre) {
return push_sized(L, strb, stre - strb);
}
static int push(lua_State* L, const char* str, std::size_t len) {
return push_sized(L, str, len);
}
};
template<size_t N>
struct pusher<char[N]> {
static int push(lua_State* L, const char(&str)[N]) {
lua_pushlstring(L, str, N - 1);
return 1;
}
static int push(lua_State* L, const char(&str)[N], std::size_t sz) {
lua_pushlstring(L, str, sz);
return 1;
}
};
template <>
struct pusher<char> {
static int push(lua_State* L, char c) {
const char str[2] = { c, '\0' };
return stack::push(L, str, 1);
}
};
template<>
struct pusher<std::string> {
static int push(lua_State* L, const std::string& str) {
lua_pushlstring(L, str.c_str(), str.size());
return 1;
}
static int push(lua_State* L, const std::string& str, std::size_t sz) {
lua_pushlstring(L, str.c_str(), sz);
return 1;
}
};
template<>
struct pusher<meta_function> {
static int push(lua_State* L, meta_function m) {
const std::string& str = name_of(m);
lua_pushlstring(L, str.c_str(), str.size());
return 1;
}
};
#ifdef SOL_CODECVT_SUPPORT
template<>
struct pusher<const wchar_t*> {
static int push(lua_State* L, const wchar_t* wstr) {
return push(L, wstr, std::char_traits<wchar_t>::length(wstr));
}
static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) {
return push(L, wstr, wstr + sz);
}
static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
if (sizeof(wchar_t) == 2) {
static std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> convert;
std::string u8str = convert.to_bytes(strb, stre);
return stack::push(L, u8str);
}
static std::wstring_convert<std::codecvt_utf8<wchar_t>> convert;
std::string u8str = convert.to_bytes(strb, stre);
return stack::push(L, u8str);
}
};
template<>
struct pusher<const char16_t*> {
static int push(lua_State* L, const char16_t* u16str) {
return push(L, u16str, std::char_traits<char16_t>::length(u16str));
}
static int push(lua_State* L, const char16_t* u16str, std::size_t sz) {
return push(L, u16str, u16str + sz);
}
static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
#ifdef _MSC_VER
static std::wstring_convert<std::codecvt_utf8_utf16<int16_t>, int16_t> convert;
std::string u8str = convert.to_bytes(reinterpret_cast<const int16_t*>(strb), reinterpret_cast<const int16_t*>(stre));
#else
static std::wstring_convert<std::codecvt_utf8_utf16<char16_t>, char16_t> convert;
std::string u8str = convert.to_bytes(strb, stre);
#endif // VC++ is a shit
return stack::push(L, u8str);
}
};
template<>
struct pusher<const char32_t*> {
static int push(lua_State* L, const char32_t* u32str) {
return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str));
}
static int push(lua_State* L, const char32_t* u32str, std::size_t sz) {
return push(L, u32str, u32str + sz);
}
static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
#ifdef _MSC_VER
static std::wstring_convert<std::codecvt_utf8<int32_t>, int32_t> convert;
std::string u8str = convert.to_bytes(reinterpret_cast<const int32_t*>(strb), reinterpret_cast<const int32_t*>(stre));
#else
static std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> convert;
std::string u8str = convert.to_bytes(strb, stre);
#endif // VC++ is a shit
return stack::push(L, u8str);
}
};
template<size_t N>
struct pusher<wchar_t[N]> {
static int push(lua_State* L, const wchar_t(&str)[N]) {
return push(L, str, N - 1);
}
static int push(lua_State* L, const wchar_t(&str)[N], std::size_t sz) {
return stack::push<const wchar_t*>(L, str, str + sz);
}
};
template<size_t N>
struct pusher<char16_t[N]> {
static int push(lua_State* L, const char16_t(&str)[N]) {
return push(L, str, N - 1);
}
static int push(lua_State* L, const char16_t(&str)[N], std::size_t sz) {
return stack::push<const char16_t*>(L, str, str + sz);
}
};
template<size_t N>
struct pusher<char32_t[N]> {
static int push(lua_State* L, const char32_t(&str)[N]) {
return push(L, str, N - 1);
}
static int push(lua_State* L, const char32_t(&str)[N], std::size_t sz) {
return stack::push<const char32_t*>(L, str, str + sz);
}
};
template <>
struct pusher<wchar_t> {
static int push(lua_State* L, wchar_t c) {
const wchar_t str[2] = { c, '\0' };
return stack::push(L, str, 1);
}
};
template <>
struct pusher<char16_t> {
static int push(lua_State* L, char16_t c) {
const char16_t str[2] = { c, '\0' };
return stack::push(L, str, 1);
}
};
template <>
struct pusher<char32_t> {
static int push(lua_State* L, char32_t c) {
const char32_t str[2] = { c, '\0' };
return stack::push(L, str, 1);
}
};
template<>
struct pusher<std::wstring> {
static int push(lua_State* L, const std::wstring& wstr) {
return push(L, wstr.data(), wstr.size());
}
static int push(lua_State* L, const std::wstring& wstr, std::size_t sz) {
return stack::push(L, wstr.data(), wstr.data() + sz);
}
};
template<>
struct pusher<std::u16string> {
static int push(lua_State* L, const std::u16string& u16str) {
return push(L, u16str, u16str.size());
}
static int push(lua_State* L, const std::u16string& u16str, std::size_t sz) {
return stack::push(L, u16str.data(), u16str.data() + sz);
}
};
template<>
struct pusher<std::u32string> {
static int push(lua_State* L, const std::u32string& u32str) {
return push(L, u32str, u32str.size());
}
static int push(lua_State* L, const std::u32string& u32str, std::size_t sz) {
return stack::push(L, u32str.data(), u32str.data() + sz);
}
};
#endif // codecvt Header Support
template<typename... Args>
struct pusher<std::tuple<Args...>> {
template <std::size_t... I, typename T>
static int push(std::index_sequence<I...>, lua_State* L, T&& t) {
int pushcount = 0;
(void)detail::swallow{ 0, (pushcount += stack::push(L,
detail::forward_get<I>(t)
), 0)... };
return pushcount;
}
template <typename T>
static int push(lua_State* L, T&& t) {
return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t));
}
};
template<typename A, typename B>
struct pusher<std::pair<A, B>> {
template <typename T>
static int push(lua_State* L, T&& t) {
int pushcount = stack::push(L, detail::forward_get<0>(t));
pushcount += stack::push(L, detail::forward_get<1>(t));
return pushcount;
}
};
template<typename O>
struct pusher<optional<O>> {
template <typename T>
static int push(lua_State* L, T&& t) {
if (t == nullopt) {
return stack::push(L, nullopt);
}
return stack::push(L, t.value());
}
};
template<>
struct pusher<nullopt_t> {
static int push(lua_State* L, nullopt_t) {
return stack::push(L, lua_nil);
}
};
template<>
struct pusher<std::nullptr_t> {
static int push(lua_State* L, std::nullptr_t) {
return stack::push(L, lua_nil);
}
};
template<>
struct pusher<this_state> {
static int push(lua_State*, const this_state&) {
return 0;
}
};
} // stack
} // sol
// end of sol/stack_push.hpp
// beginning of sol/stack_pop.hpp
namespace sol {
namespace stack {
template <typename T, typename>
struct popper {
inline static decltype(auto) pop(lua_State* L) {
record tracking{};
decltype(auto) r = get<T>(L, -lua_size<T>::value, tracking);
lua_pop(L, tracking.used);
return r;
}
};
template <typename T>
struct popper<T, std::enable_if_t<std::is_base_of<stack_reference, meta::unqualified_t<T>>::value>> {
static_assert(meta::neg<std::is_base_of<stack_reference, meta::unqualified_t<T>>>::value, "You cannot pop something that derives from stack_reference: it will not remain on the stack and thusly will go out of scope!");
};
} // stack
} // sol
// end of sol/stack_pop.hpp
// beginning of sol/stack_field.hpp
namespace sol {
namespace stack {
template <typename T, bool, bool, typename>
struct field_getter {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -2) {
push(L, std::forward<Key>(key));
lua_gettable(L, tableindex);
}
};
template <typename T, bool global, typename C>
struct field_getter<T, global, true, C> {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -2) {
push(L, std::forward<Key>(key));
lua_rawget(L, tableindex);
}
};
template <bool b, bool raw, typename C>
struct field_getter<metatable_key_t, b, raw, C> {
void get(lua_State* L, metatable_key_t, int tableindex = -1) {
if (lua_getmetatable(L, tableindex) == 0)
push(L, lua_nil);
}
};
template <typename T, bool raw>
struct field_getter<T, true, raw, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int = -1) {
lua_getglobal(L, &key[0]);
}
};
template <typename T>
struct field_getter<T, false, false, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -1) {
lua_getfield(L, tableindex, &key[0]);
}
};
#if SOL_LUA_VERSION >= 503
template <typename T>
struct field_getter<T, false, false, std::enable_if_t<std::is_integral<T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -1) {
lua_geti(L, tableindex, static_cast<lua_Integer>(key));
}
};
#endif // Lua 5.3.x
#if SOL_LUA_VERSION >= 502
template <typename C>
struct field_getter<void*, false, true, C> {
void get(lua_State* L, void* key, int tableindex = -1) {
lua_rawgetp(L, tableindex, key);
}
};
#endif // Lua 5.3.x
template <typename T>
struct field_getter<T, false, true, std::enable_if_t<std::is_integral<T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -1) {
lua_rawgeti(L, tableindex, static_cast<lua_Integer>(key));
}
};
template <typename... Args, bool b, bool raw, typename C>
struct field_getter<std::tuple<Args...>, b, raw, C> {
template <std::size_t... I, typename Keys>
void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex) {
get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
void(detail::swallow{ (get_field<false, raw>(L, detail::forward_get<I>(keys)), 0)... });
reference saved(L, -1);
lua_pop(L, static_cast<int>(sizeof...(I)));
saved.push();
}
template <typename Keys>
void get(lua_State* L, Keys&& keys) {
apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), lua_absindex(L, -1));
}
template <typename Keys>
void get(lua_State* L, Keys&& keys, int tableindex) {
apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), tableindex);
}
};
template <typename A, typename B, bool b, bool raw, typename C>
struct field_getter<std::pair<A, B>, b, raw, C> {
template <typename Keys>
void get(lua_State* L, Keys&& keys, int tableindex) {
get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
get_field<false, raw>(L, detail::forward_get<1>(keys));
reference saved(L, -1);
lua_pop(L, static_cast<int>(2));
saved.push();
}
template <typename Keys>
void get(lua_State* L, Keys&& keys) {
get_field<b, raw>(L, detail::forward_get<0>(keys));
get_field<false, raw>(L, detail::forward_get<1>(keys));
reference saved(L, -1);
lua_pop(L, static_cast<int>(2));
saved.push();
}
};
template <typename T, bool, bool, typename>
struct field_setter {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3) {
push(L, std::forward<Key>(key));
push(L, std::forward<Value>(value));
lua_settable(L, tableindex);
}
};
template <typename T, bool b, typename C>
struct field_setter<T, b, true, C> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3) {
push(L, std::forward<Key>(key));
push(L, std::forward<Value>(value));
lua_rawset(L, tableindex);
}
};
template <bool b, bool raw, typename C>
struct field_setter<metatable_key_t, b, raw, C> {
template <typename Value>
void set(lua_State* L, metatable_key_t, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_setmetatable(L, tableindex);
}
};
template <typename T, bool raw>
struct field_setter<T, true, raw, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int = -2) {
push(L, std::forward<Value>(value));
lua_setglobal(L, &key[0]);
}
};
template <typename T>
struct field_setter<T, false, false, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_setfield(L, tableindex, &key[0]);
}
};
#if SOL_LUA_VERSION >= 503
template <typename T>
struct field_setter<T, false, false, std::enable_if_t<std::is_integral<T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_seti(L, tableindex, static_cast<lua_Integer>(key));
}
};
#endif // Lua 5.3.x
template <typename T>
struct field_setter<T, false, true, std::enable_if_t<std::is_integral<T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_rawseti(L, tableindex, static_cast<lua_Integer>(key));
}
};
#if SOL_LUA_VERSION >= 502
template <typename C>
struct field_setter<void*, false, true, C> {
template <typename Key, typename Value>
void set(lua_State* L, void* key, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_rawsetp(L, tableindex, key);
}
};
#endif // Lua 5.2.x
template <typename... Args, bool b, bool raw, typename C>
struct field_setter<std::tuple<Args...>, b, raw, C> {
template <bool g, std::size_t I, typename Key, typename Value>
void apply(std::index_sequence<I>, lua_State* L, Key&& keys, Value&& value, int tableindex) {
I < 1 ?
set_field<g, raw>(L, detail::forward_get<I>(keys), std::forward<Value>(value), tableindex) :
set_field<g, raw>(L, detail::forward_get<I>(keys), std::forward<Value>(value));
}
template <bool g, std::size_t I0, std::size_t I1, std::size_t... I, typename Keys, typename Value>
void apply(std::index_sequence<I0, I1, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
I0 < 1 ? get_field<g, raw>(L, detail::forward_get<I0>(keys), tableindex) : get_field<g, raw>(L, detail::forward_get<I0>(keys), -1);
apply<false>(std::index_sequence<I1, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), -1);
}
template <bool g, std::size_t I0, std::size_t... I, typename Keys, typename Value>
void top_apply(std::index_sequence<I0, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
apply<g>(std::index_sequence<I0, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
lua_pop(L, static_cast<int>(sizeof...(I)));
}
template <typename Keys, typename Value>
void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3) {
top_apply<b>(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
}
};
template <typename A, typename B, bool b, bool raw, typename C>
struct field_setter<std::pair<A, B>, b, raw, C> {
template <typename Keys, typename Value>
void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1) {
get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
set_field<false, raw>(L, detail::forward_get<1>(keys), std::forward<Value>(value));
lua_pop(L, 1);
}
};
} // stack
} // sol
// end of sol/stack_field.hpp
// beginning of sol/stack_probe.hpp
namespace sol {
namespace stack {
template <typename T, bool b, bool raw, typename>
struct probe_field_getter {
template <typename Key>
probe get(lua_State* L, Key&& key, int tableindex = -2) {
if (!b && !maybe_indexable(L, tableindex)) {
return probe(false, 0);
}
get_field<b, raw>(L, std::forward<Key>(key), tableindex);
return probe(!check<lua_nil_t>(L), 1);
}
};
template <typename A, typename B, bool b, bool raw, typename C>
struct probe_field_getter<std::pair<A, B>, b, raw, C> {
template <typename Keys>
probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
if (!b && !maybe_indexable(L, tableindex)) {
return probe(false, 0);
}
get_field<b, raw>(L, std::get<0>(keys), tableindex);
if (!maybe_indexable(L)) {
return probe(false, 1);
}
get_field<false, raw>(L, std::get<1>(keys), tableindex);
return probe(!check<lua_nil_t>(L), 2);
}
};
template <typename... Args, bool b, bool raw, typename C>
struct probe_field_getter<std::tuple<Args...>, b, raw, C> {
template <std::size_t I, typename Keys>
probe apply(std::index_sequence<I>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
get_field < I < 1 && b, raw>(L, std::get<I>(keys), tableindex);
return probe(!check<lua_nil_t>(L), sofar);
}
template <std::size_t I, std::size_t I1, std::size_t... In, typename Keys>
probe apply(std::index_sequence<I, I1, In...>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
get_field < I < 1 && b, raw>(L, std::get<I>(keys), tableindex);
if (!maybe_indexable(L)) {
return probe(false, sofar);
}
return apply(std::index_sequence<I1, In...>(), sofar + 1, L, std::forward<Keys>(keys), -1);
}
template <typename Keys>
probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
if (!b && !maybe_indexable(L, tableindex)) {
return probe(false, 0);
}
return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex);
}
};
} // stack
} // sol
// end of sol/stack_probe.hpp
#include <cstring>
namespace sol {
namespace stack {
namespace stack_detail {
template<typename T>
inline int push_as_upvalues(lua_State* L, T& item) {
typedef std::decay_t<T> TValue;
const static std::size_t itemsize = sizeof(TValue);
const static std::size_t voidsize = sizeof(void*);
const static std::size_t voidsizem1 = voidsize - 1;
const static std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
typedef std::array<void*, data_t_count> data_t;
data_t data{ {} };
std::memcpy(&data[0], std::addressof(item), itemsize);
int pushcount = 0;
for (auto&& v : data) {
pushcount += push(L, lightuserdata_value(v));
}
return pushcount;
}
template<typename T>
inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 1) {
const static std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
typedef std::array<void*, data_t_count> data_t;
data_t voiddata{ {} };
for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) {
voiddata[i] = get<lightuserdata_value>(L, upvalue_index(index++));
}
return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
}
struct evaluator {
template <typename Fx, typename... Args>
static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, record&, Fx&& fx, Args&&... args) {
return std::forward<Fx>(fx)(std::forward<Args>(args)...);
}
template <typename Fx, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename... FxArgs>
static decltype(auto) eval(types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L, int start, record& tracking, Fx&& fx, FxArgs&&... fxargs) {
return eval(types<Args...>(), std::index_sequence<Is...>(), L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)..., stack_detail::unchecked_get<Arg>(L, start + tracking.used, tracking));
}
};
template <bool checkargs = default_check_arguments, std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
#ifndef _MSC_VER
static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention.");
#endif // This compiler make me so fucking sad
multi_check<checkargs, Args...>(L, start, type_panic);
record tracking{};
return evaluator{}.eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool checkargs = default_check_arguments, std::size_t... I, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
#ifndef _MSC_VER
static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention.");
#endif // This compiler make me so fucking sad
multi_check<checkargs, Args...>(L, start, type_panic);
record tracking{};
evaluator{}.eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
} // stack_detail
template <typename T>
int set_ref(lua_State* L, T&& arg, int tableindex = -2) {
push(L, std::forward<T>(arg));
return luaL_ref(L, tableindex);
}
inline void remove(lua_State* L, int index, int count) {
if (count < 1)
return;
int top = lua_gettop(L);
if (index == -1 || top == index) {
// Slice them right off the top
lua_pop(L, static_cast<int>(count));
return;
}
// Remove each item one at a time using stack operations
// Probably slower, maybe, haven't benchmarked,
// but necessary
if (index < 0) {
index = lua_gettop(L) + (index + 1);
}
int last = index + count;
for (int i = index; i < last; ++i) {
lua_remove(L, index);
}
}
template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
typedef std::make_index_sequence<sizeof...(Args)> args_indices;
return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
typedef std::make_index_sequence<sizeof...(Args)> args_indices;
stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
return call<check_args>(tr, ta, L, static_cast<int>(lua_gettop(L) - sizeof...(Args)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void call_from_top(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
call<check_args>(tr, ta, L, static_cast<int>(lua_gettop(L) - sizeof...(Args)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template<bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline int call_into_lua(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
lua_settop(L, 0);
return 0;
}
template<bool check_args = stack_detail::default_check_arguments, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<meta::neg<std::is_void<Ret0>>::value>>
inline int call_into_lua(types<Ret0, Ret...>, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
decltype(auto) r = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
lua_settop(L, 0);
return push_reference(L, std::forward<decltype(r)>(r));
}
template<bool check_args = stack_detail::default_check_arguments, typename Fx, typename... FxArgs>
inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
typedef lua_bind_traits<meta::unqualified_t<Fx>> traits_type;
typedef typename traits_type::args_list args_list;
typedef typename traits_type::returns_list returns_list;
return call_into_lua(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
}
inline call_syntax get_call_syntax(lua_State* L, const std::string& key, int index) {
if (lua_gettop(L) == 0) {
return call_syntax::dot;
}
luaL_getmetatable(L, key.c_str());
auto pn = pop_n(L, 1);
if (lua_compare(L, -1, index, LUA_OPEQ) != 1) {
return call_syntax::dot;
}
return call_syntax::colon;
}
inline void script(lua_State* L, const std::string& code) {
if (luaL_dostring(L, code.c_str())) {
lua_error(L);
}
}
inline void script_file(lua_State* L, const std::string& filename) {
if (luaL_dofile(L, filename.c_str())) {
lua_error(L);
}
}
inline void luajit_exception_handler(lua_State* L, int(*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) {
#ifdef SOL_LUAJIT
lua_pushlightuserdata(L, (void*)handler);
auto pn = pop_n(L, 1);
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
#else
(void)L;
(void)handler;
#endif
}
inline void luajit_exception_off(lua_State* L) {
#ifdef SOL_LUAJIT
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
#else
(void)L;
#endif
}
} // stack
} // sol
// end of sol/stack.hpp
// beginning of sol/as_args.hpp
namespace sol {
template <typename T>
struct to_args_t {
T src;
};
template <typename Source>
auto as_args(Source&& source) {
return to_args_t<Source>{ std::forward<Source>(source) };
}
namespace stack {
template <typename T>
struct pusher<to_args_t<T>> {
int push(lua_State* L, const to_args_t<T>& e) {
int p = 0;
for (const auto& i : e.src) {
p += stack::push(L, i);
}
return p;
}
};
}
} // sol
// end of sol/as_args.hpp
// beginning of sol/variadic_args.hpp
// beginning of sol/stack_proxy.hpp
// beginning of sol/function.hpp
// beginning of sol/function_result.hpp
// beginning of sol/proxy_base.hpp
namespace sol {
template <typename Super>
struct proxy_base {
operator std::string() const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<std::string>();
}
template<typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, is_proxy_primitive<meta::unqualified_t<T>>> = meta::enabler>
operator T () const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<T>();
}
template<typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, meta::neg<is_proxy_primitive<meta::unqualified_t<T>>>> = meta::enabler>
operator T& () const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<T&>();
}
};
} // sol
// end of sol/proxy_base.hpp
#include <cstdint>
namespace sol {
struct function_result : public proxy_base<function_result> {
private:
lua_State* L;
int index;
int returncount;
public:
function_result() = default;
function_result(lua_State* Ls, int idx = -1, int retnum = 0) : L(Ls), index(idx), returncount(retnum) {
}
function_result(const function_result&) = default;
function_result& operator=(const function_result&) = default;
function_result(function_result&& o) : L(o.L), index(o.index), returncount(o.returncount) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.L = nullptr;
o.index = 0;
o.returncount = 0;
}
function_result& operator=(function_result&& o) {
L = o.L;
index = o.index;
returncount = o.returncount;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.L = nullptr;
o.index = 0;
o.returncount = 0;
return *this;
}
template<typename T>
decltype(auto) get() const {
return stack::get<T>(L, index);
}
call_status status() const noexcept {
return call_status::ok;
}
bool valid() const noexcept {
return status() == call_status::ok || status() == call_status::yielded;
}
lua_State* lua_state() const { return L; };
int stack_index() const { return index; };
~function_result() {
lua_pop(L, returncount);
}
};
} // sol
// end of sol/function_result.hpp
// beginning of sol/function_types.hpp
// beginning of sol/function_types_core.hpp
// beginning of sol/wrapper.hpp
namespace sol {
template <typename F, typename = void>
struct wrapper {
typedef lua_bind_traits<F> traits_type;
typedef typename traits_type::args_list args_list;
typedef typename traits_type::args_list free_args_list;
typedef typename traits_type::returns_list returns_list;
template <typename... Args>
static decltype(auto) call(F& f, Args&&... args) {
return f(std::forward<Args>(args)...);
}
struct caller {
template <typename... Args>
decltype(auto) operator()(F& fx, Args&&... args) const {
return call(fx, std::forward<Args>(args)...);
}
};
};
template <typename F>
struct wrapper<F, std::enable_if_t<std::is_function<meta::unqualified_t<std::remove_pointer_t<F>>>::value>> {
typedef lua_bind_traits<F> traits_type;
typedef typename traits_type::args_list args_list;
typedef typename traits_type::args_list free_args_list;
typedef typename traits_type::returns_list returns_list;
template <F fx, typename... Args>
static decltype(auto) invoke(Args&&... args) {
return fx(std::forward<Args>(args)...);
}
template <typename... Args>
static decltype(auto) call(F& fx, Args&&... args) {
return fx(std::forward<Args>(args)...);
}
struct caller {
template <typename... Args>
decltype(auto) operator()(F& fx, Args&&... args) const {
return call(fx, std::forward<Args>(args)...);
}
};
template <F fx>
struct invoker {
template <typename... Args>
decltype(auto) operator()(Args&&... args) const {
return invoke<fx>(std::forward<Args>(args)...);
}
};
};
template <typename F>
struct wrapper<F, std::enable_if_t<std::is_member_object_pointer<meta::unqualified_t<F>>::value>> {
typedef lua_bind_traits<F> traits_type;
typedef typename traits_type::object_type object_type;
typedef typename traits_type::return_type return_type;
typedef typename traits_type::args_list args_list;
typedef types<object_type&, return_type> free_args_list;
typedef typename traits_type::returns_list returns_list;
template <F fx, typename... Args>
static decltype(auto) invoke(object_type& mem, Args&&... args) {
return (mem.*fx)(std::forward<Args>(args)...);
}
template <typename Fx>
static decltype(auto) call(Fx&& fx, object_type& mem) {
return (mem.*fx);
}
template <typename Fx, typename Arg, typename... Args>
static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...) {
(mem.*fx) = std::forward<Arg>(arg);
}
struct caller {
template <typename Fx, typename... Args>
decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const {
return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
}
};
template <F fx>
struct invoker {
template <typename... Args>
decltype(auto) operator()(Args&&... args) const {
return invoke<fx>(std::forward<Args>(args)...);
}
};
};
template <typename F, typename R, typename O, typename... FArgs>
struct member_function_wrapper {
typedef O object_type;
typedef lua_bind_traits<F> traits_type;
typedef typename traits_type::args_list args_list;
typedef types<object_type&, FArgs...> free_args_list;
typedef meta::tuple_types<R> returns_list;
template <F fx, typename... Args>
static R invoke(O& mem, Args&&... args) {
return (mem.*fx)(std::forward<Args>(args)...);
}
template <typename Fx, typename... Args>
static R call(Fx&& fx, O& mem, Args&&... args) {
return (mem.*fx)(std::forward<Args>(args)...);
}
struct caller {
template <typename Fx, typename... Args>
decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const {
return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
}
};
template <F fx>
struct invoker {
template <typename... Args>
decltype(auto) operator()(O& mem, Args&&... args) const {
return invoke<fx>(mem, std::forward<Args>(args)...);
}
};
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args...)> : public member_function_wrapper<R(O:: *)(Args...), R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args...) const> : public member_function_wrapper<R(O:: *)(Args...) const, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args...) const volatile> : public member_function_wrapper<R(O:: *)(Args...) const volatile, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args...) &> : public member_function_wrapper<R(O:: *)(Args...) &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args...) const &> : public member_function_wrapper<R(O:: *)(Args...) const &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args...) const volatile &> : public member_function_wrapper<R(O:: *)(Args...) const volatile &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args..., ...) &> : public member_function_wrapper<R(O:: *)(Args..., ...) &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args..., ...) const &> : public member_function_wrapper<R(O:: *)(Args..., ...) const &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args..., ...) const volatile &> : public member_function_wrapper<R(O:: *)(Args..., ...) const volatile &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args...) && > : public member_function_wrapper<R(O:: *)(Args...) &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args...) const &&> : public member_function_wrapper<R(O:: *)(Args...) const &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args...) const volatile &&> : public member_function_wrapper<R(O:: *)(Args...) const volatile &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args..., ...) && > : public member_function_wrapper<R(O:: *)(Args..., ...) &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args..., ...) const &&> : public member_function_wrapper<R(O:: *)(Args..., ...) const &, R, O, Args...> {
};
template <typename R, typename O, typename... Args>
struct wrapper<R(O:: *)(Args..., ...) const volatile &&> : public member_function_wrapper<R(O:: *)(Args..., ...) const volatile &, R, O, Args...> {
};
} // sol
// end of sol/wrapper.hpp
namespace sol {
namespace function_detail {
template <typename Fx>
inline int call(lua_State* L) {
Fx& fx = stack::get<user<Fx>>(L, upvalue_index(1));
return fx(L);
}
} // function_detail
} // sol
// end of sol/function_types_core.hpp
// beginning of sol/function_types_templated.hpp
// beginning of sol/call.hpp
// beginning of sol/protect.hpp
namespace sol {
template <typename T>
struct protect_t {
T value;
template <typename Arg, typename... Args, meta::disable<std::is_same<protect_t, meta::unqualified_t<Arg>>> = meta::enabler>
protect_t(Arg&& arg, Args&&... args) : value(std::forward<Arg>(arg), std::forward<Args>(args)...) {}
protect_t(const protect_t&) = default;
protect_t(protect_t&&) = default;
protect_t& operator=(const protect_t&) = default;
protect_t& operator=(protect_t&&) = default;
};
template <typename T>
auto protect(T&& value) {
return protect_t<std::decay_t<T>>(std::forward<T>(value));
}
} // sol
// end of sol/protect.hpp
// beginning of sol/property.hpp
namespace sol {
struct no_prop { };
template <typename R, typename W>
struct property_wrapper {
typedef std::integral_constant<bool, !std::is_void<R>::value> can_read;
typedef std::integral_constant<bool, !std::is_void<W>::value> can_write;
typedef std::conditional_t<can_read::value, R, no_prop> Read;
typedef std::conditional_t<can_write::value, W, no_prop> Write;
Read read;
Write write;
template <typename Rx, typename Wx>
property_wrapper(Rx&& r, Wx&& w) : read(std::forward<Rx>(r)), write(std::forward<Wx>(w)) {}
};
namespace property_detail {
template <typename R, typename W>
inline decltype(auto) property(std::true_type, R&& read, W&& write) {
return property_wrapper<std::decay_t<R>, std::decay_t<W>>(std::forward<R>(read), std::forward<W>(write));
}
template <typename W, typename R>
inline decltype(auto) property(std::false_type, W&& write, R&& read) {
return property_wrapper<std::decay_t<R>, std::decay_t<W>>(std::forward<R>(read), std::forward<W>(write));
}
template <typename R>
inline decltype(auto) property(std::true_type, R&& read) {
return property_wrapper<std::decay_t<R>, void>(std::forward<R>(read), no_prop());
}
template <typename W>
inline decltype(auto) property(std::false_type, W&& write) {
return property_wrapper<void, std::decay_t<W>>(no_prop(), std::forward<W>(write));
}
} // property_detail
template <typename F, typename G>
inline decltype(auto) property(F&& f, G&& g) {
typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
typedef lua_bind_traits<meta::unqualified_t<G>> right_traits;
return property_detail::property(meta::boolean<(left_traits::free_arity < right_traits::free_arity)>(), std::forward<F>(f), std::forward<G>(g));
}
template <typename F>
inline decltype(auto) property(F&& f) {
typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
return property_detail::property(meta::boolean<(left_traits::free_arity < 2)>(), std::forward<F>(f));
}
template <typename F>
inline decltype(auto) readonly_property(F&& f) {
return property_detail::property(std::true_type(), std::forward<F>(f));
}
// Allow someone to make a member variable readonly (const)
template <typename R, typename T>
inline auto readonly(R T::* v) {
typedef const R C;
return static_cast<C T::*>(v);
}
template <typename T>
struct var_wrapper {
T value;
template <typename... Args>
var_wrapper(Args&&... args) : value(std::forward<Args>(args)...) {}
var_wrapper(const var_wrapper&) = default;
var_wrapper(var_wrapper&&) = default;
var_wrapper& operator=(const var_wrapper&) = default;
var_wrapper& operator=(var_wrapper&&) = default;
};
template <typename V>
inline auto var(V&& v) {
typedef meta::unqualified_t<V> T;
return var_wrapper<T>(std::forward<V>(v));
}
} // sol
// end of sol/property.hpp
namespace sol {
namespace function_detail {
inline int no_construction_error(lua_State* L) {
return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)");
}
}
namespace call_detail {
template <typename R, typename W>
inline auto& pick(std::true_type, property_wrapper<R, W>& f) {
return f.read;
}
template <typename R, typename W>
inline auto& pick(std::false_type, property_wrapper<R, W>& f) {
return f.write;
}
template <typename T, typename List>
struct void_call : void_call<T, meta::function_args_t<List>> {};
template <typename T, typename... Args>
struct void_call<T, types<Args...>> {
static void call(Args...) {}
};
template <typename T>
struct constructor_match {
T* obj;
constructor_match(T* o) : obj(o) {}
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const {
detail::default_construct func{};
return stack::call_into_lua<stack::stack_detail::default_check_arguments>(r, a, L, start, func, obj);
}
};
namespace overload_detail {
template <std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...) {
return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types");
}
template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
typedef lua_bind_traits<meta::unqualified_t<Fx>> traits;
typedef meta::tuple_types<typename traits::return_type> return_types;
typedef typename traits::free_args_list args_list;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if (meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
stack::record tracking{};
if (!stack::stack_detail::check_types<true>{}.check(args_list(), L, start, no_panic, tracking)) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}
template <std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
typedef lua_bind_traits<meta::unqualified_t<Fx>> traits;
typedef meta::tuple_types<typename traits::return_type> return_types;
typedef typename traits::free_args_list args_list;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if (meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
typedef lua_bind_traits<meta::unqualified_t<Fx>> traits;
typedef meta::tuple_types<typename traits::return_type> return_types;
typedef typename traits::free_args_list args_list;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if (meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
stack::record tracking{};
if (!stack::stack_detail::check_types<true>{}.check(args_list(), L, start, no_panic, tracking)) {
return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}
} // overload_detail
template <typename... Functions, typename Match, typename... Args>
inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
return overload_detail::overload_match_arity_single(types<Functions...>(), std::make_index_sequence<sizeof...(Functions)>(), std::index_sequence<>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename... Functions, typename Match, typename... Args>
inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) {
int fxarity = lua_gettop(L) - (start - 1);
return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename T, typename... TypeLists, typename Match, typename... Args>
inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
// use same overload resolution matching as all other parts of the framework
return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename T, typename... TypeLists>
inline int construct(lua_State* L) {
static const auto& meta = usertype_traits<T>::metatable();
int argcount = lua_gettop(L);
call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, &usertype_traits<T>::user_metatable()[0], 1) : call_syntax::dot;
argcount -= static_cast<int>(syntax);
T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& referencepointer = *pointerpointer;
T* obj = reinterpret_cast<T*>(pointerpointer + 1);
referencepointer = obj;
reference userdataref(L, -1);
userdataref.pop();
construct_match<T, TypeLists...>(constructor_match<T>(obj), L, argcount, 1 + static_cast<int>(syntax));
userdataref.push();
luaL_getmetatable(L, &meta[0]);
if (type_of(L, -1) == type::lua_nil) {
lua_pop(L, 1);
return luaL_error(L, "sol: unable to get usertype metatable");
}
lua_setmetatable(L, -2);
return 1;
}
template <typename F, bool is_index, bool is_variable, bool checked, int boost, typename = void>
struct agnostic_lua_call_wrapper {
template <typename Fx, typename... Args>
static int call(lua_State* L, Fx&& f, Args&&... args) {
typedef wrapper<meta::unqualified_t<F>> wrap;
typedef typename wrap::returns_list returns_list;
typedef typename wrap::free_args_list args_list;
typedef typename wrap::caller caller;
return stack::call_into_lua<checked>(returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...);
}
};
template <typename T, bool is_variable, bool checked, int boost, typename C>
struct agnostic_lua_call_wrapper<var_wrapper<T>, true, is_variable, checked, boost, C> {
template <typename F>
static int call(lua_State* L, F&& f) {
return stack::push_reference(L, detail::unwrap(f.value));
}
};
template <typename T, bool is_variable, bool checked, int boost, typename C>
struct agnostic_lua_call_wrapper<var_wrapper<T>, false, is_variable, checked, boost, C> {
template <typename V>
static int call_assign(std::true_type, lua_State* L, V&& f) {
detail::unwrap(f.value) = stack::get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1));
return 0;
}
template <typename... Args>
static int call_assign(std::false_type, lua_State* L, Args&&...) {
return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
}
template <typename... Args>
static int call_const(std::false_type, lua_State* L, Args&&... args) {
typedef meta::unwrapped_t<T> R;
return call_assign(std::is_assignable<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>(), L, std::forward<Args>(args)...);
}
template <typename... Args>
static int call_const(std::true_type, lua_State* L, Args&&...) {
return luaL_error(L, "sol: cannot write to a readonly (const) variable");
}
template <typename V>
static int call(lua_State* L, V&& f) {
return call_const(std::is_const<meta::unwrapped_t<T>>(), L, f);
}
};
template <bool is_index, bool is_variable, bool checked, int boost, typename C>
struct agnostic_lua_call_wrapper<lua_r_CFunction, is_index, is_variable, checked, boost, C> {
static int call(lua_State* L, lua_r_CFunction f) {
return f(L);
}
};
template <bool is_index, bool is_variable, bool checked, int boost, typename C>
struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, C> {
static int call(lua_State* L, lua_CFunction f) {
return f(L);
}
};
template <bool is_index, bool is_variable, bool checked, int boost, typename C>
struct agnostic_lua_call_wrapper<no_prop, is_index, is_variable, checked, boost, C> {
static int call(lua_State* L, const no_prop&) {
return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property");
}
};
template <bool is_index, bool is_variable, bool checked, int boost, typename C>
struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, C> {
static int call(lua_State* L, const no_construction&) {
return function_detail::no_construction_error(L);
}
};
template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, typename C>
struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, C> {
static int call(lua_State*, const bases<Args...>&) {
// Uh. How did you even call this, lul
return 0;
}
};
template <typename T, typename F, bool is_index, bool is_variable, bool checked = stack::stack_detail::default_check_arguments, int boost = 0, typename = void>
struct lua_call_wrapper : agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost> {};
template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost>
struct lua_call_wrapper<T, F, is_index, is_variable, checked, boost, std::enable_if_t<std::is_member_function_pointer<F>::value>> {
typedef wrapper<meta::unqualified_t<F>> wrap;
typedef typename wrap::object_type object_type;
template <typename Fx>
static int call(lua_State* L, Fx&& f, object_type& o) {
typedef typename wrap::returns_list returns_list;
typedef typename wrap::args_list args_list;
typedef typename wrap::caller caller;
return stack::call_into_lua<checked>(returns_list(), args_list(), L, boost + ( is_variable ? 3 : 2 ), caller(), std::forward<Fx>(f), o);
}
template <typename Fx>
static int call(lua_State* L, Fx&& f) {
typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
#ifdef SOL_SAFE_USERTYPE
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
return luaL_error(L, "sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are preceeded by the actual object with '.' syntax)");
}
object_type* o = static_cast<object_type*>(maybeo.value());
return call(L, std::forward<Fx>(f), *o);
#else
object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
return call(L, std::forward<Fx>(f), o);
#endif // Safety
}
};
template <typename T, typename F, bool is_variable, bool checked, int boost>
struct lua_call_wrapper<T, F, false, is_variable, checked, boost, std::enable_if_t<std::is_member_object_pointer<F>::value>> {
typedef lua_bind_traits<F> traits_type;
typedef wrapper<meta::unqualified_t<F>> wrap;
typedef typename wrap::object_type object_type;
template <typename V>
static int call_assign(std::true_type, lua_State* L, V&& f, object_type& o) {
typedef typename wrap::args_list args_list;
typedef typename wrap::caller caller;
return stack::call_into_lua<checked>(types<void>(), args_list(), L, boost + ( is_variable ? 3 : 2 ), caller(), f, o);
}
template <typename V>
static int call_assign(std::true_type, lua_State* L, V&& f) {
typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
#ifdef SOL_SAFE_USERTYPE
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
if (is_variable) {
return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)");
}
return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)");
}
object_type* o = static_cast<object_type*>(maybeo.value());
return call_assign(std::true_type(), L, f, *o);
#else
object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
return call_assign(std::true_type(), L, f, o);
#endif // Safety
}
template <typename... Args>
static int call_assign(std::false_type, lua_State* L, Args&&...) {
return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
}
template <typename... Args>
static int call_const(std::false_type, lua_State* L, Args&&... args) {
typedef typename traits_type::return_type R;
return call_assign(std::is_assignable<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>(), L, std::forward<Args>(args)...);
}
template <typename... Args>
static int call_const(std::true_type, lua_State* L, Args&&...) {
return luaL_error(L, "sol: cannot write to a readonly (const) variable");
}
template <typename V>
static int call(lua_State* L, V&& f) {
return call_const(std::is_const<typename traits_type::return_type>(), L, std::forward<V>(f));
}
template <typename V>
static int call(lua_State* L, V&& f, object_type& o) {
return call_const(std::is_const<typename traits_type::return_type>(), L, std::forward<V>(f), o);
}
};
template <typename T, typename F, bool is_variable, bool checked, int boost>
struct lua_call_wrapper<T, F, true, is_variable, checked, boost, std::enable_if_t<std::is_member_object_pointer<F>::value>> {
typedef lua_bind_traits<F> traits_type;
typedef wrapper<meta::unqualified_t<F>> wrap;
typedef typename wrap::object_type object_type;
template <typename V>
static int call(lua_State* L, V&& f, object_type& o) {
typedef typename wrap::returns_list returns_list;
typedef typename wrap::caller caller;
return stack::call_into_lua<checked>(returns_list(), types<>(), L, boost + ( is_variable ? 3 : 2 ), caller(), std::forward<V>(f), o);
}
template <typename V>
static int call(lua_State* L, V&& f) {
typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
#ifdef SOL_SAFE_USERTYPE
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
if (is_variable) {
return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
}
return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
}
object_type* o = static_cast<object_type*>(maybeo.value());
return call(L, f, *o);
#else
object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
return call(L, f, o);
#endif // Safety
}
};
template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, typename C>
struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, C> {
typedef constructor_list<Args...> F;
static int call(lua_State* L, F&) {
const auto& metakey = usertype_traits<T>::metatable();
int argcount = lua_gettop(L);
call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, &usertype_traits<T>::user_metatable()[0], 1) : call_syntax::dot;
argcount -= static_cast<int>(syntax);
T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
reference userdataref(L, -1);
T*& referencepointer = *pointerpointer;
T* obj = reinterpret_cast<T*>(pointerpointer + 1);
referencepointer = obj;
construct_match<T, Args...>(constructor_match<T>(obj), L, argcount, boost + 1 + static_cast<int>(syntax));
userdataref.push();
luaL_getmetatable(L, &metakey[0]);
if (type_of(L, -1) == type::lua_nil) {
lua_pop(L, 1);
return luaL_error(L, "sol: unable to get usertype metatable");
}
lua_setmetatable(L, -2);
return 1;
}
};
template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, typename C>
struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, C> {
typedef constructor_wrapper<Cxs...> F;
struct onmatch {
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f) {
const auto& metakey = usertype_traits<T>::metatable();
T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
reference userdataref(L, -1);
T*& referencepointer = *pointerpointer;
T* obj = reinterpret_cast<T*>(pointerpointer + 1);
referencepointer = obj;
auto& func = std::get<I>(f.functions);
stack::call_into_lua<checked>(r, a, L, boost + start, func, detail::implicit_wrapper<T>(obj));
userdataref.push();
luaL_getmetatable(L, &metakey[0]);
if (type_of(L, -1) == type::lua_nil) {
lua_pop(L, 1);
std::string err = "sol: unable to get usertype metatable for ";
err += usertype_traits<T>::name();
return luaL_error(L, err.c_str());
}
lua_setmetatable(L, -2);
return 1;
}
};
static int call(lua_State* L, F& f) {
call_syntax syntax = stack::get_call_syntax(L, &usertype_traits<T>::user_metatable()[0], 1);
int syntaxval = static_cast<int>(syntax);
int argcount = lua_gettop(L) - syntaxval;
return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f);
}
};
template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost>
struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, std::enable_if_t<std::is_void<Fx>::value>> {
typedef destructor_wrapper<Fx> F;
static int call(lua_State* L, const F&) {
return detail::usertype_alloc_destroy<T>(L);
}
};
template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost>
struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, std::enable_if_t<!std::is_void<Fx>::value>> {
typedef destructor_wrapper<Fx> F;
static int call(lua_State* L, const F& f) {
T& obj = stack::get<T>(L);
f.fx(detail::implicit_wrapper<T>(obj));
return 0;
}
};
template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, typename C>
struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, C> {
typedef overload_set<Fs...> F;
struct on_match {
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
auto& f = std::get<I>(fx.functions);
return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f);
}
};
static int call(lua_State* L, F& fx) {
return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx);
}
};
template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, typename C>
struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, C> {
typedef factory_wrapper<Fs...> F;
struct on_match {
template <typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
auto& f = std::get<I>(fx.functions);
return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f);
}
};
static int call(lua_State* L, F& fx) {
return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx);
}
};
template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, typename C>
struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, C> {
typedef std::conditional_t<is_index, R, W> P;
typedef meta::unqualified_t<P> U;
typedef lua_bind_traits<U> traits_type;
template <typename F>
static int self_call(lua_State* L, F&& f) {
typedef wrapper<U> wrap;
typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type;
typedef meta::pop_front_type_t<typename traits_type::free_args_list> args_list;
typedef T Ta;
#ifdef SOL_SAFE_USERTYPE
auto maybeo = stack::check_get<Ta*>(L, 1);
if (!maybeo || maybeo.value() == nullptr) {
if (is_variable) {
return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
}
return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
}
object_type* o = static_cast<object_type*>(maybeo.value());
#else
object_type* o = static_cast<object_type*>(stack::get<non_null<Ta*>>(L, 1));
#endif // Safety
typedef typename wrap::returns_list returns_list;
typedef typename wrap::caller caller;
return stack::call_into_lua<checked>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f, *o);
}
template <typename F, typename... Args>
static int defer_call(std::false_type, lua_State* L, F&& f, Args&&... args) {
return self_call(L, pick(meta::boolean<is_index>(), f), std::forward<Args>(args)...);
}
template <typename F, typename... Args>
static int defer_call(std::true_type, lua_State* L, F&& f, Args&&... args) {
auto& p = pick(meta::boolean<is_index>(), std::forward<F>(f));
return lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost>{}.call(L, p, std::forward<Args>(args)...);
}
template <typename F, typename... Args>
static int call(lua_State* L, F&& f, Args&&... args) {
typedef meta::any<
std::is_void<U>,
std::is_same<U, no_prop>,
meta::is_specialization_of<var_wrapper, U>,
meta::is_specialization_of<constructor_wrapper, U>,
meta::is_specialization_of<constructor_list, U>,
std::is_member_pointer<U>
> is_specialized;
return defer_call(is_specialized(), L, std::forward<F>(f), std::forward<Args>(args)...);
}
};
template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, typename C>
struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, C> {
typedef protect_t<V> F;
template <typename... Args>
static int call(lua_State* L, F& fx, Args&&... args) {
return lua_call_wrapper<T, V, is_index, is_variable, true, boost>{}.call(L, fx.value, std::forward<Args>(args)...);
}
};
template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, typename C>
struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, C> {
template <typename F>
static int call(lua_State* L, F&& f) {
return lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, stack::stack_detail::default_check_arguments, boost>{}.call(L, std::get<0>(f.arguments));
}
};
template <typename T, bool is_index, bool is_variable, int boost = 0, typename Fx, typename... Args>
inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) {
return lua_call_wrapper<T, meta::unqualified_t<Fx>, is_index, is_variable, stack::stack_detail::default_check_arguments, boost>{}.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <typename T, bool is_index, bool is_variable, typename F>
inline int call_user(lua_State* L) {
auto& fx = stack::get<user<F>>(L, upvalue_index(1));
return call_wrapped<T, is_index, is_variable>(L, fx);
}
template <typename T, typename = void>
struct is_var_bind : std::false_type {};
template <typename T>
struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type {};
template <>
struct is_var_bind<no_prop> : std::true_type {};
template <typename R, typename W>
struct is_var_bind<property_wrapper<R, W>> : std::true_type {};
template <typename T>
struct is_var_bind<var_wrapper<T>> : std::true_type {};
} // call_detail
template <typename T>
struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> {};
template <typename T>
struct is_function_binding : meta::neg<is_variable_binding<T>> {};
} // sol
// end of sol/call.hpp
namespace sol {
namespace function_detail {
template <typename F, F fx>
inline int call_wrapper_variable(std::false_type, lua_State* L) {
typedef meta::bind_traits<meta::unqualified_t<F>> traits_type;
typedef typename traits_type::args_list args_list;
typedef meta::tuple_types<typename traits_type::return_type> return_type;
return stack::call_into_lua(return_type(), args_list(), L, 1, fx);
}
template <typename R, typename V, V, typename T>
inline int call_set_assignable(std::false_type, T&&, lua_State* L) {
return luaL_error(L, "cannot write to this type: copy assignment/constructor not available");
}
template <typename R, typename V, V variable, typename T>
inline int call_set_assignable(std::true_type, lua_State* L, T&& mem) {
(mem.*variable) = stack::get<R>(L, 2);
return 0;
}
template <typename R, typename V, V, typename T>
inline int call_set_variable(std::false_type, lua_State* L, T&&) {
return luaL_error(L, "cannot write to a const variable");
}
template <typename R, typename V, V variable, typename T>
inline int call_set_variable(std::true_type, lua_State* L, T&& mem) {
return call_set_assignable<R, V, variable>(std::is_assignable<std::add_lvalue_reference_t<R>, R>(), L, std::forward<T>(mem));
}
template <typename V, V variable>
inline int call_wrapper_variable(std::true_type, lua_State* L) {
typedef meta::bind_traits<meta::unqualified_t<V>> traits_type;
typedef typename traits_type::object_type T;
typedef typename traits_type::return_type R;
auto& mem = stack::get<T>(L, 1);
switch (lua_gettop(L)) {
case 1: {
decltype(auto) r = (mem.*variable);
stack::push_reference(L, std::forward<decltype(r)>(r));
return 1; }
case 2:
return call_set_variable<R, V, variable>(meta::neg<std::is_const<R>>(), L, mem);
default:
return luaL_error(L, "incorrect number of arguments to member variable function call");
}
}
template <typename F, F fx>
inline int call_wrapper_function(std::false_type, lua_State* L) {
return call_wrapper_variable<F, fx>(std::is_member_object_pointer<F>(), L);
}
template <typename F, F fx>
inline int call_wrapper_function(std::true_type, lua_State* L) {
return call_detail::call_wrapped<void, false, false>(L, fx);
}
template <typename F, F fx>
int call_wrapper_entry(lua_State* L) {
return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L);
}
template <typename... Fxs>
struct c_call_matcher {
template <typename Fx, std::size_t I, typename R, typename... Args>
int operator()(types<Fx>, index_value<I>, types<R>, types<Args...>, lua_State* L, int, int) const {
typedef meta::at_in_pack_t<I, Fxs...> target;
return target::call(L);
}
};
} // function_detail
template <typename F, F fx>
inline int c_call(lua_State* L) {
#ifdef __clang__
return detail::trampoline(L, function_detail::call_wrapper_entry<F, fx>);
#else
return detail::static_trampoline<(&function_detail::call_wrapper_entry<F, fx>)>(L);
#endif // fuck you clang :c
}
template <typename F, F f>
struct wrap {
typedef F type;
static int call(lua_State* L) {
return c_call<type, f>(L);
}
};
template <typename... Fxs>
inline int c_call(lua_State* L) {
if (sizeof...(Fxs) < 2) {
return meta::at_in_pack_t<0, Fxs...>::call(L);
}
else {
return call_detail::overload_match_arity<typename Fxs::type...>(function_detail::c_call_matcher<Fxs...>(), L, lua_gettop(L), 1);
}
}
} // sol
// end of sol/function_types_templated.hpp
// beginning of sol/function_types_stateless.hpp
namespace sol {
namespace function_detail {
template<typename Function>
struct upvalue_free_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) {
auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L);
function_type* fx = udata.first;
return call_detail::call_wrapped<void, true, false>(L, fx);
}
static int call(lua_State* L) {
return detail::static_trampoline<(&real_call)>(L);
}
int operator()(lua_State* L) {
return call(L);
}
};
template<typename T, typename Function>
struct upvalue_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) {
// Layout:
// idx 1...n: verbatim data of member function pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L, 1);
auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
function_type& memfx = memberdata.first;
auto& item = *objdata.first;
return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item);
}
static int call(lua_State* L) {
return detail::static_trampoline<(&real_call)>(L);
}
int operator()(lua_State* L) {
return call(L);
}
};
template<typename T, typename Function>
struct upvalue_member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L, 1);
auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
auto& mem = *objdata.first;
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 0:
return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
case 1:
return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
static int call(lua_State* L) {
return detail::static_trampoline<(&real_call)>(L);
}
int operator()(lua_State* L) {
return call(L);
}
};
template<typename T, typename Function>
struct upvalue_this_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L, 1);
function_type& memfx = memberdata.first;
return call_detail::call_wrapped<T, false, false>(L, memfx);
}
static int call(lua_State* L) {
return detail::static_trampoline<(&real_call)>(L);
}
int operator()(lua_State* L) {
return call(L);
}
};
template<typename T, typename Function>
struct upvalue_this_member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L, 1);
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 1:
return call_detail::call_wrapped<T, true, false>(L, var);
case 2:
return call_detail::call_wrapped<T, false, false>(L, var);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
static int call(lua_State* L) {
return detail::static_trampoline<(&real_call)>(L);
}
int operator()(lua_State* L) {
return call(L);
}
};
} // function_detail
} // sol
// end of sol/function_types_stateless.hpp
// beginning of sol/function_types_stateful.hpp
namespace sol {
namespace function_detail {
template<typename Func>
struct functor_function {
typedef meta::unwrapped_t<meta::unqualified_t<Func>> Function;
Function fx;
template<typename... Args>
functor_function(Function f, Args&&... args) : fx(std::move(f), std::forward<Args>(args)...) {}
int call(lua_State* L) {
return call_detail::call_wrapped<void, true, false>(L, fx);
}
int operator()(lua_State* L) {
auto f = [&](lua_State*) -> int { return this->call(L); };
return detail::trampoline(L, f);
}
};
template<typename T, typename Function>
struct member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef meta::function_return_t<function_type> return_type;
typedef meta::function_args_t<function_type> args_lists;
function_type invocation;
T member;
template<typename... Args>
member_function(function_type f, Args&&... args) : invocation(std::move(f)), member(std::forward<Args>(args)...) {}
int call(lua_State* L) {
return call_detail::call_wrapped<T, true, false, -1>(L, invocation, detail::unwrap(detail::deref(member)));
}
int operator()(lua_State* L) {
auto f = [&](lua_State*) -> int { return this->call(L); };
return detail::trampoline(L, f);
}
};
template<typename T, typename Function>
struct member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef typename meta::bind_traits<function_type>::return_type return_type;
typedef typename meta::bind_traits<function_type>::args_list args_lists;
function_type var;
T member;
typedef std::add_lvalue_reference_t<meta::unwrapped_t<std::remove_reference_t<decltype(detail::deref(member))>>> M;
template<typename... Args>
member_variable(function_type v, Args&&... args) : var(std::move(v)), member(std::forward<Args>(args)...) {}
int call(lua_State* L) {
M mem = detail::unwrap(detail::deref(member));
switch (lua_gettop(L)) {
case 0:
return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
case 1:
return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
int operator()(lua_State* L) {
auto f = [&](lua_State*) -> int { return this->call(L); };
return detail::trampoline(L, f);
}
};
} // function_detail
} // sol
// end of sol/function_types_stateful.hpp
// beginning of sol/function_types_overloaded.hpp
namespace sol {
namespace function_detail {
template <int start_skew = 0, typename... Functions>
struct overloaded_function {
typedef std::tuple<Functions...> overload_list;
typedef std::make_index_sequence<sizeof...(Functions)> indices;
overload_list overloads;
overloaded_function(overload_list set)
: overloads(std::move(set)) {}
overloaded_function(Functions... fxs)
: overloads(fxs...) {
}
template <typename Fx, std::size_t I, typename... R, typename... Args>
int call(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int) {
auto& func = std::get<I>(overloads);
return call_detail::call_wrapped<void, true, false, start_skew>(L, func);
}
int operator()(lua_State* L) {
auto mfx = [&](auto&&... args) { return this->call(std::forward<decltype(args)>(args)...); };
return call_detail::overload_match<Functions...>(mfx, L, 1 + start_skew);
}
};
} // function_detail
} // sol
// end of sol/function_types_overloaded.hpp
// beginning of sol/resolve.hpp
namespace sol {
#ifndef __clang__
// constexpr is fine for not-clang
namespace detail {
template<typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>>
inline constexpr auto resolve_i(types<R(Args...)>, F&&)->R(meta::unqualified_t<F>::*)(Args...) {
using Sig = R(Args...);
typedef meta::unqualified_t<F> Fu;
return static_cast<Sig Fu::*>(&Fu::operator());
}
template<typename F, typename U = meta::unqualified_t<F>>
inline constexpr auto resolve_f(std::true_type, F&& f)
-> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
}
template<typename F>
inline constexpr void resolve_f(std::false_type, F&&) {
static_assert(meta::has_deducible_signature<F>::value,
"Cannot use no-template-parameter call with an overloaded functor: specify the signature");
}
template<typename F, typename U = meta::unqualified_t<F>>
inline constexpr auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) {
return resolve_f(meta::has_deducible_signature<U> {}, std::forward<F>(f));
}
template<typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>>
inline constexpr auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
return resolve_i(types<R(Args...)>(), std::forward<F>(f));
}
template<typename Sig, typename C>
inline constexpr Sig C::* resolve_v(std::false_type, Sig C::* mem_func_ptr) {
return mem_func_ptr;
}
template<typename Sig, typename C>
inline constexpr Sig C::* resolve_v(std::true_type, Sig C::* mem_variable_ptr) {
return mem_variable_ptr;
}
} // detail
template<typename... Args, typename R>
inline constexpr auto resolve(R fun_ptr(Args...))->R(*)(Args...) {
return fun_ptr;
}
template<typename Sig>
inline constexpr Sig* resolve(Sig* fun_ptr) {
return fun_ptr;
}
template<typename... Args, typename R, typename C>
inline constexpr auto resolve(R(C::*mem_ptr)(Args...))->R(C::*)(Args...) {
return mem_ptr;
}
template<typename Sig, typename C>
inline constexpr Sig C::* resolve(Sig C::* mem_ptr) {
return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
}
template<typename... Sig, typename F, meta::disable<std::is_function<meta::unqualified_t<F>>> = meta::enabler>
inline constexpr auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
}
#else
// Clang has distinct problems with constexpr arguments,
// so don't use the constexpr versions inside of clang.
namespace detail {
template<typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>>
inline auto resolve_i(types<R(Args...)>, F&&)->R(meta::unqualified_t<F>::*)(Args...) {
using Sig = R(Args...);
typedef meta::unqualified_t<F> Fu;
return static_cast<Sig Fu::*>(&Fu::operator());
}
template<typename F, typename U = meta::unqualified_t<F>>
inline auto resolve_f(std::true_type, F&& f)
-> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
}
template<typename F>
inline void resolve_f(std::false_type, F&&) {
static_assert(meta::has_deducible_signature<F>::value,
"Cannot use no-template-parameter call with an overloaded functor: specify the signature");
}
template<typename F, typename U = meta::unqualified_t<F>>
inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) {
return resolve_f(meta::has_deducible_signature<U> {}, std::forward<F>(f));
}
template<typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>>
inline auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
return resolve_i(types<R(Args...)>(), std::forward<F>(f));
}
template<typename Sig, typename C>
inline Sig C::* resolve_v(std::false_type, Sig C::* mem_func_ptr) {
return mem_func_ptr;
}
template<typename Sig, typename C>
inline Sig C::* resolve_v(std::true_type, Sig C::* mem_variable_ptr) {
return mem_variable_ptr;
}
} // detail
template<typename... Args, typename R>
inline auto resolve(R fun_ptr(Args...))->R(*)(Args...) {
return fun_ptr;
}
template<typename Sig>
inline Sig* resolve(Sig* fun_ptr) {
return fun_ptr;
}
template<typename... Args, typename R, typename C>
inline auto resolve(R(C::*mem_ptr)(Args...))->R(C::*)(Args...) {
return mem_ptr;
}
template<typename Sig, typename C>
inline Sig C::* resolve(Sig C::* mem_ptr) {
return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
}
template<typename... Sig, typename F>
inline auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
}
#endif
} // sol
// end of sol/resolve.hpp
namespace sol {
namespace function_detail {
template<typename T>
struct class_indicator {};
struct call_indicator {};
}
namespace stack {
template<typename... Sigs>
struct pusher<function_sig<Sigs...>> {
template <typename... Sig, typename Fx, typename... Args>
static void select_convertible(std::false_type, types<Sig...>, lua_State* L, Fx&& fx, Args&&... args) {
typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
typedef function_detail::functor_function<clean_fx> F;
set_fx<F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <typename R, typename... A, typename Fx, typename... Args>
static void select_convertible(std::true_type, types<R(A...)>, lua_State* L, Fx&& fx, Args&&... args) {
using fx_ptr_t = R(*)(A...);
fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx));
select_function(std::true_type(), L, fxptr, std::forward<Args>(args)...);
}
template <typename R, typename... A, typename Fx, typename... Args>
static void select_convertible(types<R(A...)> t, lua_State* L, Fx&& fx, Args&&... args) {
typedef std::decay_t<meta::unwrap_unqualified_t<Fx>> raw_fx_t;
typedef R(*fx_ptr_t)(A...);
typedef std::is_convertible<raw_fx_t, fx_ptr_t> is_convertible;
select_convertible(is_convertible(), t, L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <typename Fx, typename... Args>
static void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args) {
typedef meta::function_signature_t<meta::unwrap_unqualified_t<Fx>> Sig;
select_convertible(types<Sig>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <typename Fx, typename T, typename... Args>
static void select_reference_member_variable(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
typedef function_detail::member_variable<meta::unwrap_unqualified_t<T>, clean_fx> F;
set_fx<F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
}
template <typename Fx, typename T, typename... Args>
static void select_reference_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef std::decay_t<Fx> dFx;
dFx memfxptr(std::forward<Fx>(fx));
auto userptr = detail::ptr(std::forward<T>(obj), std::forward<Args>(args)...);
lua_CFunction freefunc = &function_detail::upvalue_member_variable<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, memfxptr);
upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
stack::push(L, c_closure(freefunc, upvalues));
}
template <typename Fx, typename... Args>
static void select_member_variable(std::false_type, lua_State* L, Fx&& fx, Args&&... args) {
select_convertible(types<Sigs...>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <typename Fx, typename T, typename... Args, meta::disable<meta::is_specialization_of<function_detail::class_indicator, meta::unqualified_t<T>>> = meta::enabler>
static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef meta::boolean<meta::is_specialization_of<std::reference_wrapper, meta::unqualified_t<T>>::value || std::is_pointer<T>::value> is_reference;
select_reference_member_variable(is_reference(), L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
}
template <typename Fx, typename C>
static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, function_detail::class_indicator<C>) {
lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, fx);
stack::push(L, c_closure(freefunc, upvalues));
}
template <typename Fx>
static void select_member_variable(std::true_type, lua_State* L, Fx&& fx) {
typedef typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type C;
lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, fx);
stack::push(L, c_closure(freefunc, upvalues));
}
template <typename Fx, typename T, typename... Args>
static void select_reference_member_function(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef std::decay_t<Fx> clean_fx;
typedef function_detail::member_function<meta::unwrap_unqualified_t<T>, clean_fx> F;
set_fx<F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
}
template <typename Fx, typename T, typename... Args>
static void select_reference_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef std::decay_t<Fx> dFx;
dFx memfxptr(std::forward<Fx>(fx));
auto userptr = detail::ptr(std::forward<T>(obj), std::forward<Args>(args)...);
lua_CFunction freefunc = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, memfxptr);
upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
stack::push(L, c_closure(freefunc, upvalues));
}
template <typename Fx, typename... Args>
static void select_member_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args) {
select_member_variable(std::is_member_object_pointer<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <typename Fx, typename T, typename... Args, meta::disable<meta::is_specialization_of<function_detail::class_indicator, meta::unqualified_t<T>>> = meta::enabler>
static void select_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
typedef meta::boolean<meta::is_specialization_of<std::reference_wrapper, meta::unqualified_t<T>>::value || std::is_pointer<T>::value> is_reference;
select_reference_member_function(is_reference(), L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
}
template <typename Fx, typename C>
static void select_member_function(std::true_type, lua_State* L, Fx&& fx, function_detail::class_indicator<C>) {
lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, Fx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, fx);
stack::push(L, c_closure(freefunc, upvalues));
}
template <typename Fx>
static void select_member_function(std::true_type, lua_State* L, Fx&& fx) {
typedef typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type C;
lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, Fx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, fx);
stack::push(L, c_closure(freefunc, upvalues));
}
template <typename Fx, typename... Args>
static void select_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args) {
select_member_function(std::is_member_function_pointer<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <typename Fx, typename... Args>
static void select_function(std::true_type, lua_State* L, Fx&& fx, Args&&... args) {
std::decay_t<Fx> target(std::forward<Fx>(fx), std::forward<Args>(args)...);
lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, target);
stack::push(L, c_closure(freefunc, upvalues));
}
static void select_function(std::true_type, lua_State* L, lua_CFunction f) {
stack::push(L, f);
}
template <typename Fx, typename... Args>
static void select(lua_State* L, Fx&& fx, Args&&... args) {
select_function(std::is_function<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}
template <typename Fx, typename... Args>
static void set_fx(lua_State* L, Args&&... args) {
lua_CFunction freefunc = function_detail::call<meta::unqualified_t<Fx>>;
stack::push<user<Fx>>(L, std::forward<Args>(args)...);
stack::push(L, c_closure(freefunc, 1));
}
template<typename... Args>
static int push(lua_State* L, Args&&... args) {
// Set will always place one thing (function) on the stack
select(L, std::forward<Args>(args)...);
return 1;
}
};
template<typename T, typename... Args>
struct pusher<function_arguments<T, Args...>> {
template <std::size_t... I, typename FP>
static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) {
return stack::push<T>(L, detail::forward_get<I>(fp.arguments)...);
}
static int push(lua_State* L, const function_arguments<T, Args...>& fp) {
return push_func(std::make_index_sequence<sizeof...(Args)>(), L, fp);
}
static int push(lua_State* L, function_arguments<T, Args...>&& fp) {
return push_func(std::make_index_sequence<sizeof...(Args)>(), L, std::move(fp));
}
};
template<typename Signature>
struct pusher<std::function<Signature>> {
static int push(lua_State* L, std::function<Signature> fx) {
return pusher<function_sig<Signature>>{}.push(L, std::move(fx));
}
};
template<typename Signature>
struct pusher<Signature, std::enable_if_t<std::is_member_pointer<Signature>::value>> {
template <typename F, typename... Args>
static int push(lua_State* L, F&& f, Args&&... args) {
return pusher<function_sig<>>{}.push(L, std::forward<F>(f), std::forward<Args>(args)...);
}
};
template<typename Signature>
struct pusher<Signature, std::enable_if_t<meta::all<std::is_function<Signature>, meta::neg<std::is_same<Signature, lua_CFunction>>, meta::neg<std::is_same<Signature, std::remove_pointer_t<lua_CFunction>>>>::value>> {
template <typename F>
static int push(lua_State* L, F&& f) {
return pusher<function_sig<>>{}.push(L, std::forward<F>(f));
}
};
template<typename... Functions>
struct pusher<overload_set<Functions...>> {
static int push(lua_State* L, overload_set<Functions...>&& set) {
typedef function_detail::overloaded_function<0, Functions...> F;
pusher<function_sig<>>{}.set_fx<F>(L, std::move(set.functions));
return 1;
}
static int push(lua_State* L, const overload_set<Functions...>& set) {
typedef function_detail::overloaded_function<0, Functions...> F;
pusher<function_sig<>>{}.set_fx<F>(L, set.functions);
return 1;
}
};
template <typename T>
struct pusher<protect_t<T>> {
static int push(lua_State* L, protect_t<T>&& pw) {
lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>>;
int closures = stack::push<user<protect_t<T>>>(L, std::move(pw.value));
return stack::push(L, c_closure(cf, closures));
}
static int push(lua_State* L, const protect_t<T>& pw) {
lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>>;
int closures = stack::push<user<protect_t<T>>>(L, pw.value);
return stack::push(L, c_closure(cf, closures));
}
};
template <typename F, typename G>
struct pusher<property_wrapper<F, G>, std::enable_if_t<!std::is_void<F>::value && !std::is_void<G>::value>> {
static int push(lua_State* L, property_wrapper<F, G>&& pw) {
return stack::push(L, sol::overload(std::move(pw.read), std::move(pw.write)));
}
static int push(lua_State* L, const property_wrapper<F, G>& pw) {
return stack::push(L, sol::overload(pw.read, pw.write));
}
};
template <typename F>
struct pusher<property_wrapper<F, void>> {
static int push(lua_State* L, property_wrapper<F, void>&& pw) {
return stack::push(L, std::move(pw.read));
}
static int push(lua_State* L, const property_wrapper<F, void>& pw) {
return stack::push(L, pw.read);
}
};
template <typename F>
struct pusher<property_wrapper<void, F>> {
static int push(lua_State* L, property_wrapper<void, F>&& pw) {
return stack::push(L, std::move(pw.write));
}
static int push(lua_State* L, const property_wrapper<void, F>& pw) {
return stack::push(L, pw.write);
}
};
template <typename T>
struct pusher<var_wrapper<T>> {
static int push(lua_State* L, var_wrapper<T>&& vw) {
return stack::push(L, std::move(vw.value));
}
static int push(lua_State* L, const var_wrapper<T>& vw) {
return stack::push(L, vw.value);
}
};
template <typename... Functions>
struct pusher<factory_wrapper<Functions...>> {
static int push(lua_State* L, const factory_wrapper<Functions...>& fw) {
typedef function_detail::overloaded_function<0, Functions...> F;
pusher<function_sig<>>{}.set_fx<F>(L, fw.functions);
return 1;
}
static int push(lua_State* L, factory_wrapper<Functions...>&& fw) {
typedef function_detail::overloaded_function<0, Functions...> F;
pusher<function_sig<>>{}.set_fx<F>(L, std::move(fw.functions));
return 1;
}
static int push(lua_State* L, const factory_wrapper<Functions...>& set, function_detail::call_indicator) {
typedef function_detail::overloaded_function<1, Functions...> F;
pusher<function_sig<>>{}.set_fx<F>(L, set.functions);
return 1;
}
static int push(lua_State* L, factory_wrapper<Functions...>&& set, function_detail::call_indicator) {
typedef function_detail::overloaded_function<1, Functions...> F;
pusher<function_sig<>>{}.set_fx<F>(L, std::move(set.functions));
return 1;
}
};
template <>
struct pusher<no_construction> {
static int push(lua_State* L, no_construction) {
lua_CFunction cf = &function_detail::no_construction_error;
return stack::push(L, cf);
}
static int push(lua_State* L, no_construction c, function_detail::call_indicator) {
return push(L, c);
}
};
template <typename T, typename... Lists>
struct pusher<detail::tagged<T, constructor_list<Lists...>>> {
static int push(lua_State* L, detail::tagged<T, constructor_list<Lists...>>) {
lua_CFunction cf = call_detail::construct<T, Lists...>;
return stack::push(L, cf);
}
};
template <typename T, typename... Fxs>
struct pusher<detail::tagged<T, constructor_wrapper<Fxs...>>> {
template <typename C>
static int push(lua_State* L, C&& c) {
lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>>;
int closures = stack::push<user<constructor_wrapper<Fxs...>>>(L, std::forward<C>(c));
return stack::push(L, c_closure(cf, closures));
}
};
template <typename T>
struct pusher<detail::tagged<T, destructor_wrapper<void>>> {
static int push(lua_State* L, destructor_wrapper<void>) {
lua_CFunction cf = detail::usertype_alloc_destroy<T>;
return stack::push(L, cf);
}
};
template <typename T, typename Fx>
struct pusher<detail::tagged<T, destructor_wrapper<Fx>>> {
static int push(lua_State* L, destructor_wrapper<Fx> c) {
lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>>;
int closures = stack::push<user<T>>(L, std::move(c));
return stack::push(L, c_closure(cf, closures));
}
};
} // stack
} // sol
// end of sol/function_types.hpp
namespace sol {
template <typename base_t>
class basic_function : public base_t {
private:
void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const {
lua_callk(base_t::lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), 0, nullptr);
}
template<std::size_t... I, typename... Ret>
auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) const {
luacall(n, lua_size<std::tuple<Ret...>>::value);
return stack::pop<std::tuple<Ret...>>(base_t::lua_state());
}
template<std::size_t I, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) const {
luacall(n, lua_size<Ret>::value);
return stack::pop<Ret>(base_t::lua_state());
}
template <std::size_t I>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const {
luacall(n, 0);
}
function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const {
int stacksize = lua_gettop(base_t::lua_state());
int firstreturn = (std::max)(1, stacksize - static_cast<int>(n));
luacall(n, LUA_MULTRET);
int poststacksize = lua_gettop(base_t::lua_state());
int returncount = poststacksize - (firstreturn - 1);
return function_result(base_t::lua_state(), firstreturn, returncount);
}
public:
basic_function() = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_function>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
basic_function(T&& r) noexcept : base_t(std::forward<T>(r)) {
#ifdef SOL_CHECK_ARGUMENTS
if (!is_function<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
stack::check<basic_function>(base_t::lua_state(), -1, type_panic);
}
#endif // Safety
}
basic_function(const basic_function&) = default;
basic_function& operator=(const basic_function&) = default;
basic_function(basic_function&&) = default;
basic_function& operator=(basic_function&&) = default;
basic_function(const stack_reference& r) : basic_function(r.lua_state(), r.stack_index()) {}
basic_function(stack_reference&& r) : basic_function(r.lua_state(), r.stack_index()) {}
template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
basic_function(lua_State* L, T&& r) : basic_function(L, sol::ref_index(r.registry_index())) {}
basic_function(lua_State* L, int index = -1) : base_t(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
stack::check<basic_function>(L, index, type_panic);
#endif // Safety
}
basic_function(lua_State* L, ref_index index) : base_t(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
auto pp = stack::push_pop(*this);
stack::check<basic_function>(L, -1, type_panic);
#endif // Safety
}
template<typename... Args>
function_result operator()(Args&&... args) const {
return call<>(std::forward<Args>(args)...);
}
template<typename... Ret, typename... Args>
decltype(auto) operator()(types<Ret...>, Args&&... args) const {
return call<Ret...>(std::forward<Args>(args)...);
}
template<typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) const {
base_t::push();
int pushcount = stack::multi_push_reference(base_t::lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
}
};
namespace stack {
template<typename Signature>
struct getter<std::function<Signature>> {
typedef meta::bind_traits<Signature> fx_t;
typedef typename fx_t::args_list args_lists;
typedef meta::tuple_types<typename fx_t::return_type> return_types;
template<typename... Args, typename... Ret>
static std::function<Signature> get_std_func(types<Ret...>, types<Args...>, lua_State* L, int index) {
sol::function f(L, index);
auto fx = [f, L, index](Args&&... args) -> meta::return_type_t<Ret...> {
return f.call<Ret...>(std::forward<Args>(args)...);
};
return std::move(fx);
}
template<typename... FxArgs>
static std::function<Signature> get_std_func(types<void>, types<FxArgs...>, lua_State* L, int index) {
sol::function f(L, index);
auto fx = [f, L, index](FxArgs&&... args) -> void {
f(std::forward<FxArgs>(args)...);
};
return std::move(fx);
}
template<typename... FxArgs>
static std::function<Signature> get_std_func(types<>, types<FxArgs...> t, lua_State* L, int index) {
return get_std_func(types<void>(), t, L, index);
}
static std::function<Signature> get(lua_State* L, int index, record& tracking) {
tracking.last = 1;
tracking.used += 1;
type t = type_of(L, index);
if (t == type::none || t == type::lua_nil) {
return nullptr;
}
return get_std_func(return_types(), args_lists(), L, index);
}
};
} // stack
} // sol
// end of sol/function.hpp
// beginning of sol/protected_function.hpp
// beginning of sol/protected_function_result.hpp
namespace sol {
struct protected_function_result : public proxy_base<protected_function_result> {
private:
lua_State* L;
int index;
int returncount;
int popcount;
call_status err;
template <typename T>
decltype(auto) tagged_get(types<sol::optional<T>>) const {
if (!valid()) {
return sol::optional<T>(nullopt);
}
return stack::get<sol::optional<T>>(L, index);
}
template <typename T>
decltype(auto) tagged_get(types<T>) const {
#ifdef SOL_CHECK_ARGUMENTS
if (!valid()) {
type_panic(L, index, type_of(L, index), type::none);
}
#endif // Check Argument Safety
return stack::get<T>(L, index);
}
optional<error> tagged_get(types<optional<error>>) const {
if (valid()) {
return nullopt;
}
return error(detail::direct_error, stack::get<std::string>(L, index));
}
error tagged_get(types<error>) const {
#ifdef SOL_CHECK_ARGUMENTS
if (valid()) {
type_panic(L, index, type_of(L, index), type::none);
}
#endif // Check Argument Safety
return error(detail::direct_error, stack::get<std::string>(L, index));
}
public:
protected_function_result() = default;
protected_function_result(lua_State* Ls, int idx = -1, int retnum = 0, int popped = 0, call_status pferr = call_status::ok) noexcept : L(Ls), index(idx), returncount(retnum), popcount(popped), err(pferr) {
}
protected_function_result(const protected_function_result&) = default;
protected_function_result& operator=(const protected_function_result&) = default;
protected_function_result(protected_function_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.L = nullptr;
o.index = 0;
o.returncount = 0;
o.popcount = 0;
o.err = call_status::runtime;
}
protected_function_result& operator=(protected_function_result&& o) noexcept {
L = o.L;
index = o.index;
returncount = o.returncount;
popcount = o.popcount;
err = o.err;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.L = nullptr;
o.index = 0;
o.returncount = 0;
o.popcount = 0;
o.err = call_status::runtime;
return *this;
}
call_status status() const noexcept {
return err;
}
bool valid() const noexcept {
return status() == call_status::ok || status() == call_status::yielded;
}
template<typename T>
decltype(auto) get() const {
return tagged_get(types<meta::unqualified_t<T>>());
}
lua_State* lua_state() const noexcept { return L; };
int stack_index() const noexcept { return index; };
~protected_function_result() {
stack::remove(L, index, popcount);
}
};
} // sol
// end of sol/protected_function_result.hpp
#include <algorithm>
namespace sol {
namespace detail {
inline reference& handler_storage() {
static sol::reference h;
return h;
}
struct handler {
const reference& target;
int stackindex;
handler(const reference& target) : target(target), stackindex(0) {
if (target.valid()) {
stackindex = lua_gettop(target.lua_state()) + 1;
target.push();
}
}
bool valid() const { return stackindex != 0; }
~handler() {
if (valid()) {
lua_remove(target.lua_state(), stackindex);
}
}
};
}
template <typename base_t>
class basic_protected_function : public base_t {
public:
static reference& get_default_handler() {
return detail::handler_storage();
}
static void set_default_handler(const reference& ref) {
detail::handler_storage() = ref;
}
static void set_default_handler(reference&& ref) {
detail::handler_storage() = std::move(ref);
}
private:
call_status luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, detail::handler& h) const {
return static_cast<call_status>(lua_pcallk(base_t::lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), h.stackindex, 0, nullptr));
}
template<std::size_t... I, typename... Ret>
auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, detail::handler& h) const {
luacall(n, sizeof...(Ret), h);
return stack::pop<std::tuple<Ret...>>(base_t::lua_state());
}
template<std::size_t I, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, detail::handler& h) const {
luacall(n, 1, h);
return stack::pop<Ret>(base_t::lua_state());
}
template <std::size_t I>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, detail::handler& h) const {
luacall(n, 0, h);
}
protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, detail::handler& h) const {
int stacksize = lua_gettop(base_t::lua_state());
int poststacksize = stacksize;
int firstreturn = 1;
int returncount = 0;
call_status code = call_status::ok;
#ifndef SOL_NO_EXCEPTIONS
auto onexcept = [&](const char* error) {
h.stackindex = 0;
if (h.target.valid()) {
h.target.push();
stack::push(base_t::lua_state(), error);
lua_call(base_t::lua_state(), 1, 1);
}
else {
stack::push(base_t::lua_state(), error);
}
};
try {
#endif // No Exceptions
firstreturn = (std::max)(1, static_cast<int>(stacksize - n - static_cast<int>(h.valid())));
code = luacall(n, LUA_MULTRET, h);
poststacksize = lua_gettop(base_t::lua_state()) - static_cast<int>(h.valid());
returncount = poststacksize - (firstreturn - 1);
#ifndef SOL_NO_EXCEPTIONS
}
// Handle C++ errors thrown from C++ functions bound inside of lua
catch (const char* error) {
onexcept(error);
firstreturn = lua_gettop(base_t::lua_state());
return protected_function_result(base_t::lua_state(), firstreturn, 0, 1, call_status::runtime);
}
catch (const std::exception& error) {
onexcept(error.what());
firstreturn = lua_gettop(base_t::lua_state());
return protected_function_result(base_t::lua_state(), firstreturn, 0, 1, call_status::runtime);
}
catch (...) {
onexcept("caught (...) unknown error during protected_function call");
firstreturn = lua_gettop(base_t::lua_state());
return protected_function_result(base_t::lua_state(), firstreturn, 0, 1, call_status::runtime);
}
#endif // No Exceptions
return protected_function_result(base_t::lua_state(), firstreturn, returncount, returncount, code);
}
public:
reference error_handler;
basic_protected_function() = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_protected_function>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
basic_protected_function(T&& r) noexcept : base_t(std::forward<T>(r)) {
#ifdef SOL_CHECK_ARGUMENTS
if (!is_function<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
stack::check<basic_protected_function>(base_t::lua_state(), -1, type_panic);
}
#endif // Safety
}
basic_protected_function(const basic_protected_function&) = default;
basic_protected_function& operator=(const basic_protected_function&) = default;
basic_protected_function(basic_protected_function&&) = default;
basic_protected_function& operator=(basic_protected_function&&) = default;
basic_protected_function(const basic_function<base_t>& b, reference eh = get_default_handler()) : base_t(b), error_handler(std::move(eh)) {}
basic_protected_function(basic_function<base_t>&& b, reference eh = get_default_handler()) : base_t(std::move(b)), error_handler(std::move(eh)) {}
basic_protected_function(const stack_reference& r, reference eh = get_default_handler()) : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {}
basic_protected_function(stack_reference&& r, reference eh = get_default_handler()) : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {}
template <typename Super>
basic_protected_function(proxy_base<Super>&& p, reference eh = get_default_handler()) : basic_protected_function(p.operator basic_function<base_t>(), std::move(eh)) {}
template <typename Super>
basic_protected_function(const proxy_base<Super>& p, reference eh = get_default_handler()) : basic_protected_function(p.operator basic_function<base_t>(), std::move(eh)) {}
template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
basic_protected_function(lua_State* L, T&& r, reference eh) : basic_protected_function(L, sol::ref_index(r.registry_index()), std::move(eh)) {}
basic_protected_function(lua_State* L, int index = -1, reference eh = get_default_handler()) : base_t(L, index), error_handler(std::move(eh)) {
#ifdef SOL_CHECK_ARGUMENTS
stack::check<basic_protected_function>(L, index, type_panic);
#endif // Safety
}
basic_protected_function(lua_State* L, ref_index index, reference eh = get_default_handler()) : base_t(L, index), error_handler(std::move(eh)) {
#ifdef SOL_CHECK_ARGUMENTS
auto pp = stack::push_pop(*this);
stack::check<basic_protected_function>(L, -1, type_panic);
#endif // Safety
}
template<typename... Args>
protected_function_result operator()(Args&&... args) const {
return call<>(std::forward<Args>(args)...);
}
template<typename... Ret, typename... Args>
decltype(auto) operator()(types<Ret...>, Args&&... args) const {
return call<Ret...>(std::forward<Args>(args)...);
}
template<typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) const {
detail::handler h(error_handler);
base_t::push();
int pushcount = stack::multi_push_reference(base_t::lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
}
};
} // sol
// end of sol/protected_function.hpp
namespace sol {
struct stack_proxy : public proxy_base<stack_proxy> {
private:
lua_State* L;
int index;
public:
stack_proxy() : L(nullptr), index(0) {}
stack_proxy(lua_State* L, int index) : L(L), index(index) {}
template<typename T>
decltype(auto) get() const {
return stack::get<T>(L, stack_index());
}
int push() const {
return push(L);
}
int push(lua_State* Ls) const {
lua_pushvalue(Ls, index);
return 1;
}
lua_State* lua_state() const { return L; }
int stack_index() const { return index; }
template<typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
return get<function>().template call<Ret...>(std::forward<Args>(args)...);
}
template<typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
};
namespace stack {
template <>
struct getter<stack_proxy> {
static stack_proxy get(lua_State* L, int index = -1) {
return stack_proxy(L, index);
}
};
template <>
struct pusher<stack_proxy> {
static int push(lua_State*, const stack_proxy& ref) {
return ref.push();
}
};
} // stack
namespace detail {
template <>
struct is_speshul<function_result> : std::true_type {};
template <>
struct is_speshul<protected_function_result> : std::true_type {};
template <std::size_t I, typename... Args, typename T>
stack_proxy get(types<Args...>, index_value<0>, index_value<I>, const T& fr) {
return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}
template <std::size_t I, std::size_t N, typename Arg, typename... Args, typename T, meta::enable<meta::boolean<(N > 0)>> = meta::enabler>
stack_proxy get(types<Arg, Args...>, index_value<N>, index_value<I>, const T& fr) {
return get(types<Args...>(), index_value<N - 1>(), index_value<I + lua_size<Arg>::value>(), fr);
}
}
template <>
struct tie_size<function_result> : std::integral_constant<std::size_t, SIZE_MAX> {};
template <std::size_t I>
stack_proxy get(const function_result& fr) {
return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}
template <std::size_t I, typename... Args>
stack_proxy get(types<Args...> t, const function_result& fr) {
return detail::get(t, index_value<I>(), index_value<0>(), fr);
}
template <>
struct tie_size<protected_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {};
template <std::size_t I>
stack_proxy get(const protected_function_result& fr) {
return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}
template <std::size_t I, typename... Args>
stack_proxy get(types<Args...> t, const protected_function_result& fr) {
return detail::get(t, index_value<I>(), index_value<0>(), fr);
}
} // sol
// end of sol/stack_proxy.hpp
#include <limits>
#include <iterator>
namespace sol {
template <bool is_const>
struct va_iterator : std::iterator<std::random_access_iterator_tag, std::conditional_t<is_const, const stack_proxy, stack_proxy>, std::ptrdiff_t, std::conditional_t<is_const, const stack_proxy*, stack_proxy*>, std::conditional_t<is_const, const stack_proxy, stack_proxy>> {
typedef std::iterator<std::random_access_iterator_tag, std::conditional_t<is_const, const stack_proxy, stack_proxy>, std::ptrdiff_t, std::conditional_t<is_const, const stack_proxy*, stack_proxy*>, std::conditional_t<is_const, const stack_proxy, stack_proxy>> base_t;
typedef typename base_t::reference reference;
typedef typename base_t::pointer pointer;
typedef typename base_t::value_type value_type;
typedef typename base_t::difference_type difference_type;
typedef typename base_t::iterator_category iterator_category;
lua_State* L;
int index;
int stacktop;
stack_proxy sp;
va_iterator() : L(nullptr), index((std::numeric_limits<int>::max)()), stacktop((std::numeric_limits<int>::max)()) {}
va_iterator(lua_State* luastate, int idx, int topidx) : L(luastate), index(idx), stacktop(topidx), sp(luastate, idx) {}
reference operator*() {
return stack_proxy(L, index);
}
pointer operator->() {
sp = stack_proxy(L, index);
return &sp;
}
va_iterator& operator++ () {
++index;
return *this;
}
va_iterator operator++ (int) {
auto r = *this;
this->operator ++();
return r;
}
va_iterator& operator-- () {
--index;
return *this;
}
va_iterator operator-- (int) {
auto r = *this;
this->operator --();
return r;
}
va_iterator& operator+= (difference_type idx) {
index += static_cast<int>(idx);
return *this;
}
va_iterator& operator-= (difference_type idx) {
index -= static_cast<int>(idx);
return *this;
}
difference_type operator- (const va_iterator& r) const {
return index - r.index;
}
va_iterator operator+ (difference_type idx) const {
va_iterator r = *this;
r += idx;
return r;
}
reference operator[](difference_type idx) {
return stack_proxy(L, index + static_cast<int>(idx));
}
bool operator==(const va_iterator& r) const {
if (stacktop == (std::numeric_limits<int>::max)()) {
return r.index == r.stacktop;
}
else if (r.stacktop == (std::numeric_limits<int>::max)()) {
return index == stacktop;
}
return index == r.index;
}
bool operator != (const va_iterator& r) const {
return !(this->operator==(r));
}
bool operator < (const va_iterator& r) const {
return index < r.index;
}
bool operator > (const va_iterator& r) const {
return index > r.index;
}
bool operator <= (const va_iterator& r) const {
return index <= r.index;
}
bool operator >= (const va_iterator& r) const {
return index >= r.index;
}
};
template <bool is_const>
inline va_iterator<is_const> operator+(typename va_iterator<is_const>::difference_type n, const va_iterator<is_const>& r) {
return r + n;
}
struct variadic_args {
private:
lua_State* L;
int index;
int stacktop;
public:
typedef stack_proxy reference_type;
typedef stack_proxy value_type;
typedef stack_proxy* pointer;
typedef std::ptrdiff_t difference_type;
typedef std::size_t size_type;
typedef va_iterator<false> iterator;
typedef va_iterator<true> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
variadic_args() = default;
variadic_args(lua_State* luastate, int stackindex = -1) : L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lua_gettop(luastate)) {}
variadic_args(const variadic_args&) = default;
variadic_args& operator=(const variadic_args&) = default;
variadic_args(variadic_args&& o) : L(o.L), index(o.index), stacktop(o.stacktop) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.L = nullptr;
o.index = 0;
o.stacktop = 0;
}
variadic_args& operator=(variadic_args&& o) {
L = o.L;
index = o.index;
stacktop = o.stacktop;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but will be thorough
o.L = nullptr;
o.index = 0;
o.stacktop = 0;
return *this;
}
iterator begin() { return iterator(L, index, stacktop + 1); }
iterator end() { return iterator(L, stacktop + 1, stacktop + 1); }
const_iterator begin() const { return const_iterator(L, index, stacktop + 1); }
const_iterator end() const { return const_iterator(L, stacktop + 1, stacktop + 1); }
const_iterator cbegin() const { return begin(); }
const_iterator cend() const { return end(); }
reverse_iterator rbegin() { return std::reverse_iterator<iterator>(begin()); }
reverse_iterator rend() { return std::reverse_iterator<iterator>(end()); }
const_reverse_iterator rbegin() const { return std::reverse_iterator<const_iterator>(begin()); }
const_reverse_iterator rend() const { return std::reverse_iterator<const_iterator>(end()); }
const_reverse_iterator crbegin() const { return std::reverse_iterator<const_iterator>(cbegin()); }
const_reverse_iterator crend() const { return std::reverse_iterator<const_iterator>(cend()); }
int push() const {
return push(L);
}
int push(lua_State* target) const {
int pushcount = 0;
for (int i = index; i <= stacktop; ++i) {
lua_pushvalue(L, i);
pushcount += 1;
}
if (target != L) {
lua_xmove(L, target, pushcount);
}
return pushcount;
}
template<typename T>
decltype(auto) get(difference_type start = 0) const {
return stack::get<T>(L, index + static_cast<int>(start));
}
stack_proxy operator[](difference_type start) const {
return stack_proxy(L, index + static_cast<int>(start));
}
lua_State* lua_state() const { return L; };
int stack_index() const { return index; };
int leftover_count() const { return stacktop - (index - 1); }
int top() const { return stacktop; }
};
namespace stack {
template <>
struct getter<variadic_args> {
static variadic_args get(lua_State* L, int index, record& tracking) {
tracking.last = 0;
return variadic_args(L, index);
}
};
template <>
struct pusher<variadic_args> {
static int push(lua_State* L, const variadic_args& ref) {
return ref.push(L);
}
};
} // stack
} // sol
// end of sol/variadic_args.hpp
namespace sol {
template <typename R = reference, bool should_pop = !std::is_base_of<stack_reference, R>::value, typename T>
R make_reference(lua_State* L, T&& value) {
int backpedal = stack::push(L, std::forward<T>(value));
R r = stack::get<R>(L, -backpedal);
if (should_pop) {
lua_pop(L, backpedal);
}
return r;
}
template <typename T, typename R = reference, bool should_pop = !std::is_base_of<stack_reference, R>::value, typename... Args>
R make_reference(lua_State* L, Args&&... args) {
int backpedal = stack::push<T>(L, std::forward<Args>(args)...);
R r = stack::get<R>(L, -backpedal);
if (should_pop) {
lua_pop(L, backpedal);
}
return r;
}
template <typename base_t>
class basic_object : public base_t {
private:
template<typename T>
decltype(auto) as_stack(std::true_type) const {
return stack::get<T>(base_t::lua_state(), base_t::stack_index());
}
template<typename T>
decltype(auto) as_stack(std::false_type) const {
base_t::push();
return stack::pop<T>(base_t::lua_state());
}
template<typename T>
bool is_stack(std::true_type) const {
return stack::check<T>(base_t::lua_state(), base_t::stack_index(), no_panic);
}
template<typename T>
bool is_stack(std::false_type) const {
int r = base_t::registry_index();
if (r == LUA_REFNIL)
return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
if (r == LUA_NOREF)
return false;
auto pp = stack::push_pop(*this);
return stack::check<T>(base_t::lua_state(), -1, no_panic);
}
template <bool invert_and_pop = false>
basic_object(std::integral_constant<bool, invert_and_pop>, lua_State* L, int index = -1) noexcept : base_t(L, index) {
if (invert_and_pop) {
lua_pop(L, -index);
}
}
public:
basic_object() noexcept = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
basic_object(T&& r) : base_t(std::forward<T>(r)) {}
basic_object(lua_nil_t r) : base_t(r) {}
basic_object(const basic_object&) = default;
basic_object(basic_object&&) = default;
basic_object(const stack_reference& r) noexcept : basic_object(r.lua_state(), r.stack_index()) {}
basic_object(stack_reference&& r) noexcept : basic_object(r.lua_state(), r.stack_index()) {}
template <typename Super>
basic_object(const proxy_base<Super>& r) noexcept : basic_object(r.operator basic_object()) {}
template <typename Super>
basic_object(proxy_base<Super>&& r) noexcept : basic_object(r.operator basic_object()) {}
basic_object(lua_State* L, int index = -1) noexcept : base_t(L, index) {}
basic_object(lua_State* L, ref_index index) noexcept : base_t(L, index) {}
template <typename T, typename... Args>
basic_object(lua_State* L, in_place_type_t<T>, Args&&... args) noexcept : basic_object(std::integral_constant<bool, !std::is_base_of<stack_reference, base_t>::value>(), L, -stack::push<T>(L, std::forward<Args>(args)...)) {}
template <typename T, typename... Args>
basic_object(lua_State* L, in_place_t, T&& arg, Args&&... args) noexcept : basic_object(L, in_place<T>, std::forward<T>(arg), std::forward<Args>(args)...) {}
basic_object& operator=(const basic_object&) = default;
basic_object& operator=(basic_object&&) = default;
basic_object& operator=(const base_t& b) { base_t::operator=(b); return *this; }
basic_object& operator=(base_t&& b) { base_t::operator=(std::move(b)); return *this; }
template <typename Super>
basic_object& operator=(const proxy_base<Super>& r) { this->operator=(r.operator basic_object()); return *this; }
template <typename Super>
basic_object& operator=(proxy_base<Super>&& r) { this->operator=(r.operator basic_object()); return *this; }
template<typename T>
decltype(auto) as() const {
return as_stack<T>(std::is_same<base_t, stack_reference>());
}
template<typename T>
bool is() const {
return is_stack<T>(std::is_same<base_t, stack_reference>());
}
};
template <typename T>
object make_object(lua_State* L, T&& value) {
return make_reference<object, true>(L, std::forward<T>(value));
}
template <typename T, typename... Args>
object make_object(lua_State* L, Args&&... args) {
return make_reference<T, object, true>(L, std::forward<Args>(args)...);
}
inline bool operator==(const object& lhs, const lua_nil_t&) {
return !lhs.valid();
}
inline bool operator==(const lua_nil_t&, const object& rhs) {
return !rhs.valid();
}
inline bool operator!=(const object& lhs, const lua_nil_t&) {
return lhs.valid();
}
inline bool operator!=(const lua_nil_t&, const object& rhs) {
return rhs.valid();
}
} // sol
// end of sol/object.hpp
namespace sol {
template<typename Table, typename Key>
struct proxy : public proxy_base<proxy<Table, Key>> {
private:
typedef meta::condition<meta::is_specialization_of<std::tuple, Key>, Key, std::tuple<meta::condition<std::is_array<meta::unqualified_t<Key>>, Key&, meta::unqualified_t<Key>>>> key_type;
template<typename T, std::size_t... I>
decltype(auto) tuple_get(std::index_sequence<I...>) const {
return tbl.template traverse_get<T>(std::get<I>(key)...);
}
template<std::size_t... I, typename T>
void tuple_set(std::index_sequence<I...>, T&& value) {
tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
}
public:
Table tbl;
key_type key;
template<typename T>
proxy(Table table, T&& k) : tbl(table), key(std::forward<T>(k)) {}
template<typename T>
proxy& set(T&& item) {
tuple_set(std::make_index_sequence<std::tuple_size<meta::unqualified_t<key_type>>::value>(), std::forward<T>(item));
return *this;
}
template<typename... Args>
proxy& set_function(Args&&... args) {
tbl.set_function(key, std::forward<Args>(args)...);
return *this;
}
template<typename U, meta::enable<meta::neg<is_lua_reference<meta::unwrap_unqualified_t<U>>>, meta::is_callable<meta::unwrap_unqualified_t<U>>> = meta::enabler>
proxy& operator=(U&& other) {
return set_function(std::forward<U>(other));
}
template<typename U, meta::disable<meta::neg<is_lua_reference<meta::unwrap_unqualified_t<U>>>, meta::is_callable<meta::unwrap_unqualified_t<U>>> = meta::enabler>
proxy& operator=(U&& other) {
return set(std::forward<U>(other));
}
template<typename T>
decltype(auto) get() const {
return tuple_get<T>(std::make_index_sequence<std::tuple_size<meta::unqualified_t<key_type>>::value>());
}
template<typename T>
decltype(auto) get_or(T&& otherwise) const {
typedef decltype(get<T>()) U;
sol::optional<U> option = get<sol::optional<U>>();
if (option) {
return static_cast<U>(option.value());
}
return static_cast<U>(std::forward<T>(otherwise));
}
template<typename T, typename D>
decltype(auto) get_or(D&& otherwise) const {
sol::optional<T> option = get<sol::optional<T>>();
if (option) {
return static_cast<T>(option.value());
}
return static_cast<T>(std::forward<D>(otherwise));
}
template <typename K>
decltype(auto) operator[](K&& k) const {
auto keys = meta::tuplefy(key, std::forward<K>(k));
return proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template<typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
return get<function>().template call<Ret...>(std::forward<Args>(args)...);
}
template<typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
bool valid() const {
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(tbl.lua_state(), key, lua_gettop(tbl.lua_state()));
lua_pop(tbl.lua_state(), p.levels);
return p;
}
};
template<typename Table, typename Key, typename T>
inline bool operator==(T&& left, const proxy<Table, Key>& right) {
typedef decltype(stack::get<T>(nullptr, 0)) U;
return right.template get<optional<U>>() == left;
}
template<typename Table, typename Key, typename T>
inline bool operator==(const proxy<Table, Key>& right, T&& left) {
typedef decltype(stack::get<T>(nullptr, 0)) U;
return right.template get<optional<U>>() == left;
}
template<typename Table, typename Key, typename T>
inline bool operator!=(T&& left, const proxy<Table, Key>& right) {
typedef decltype(stack::get<T>(nullptr, 0)) U;
return right.template get<optional<U>>() == left;
}
template<typename Table, typename Key, typename T>
inline bool operator!=(const proxy<Table, Key>& right, T&& left) {
typedef decltype(stack::get<T>(nullptr, 0)) U;
return right.template get<optional<U>>() == left;
}
template<typename Table, typename Key>
inline bool operator==(lua_nil_t, const proxy<Table, Key>& right) {
return !right.valid();
}
template<typename Table, typename Key>
inline bool operator==(const proxy<Table, Key>& right, lua_nil_t) {
return !right.valid();
}
template<typename Table, typename Key>
inline bool operator!=(lua_nil_t, const proxy<Table, Key>& right) {
return right.valid();
}
template<typename Table, typename Key>
inline bool operator!=(const proxy<Table, Key>& right, lua_nil_t) {
return right.valid();
}
namespace stack {
template <typename Table, typename Key>
struct pusher<proxy<Table, Key>> {
static int push(lua_State* L, const proxy<Table, Key>& p) {
sol::reference r = p;
return r.push(L);
}
};
} // stack
} // sol
// end of sol/proxy.hpp
// beginning of sol/usertype.hpp
// beginning of sol/usertype_metatable.hpp
// beginning of sol/deprecate.hpp
#ifndef SOL_DEPRECATED
#ifdef _MSC_VER
#define SOL_DEPRECATED __declspec(deprecated)
#elif __GNUC__
#define SOL_DEPRECATED __attribute__((deprecated))
#else
#define SOL_DEPRECATED [[deprecated]]
#endif // compilers
#endif // SOL_DEPRECATED
namespace sol {
namespace detail {
template <typename T>
struct SOL_DEPRECATED deprecate_type {
using type = T;
};
} // detail
} // sol
// end of sol/deprecate.hpp
#include <unordered_map>
#include <cstdio>
namespace sol {
namespace usertype_detail {
typedef void(*base_walk)(lua_State*, bool&, int&, string_detail::string_shim&);
typedef int(*member_search)(lua_State*, void*, int);
struct call_information {
member_search first;
member_search second;
int runtime_target;
call_information(member_search first, member_search second) : call_information(first, second, -1) {}
call_information(member_search first, member_search second, int runtimetarget) : first(first), second(second), runtime_target(runtimetarget) {}
};
typedef std::unordered_map<std::string, call_information> mapping_t;
}
struct usertype_metatable_core {
usertype_detail::mapping_t mapping;
lua_CFunction indexfunc;
lua_CFunction newindexfunc;
std::vector<object> runtime;
bool mustindex;
usertype_metatable_core(lua_CFunction ifx, lua_CFunction nifx) :
mapping(), indexfunc(ifx),
newindexfunc(nifx), runtime(), mustindex(false)
{
}
usertype_metatable_core(const usertype_metatable_core&) = default;
usertype_metatable_core(usertype_metatable_core&&) = default;
usertype_metatable_core& operator=(const usertype_metatable_core&) = default;
usertype_metatable_core& operator=(usertype_metatable_core&&) = default;
};
namespace usertype_detail {
const lua_Integer toplevel_magic = static_cast<lua_Integer>(0x00020001);
struct add_destructor_tag {};
struct check_destructor_tag {};
struct verified_tag {} const verified{};
template <typename T>
struct is_non_factory_constructor : std::false_type {};
template <typename... Args>
struct is_non_factory_constructor<constructors<Args...>> : std::true_type {};
template <typename... Args>
struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type {};
template <>
struct is_non_factory_constructor<no_construction> : std::true_type {};
template <typename T>
struct is_constructor : is_non_factory_constructor<T> {};
template <typename... Args>
struct is_constructor<factory_wrapper<Args...>> : std::true_type {};
template <typename... Args>
using has_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>;
template <typename T>
struct is_destructor : std::false_type {};
template <typename Fx>
struct is_destructor<destructor_wrapper<Fx>> : std::true_type {};
template <typename... Args>
using has_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>;
struct no_comp {
template <typename A, typename B>
bool operator()(A&&, B&&) const {
return false;
}
};
inline bool is_indexer(string_detail::string_shim s) {
return s == name_of(meta_function::index) || s == name_of(meta_function::new_index);
}
inline bool is_indexer(meta_function mf) {
return mf == meta_function::index || mf == meta_function::new_index;
}
inline bool is_indexer(call_construction) {
return false;
}
inline bool is_indexer(base_classes_tag) {
return false;
}
inline auto make_shim(string_detail::string_shim s) {
return s;
}
inline auto make_shim(call_construction) {
return string_detail::string_shim(name_of(meta_function::call_function));
}
inline auto make_shim(meta_function mf) {
return string_detail::string_shim(name_of(mf));
}
inline auto make_shim(base_classes_tag) {
return string_detail::string_shim(detail::base_class_cast_key());
}
template <typename Arg>
inline std::string make_string(Arg&& arg) {
string_detail::string_shim s = make_shim(arg);
return std::string(s.c_str(), s.size());
}
template <typename N>
inline luaL_Reg make_reg(N&& n, lua_CFunction f) {
luaL_Reg l{ make_shim(std::forward<N>(n)).c_str(), f };
return l;
}
struct registrar {
registrar() = default;
registrar(const registrar&) = default;
registrar(registrar&&) = default;
registrar& operator=(const registrar&) = default;
registrar& operator=(registrar&&) = default;
virtual int push_um(lua_State* L) = 0;
virtual ~registrar() {}
};
inline int runtime_object_call(lua_State* L, void*, int runtimetarget) {
usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(2));
std::vector<object>& runtime = umc.runtime;
return stack::push(L, runtime[runtimetarget]);
}
template <bool is_index>
inline int indexing_fail(lua_State* L) {
if (is_index) {
#if 0//def SOL_SAFE_USERTYPE
auto maybeaccessor = stack::get<optional<string_detail::string_shim>>(L, is_index ? -1 : -2);
string_detail::string_shim accessor = maybeaccessor.value_or(string_detail::string_shim("(unknown)"));
return luaL_error(L, "sol: attempt to index (get) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.c_str());
#else
// With runtime extensibility, we can't hard-error things. They have to return nil, like regular table types, unfortunately...
return stack::push(L, lua_nil);
#endif
}
else {
auto maybeaccessor = stack::get<optional<string_detail::string_shim>>(L, is_index ? -1 : -2);
string_detail::string_shim accessor = maybeaccessor.value_or(string_detail::string_shim("(unknown)"));
return luaL_error(L, "sol: attempt to index (set) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.c_str());
}
}
template <typename T, bool is_simple>
inline int metatable_newindex(lua_State* L) {
int isnum = 0;
lua_Integer magic = lua_tointegerx(L, upvalue_index(4), &isnum);
if (isnum != 0 && magic == toplevel_magic) {
auto non_simple = [&L]() {
if (is_simple)
return;
usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(2));
bool mustindex = umc.mustindex;
if (!mustindex)
return;
std::string accessor = stack::get<std::string>(L, 2);
mapping_t& mapping = umc.mapping;
std::vector<object>& runtime = umc.runtime;
int target = static_cast<int>(runtime.size());
auto preexistingit = mapping.find(accessor);
if (preexistingit == mapping.cend()) {
runtime.emplace_back(L, 3);
mapping.emplace_hint(mapping.cend(), accessor, call_information(&runtime_object_call, &runtime_object_call, target));
}
else {
target = preexistingit->second.runtime_target;
runtime[target] = sol::object(L, 3);
preexistingit->second = call_information(&runtime_object_call, &runtime_object_call, target);
}
};
non_simple();
for (std::size_t i = 0; i < 4; lua_pop(L, 1), ++i) {
const char* metakey = nullptr;
switch (i) {
case 0:
metakey = &usertype_traits<T*>::metatable()[0];
break;
case 1:
metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
break;
case 2:
metakey = &usertype_traits<T>::user_metatable()[0];
break;
case 3:
default:
metakey = &usertype_traits<T>::metatable()[0];
break;
}
luaL_getmetatable(L, metakey);
int tableindex = lua_gettop(L);
if (type_of(L, tableindex) == type::lua_nil) {
continue;
}
stack::set_field<false, true>(L, stack_reference(L, 2), stack_reference(L, 3), tableindex);
}
lua_settop(L, 0);
return 0;
}
return indexing_fail<false>(L);
}
template <bool is_index, typename Base>
static void walk_single_base(lua_State* L, bool& found, int& ret, string_detail::string_shim&) {
if (found)
return;
const char* metakey = &usertype_traits<Base>::metatable()[0];
const char* gcmetakey = &usertype_traits<Base>::gc_table()[0];
const char* basewalkkey = is_index ? detail::base_class_index_propogation_key() : detail::base_class_new_index_propogation_key();
luaL_getmetatable(L, metakey);
if (type_of(L, -1) == type::lua_nil) {
lua_pop(L, 1);
return;
}
stack::get_field(L, basewalkkey);
if (type_of(L, -1) == type::lua_nil) {
lua_pop(L, 2);
return;
}
lua_CFunction basewalkfunc = stack::pop<lua_CFunction>(L);
lua_pop(L, 1);
stack::get_field<true>(L, gcmetakey);
int value = basewalkfunc(L);
if (value > -1) {
found = true;
ret = value;
}
}
template <bool is_index, typename... Bases>
static void walk_all_bases(lua_State* L, bool& found, int& ret, string_detail::string_shim& accessor) {
(void)L;
(void)found;
(void)ret;
(void)accessor;
(void)detail::swallow{ 0, (walk_single_base<is_index, Bases>(L, found, ret, accessor), 0)... };
}
template <typename T, typename Op>
inline int operator_wrap(lua_State* L) {
auto maybel = stack::check_get<T>(L, 1);
if (maybel) {
auto mayber = stack::check_get<T>(L, 2);
if (mayber) {
auto& l = *maybel;
auto& r = *mayber;
if (std::is_same<no_comp, Op>::value) {
return stack::push(L, detail::ptr(l) == detail::ptr(r));
}
else {
Op op;
return stack::push(L, (detail::ptr(l) == detail::ptr(r)) || op(detail::deref(l), detail::deref(r)));
}
}
}
return stack::push(L, false);
}
template <typename T, typename Op, typename Supports, typename Regs, meta::enable<Supports> = meta::enabler>
inline void make_reg_op(Regs& l, int& index, const char* name) {
l[index] = { name, &operator_wrap<T, Op> };
++index;
}
template <typename T, typename Op, typename Supports, typename Regs, meta::disable<Supports> = meta::enabler>
inline void make_reg_op(Regs&, int&, const char*) {
// Do nothing if there's no support
}
} // usertype_detail
template <typename T>
struct clean_type {
typedef std::conditional_t<std::is_array<meta::unqualified_t<T>>::value, T&, std::decay_t<T>> type;
};
template <typename T>
using clean_type_t = typename clean_type<T>::type;
template <typename T, typename IndexSequence, typename... Tn>
struct usertype_metatable : usertype_detail::registrar {};
template <typename T, std::size_t... I, typename... Tn>
struct usertype_metatable<T, std::index_sequence<I...>, Tn...> : usertype_metatable_core, usertype_detail::registrar {
typedef std::make_index_sequence<sizeof...(I) * 2> indices;
typedef std::index_sequence<I...> half_indices;
typedef std::array<luaL_Reg, sizeof...(Tn) / 2 + 1 + 3> regs_t;
typedef std::tuple<Tn...> RawTuple;
typedef std::tuple<clean_type_t<Tn> ...> Tuple;
template <std::size_t Idx>
struct check_binding : is_variable_binding<meta::unqualified_tuple_element_t<Idx, Tuple>> {};
Tuple functions;
lua_CFunction destructfunc;
lua_CFunction callconstructfunc;
lua_CFunction indexbase;
lua_CFunction newindexbase;
usertype_detail::base_walk indexbaseclasspropogation;
usertype_detail::base_walk newindexbaseclasspropogation;
void* baseclasscheck;
void* baseclasscast;
bool secondarymeta;
bool hasequals;
bool hasless;
bool haslessequals;
template <std::size_t Idx, meta::enable<std::is_same<lua_CFunction, meta::unqualified_tuple_element<Idx + 1, RawTuple>>> = meta::enabler>
lua_CFunction make_func() const {
return std::get<Idx + 1>(functions);
}
template <std::size_t Idx, meta::disable<std::is_same<lua_CFunction, meta::unqualified_tuple_element<Idx + 1, RawTuple>>> = meta::enabler>
lua_CFunction make_func() const {
const auto& name = std::get<Idx>(functions);
return (usertype_detail::make_shim(name) == "__newindex") ? &call<Idx + 1, false> : &call<Idx + 1, true>;
}
static bool contains_variable() {
typedef meta::any<check_binding<(I * 2 + 1)>...> has_variables;
return has_variables::value;
}
bool contains_index() const {
bool idx = false;
(void)detail::swallow{ 0, ((idx |= usertype_detail::is_indexer(std::get<I * 2>(functions))), 0) ... };
return idx;
}
int finish_regs(regs_t& l, int& index) {
if (!hasless) {
const char* name = name_of(meta_function::less_than).c_str();
usertype_detail::make_reg_op<T, std::less<>, meta::supports_op_less<T>>(l, index, name);
}
if (!haslessequals) {
const char* name = name_of(meta_function::less_than_or_equal_to).c_str();
usertype_detail::make_reg_op<T, std::less_equal<>, meta::supports_op_less_equal<T>>(l, index, name);
}
if (!hasequals) {
const char* name = name_of(meta_function::equal_to).c_str();
usertype_detail::make_reg_op<T, std::conditional_t<meta::supports_op_equal<T>::value, std::equal_to<>, usertype_detail::no_comp>, std::true_type>(l, index, name);
}
if (destructfunc != nullptr) {
l[index] = { name_of(meta_function::garbage_collect).c_str(), destructfunc };
++index;
}
return index;
}
template <std::size_t Idx, typename F>
void make_regs(regs_t&, int&, call_construction, F&&) {
callconstructfunc = call<Idx + 1>;
secondarymeta = true;
}
template <std::size_t, typename... Bases>
void make_regs(regs_t&, int&, base_classes_tag, bases<Bases...>) {
if (sizeof...(Bases) < 1) {
return;
}
mustindex = true;
(void)detail::swallow{ 0, ((detail::has_derived<Bases>::value = true), 0)... };
static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report.");
static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report.");
baseclasscheck = (void*)&detail::inheritance<T, Bases...>::type_check;
baseclasscast = (void*)&detail::inheritance<T, Bases...>::type_cast;
indexbaseclasspropogation = usertype_detail::walk_all_bases<true, Bases...>;
newindexbaseclasspropogation = usertype_detail::walk_all_bases<false, Bases...>;
}
template <std::size_t Idx, typename N, typename F, typename = std::enable_if_t<!meta::any_same<meta::unqualified_t<N>, base_classes_tag, call_construction>::value>>
void make_regs(regs_t& l, int& index, N&& n, F&&) {
if (is_variable_binding<meta::unqualified_t<F>>::value) {
return;
}
luaL_Reg reg = usertype_detail::make_reg(std::forward<N>(n), make_func<Idx>());
// Returnable scope
// That would be a neat keyword for C++
// returnable { ... };
if (reg.name == name_of(meta_function::equal_to)) {
hasequals = true;
}
if (reg.name == name_of(meta_function::less_than)) {
hasless = true;
}
if (reg.name == name_of(meta_function::less_than_or_equal_to)) {
haslessequals = true;
}
if (reg.name == name_of(meta_function::garbage_collect)) {
destructfunc = reg.func;
return;
}
else if (reg.name == name_of(meta_function::index)) {
indexfunc = reg.func;
mustindex = true;
return;
}
else if (reg.name == name_of(meta_function::new_index)) {
newindexfunc = reg.func;
mustindex = true;
return;
}
l[index] = reg;
++index;
}
template <typename... Args, typename = std::enable_if_t<sizeof...(Args) == sizeof...(Tn)>>
usertype_metatable(Args&&... args) : usertype_metatable_core(&usertype_detail::indexing_fail<true>, &usertype_detail::metatable_newindex<T, false>), usertype_detail::registrar(),
functions(std::forward<Args>(args)...),
destructfunc(nullptr), callconstructfunc(nullptr),
indexbase(&core_indexing_call<true>), newindexbase(&core_indexing_call<false>),
indexbaseclasspropogation(usertype_detail::walk_all_bases<true>), newindexbaseclasspropogation(usertype_detail::walk_all_bases<false>),
baseclasscheck(nullptr), baseclasscast(nullptr),
secondarymeta(contains_variable()),
hasequals(false), hasless(false), haslessequals(false) {
std::initializer_list<typename usertype_detail::mapping_t::value_type> ilist{ {
std::pair<std::string, usertype_detail::call_information>( usertype_detail::make_string(std::get<I * 2>(functions)),
usertype_detail::call_information(&usertype_metatable::real_find_call<I * 2, I * 2 + 1, false>,
&usertype_metatable::real_find_call<I * 2, I * 2 + 1, true>)
)
}... };
this->mapping.insert(ilist);
for (const auto& n : meta_function_names) {
this->mapping.erase(n);
}
this->mustindex = contains_variable() || contains_index();
}
usertype_metatable(const usertype_metatable&) = default;
usertype_metatable(usertype_metatable&&) = default;
usertype_metatable& operator=(const usertype_metatable&) = default;
usertype_metatable& operator=(usertype_metatable&&) = default;
template <std::size_t I0, std::size_t I1, bool is_index>
static int real_find_call(lua_State* L, void* um, int) {
auto& f = *static_cast<usertype_metatable*>(um);
if (is_variable_binding<decltype(std::get<I1>(f.functions))>::value) {
return real_call_with<I1, is_index, true>(L, f);
}
int upvalues = stack::push(L, light<usertype_metatable>(f));
auto cfunc = &call<I1, is_index>;
return stack::push(L, c_closure(cfunc, upvalues));
}
template <bool is_index>
static int real_meta_call(lua_State* L, void* um, int) {
auto& f = *static_cast<usertype_metatable*>(um);
return is_index ? f.indexfunc(L) : f.newindexfunc(L);
}
template <bool is_index, bool toplevel = false>
static int core_indexing_call(lua_State* L) {
usertype_metatable& f = toplevel ? stack::get<light<usertype_metatable>>(L, upvalue_index(1)) : stack::pop<light<usertype_metatable>>(L);
static const int keyidx = -2 + static_cast<int>(is_index);
if (toplevel && stack::get<type>(L, keyidx) != type::string) {
return is_index ? f.indexfunc(L) : f.newindexfunc(L);
}
std::string name = stack::get<std::string>(L, keyidx);
auto memberit = f.mapping.find(name);
if (memberit != f.mapping.cend()) {
const usertype_detail::call_information& ci = memberit->second;
const usertype_detail::member_search& member = is_index ? ci.second : ci.first;
return (member)(L, static_cast<void*>(&f), ci.runtime_target);
}
string_detail::string_shim accessor = name;
int ret = 0;
bool found = false;
// Otherwise, we need to do propagating calls through the bases
if (is_index)
f.indexbaseclasspropogation(L, found, ret, accessor);
else
f.newindexbaseclasspropogation(L, found, ret, accessor);
if (found) {
return ret;
}
return toplevel ? (is_index ? f.indexfunc(L) : f.newindexfunc(L)) : -1;
}
static int real_index_call(lua_State* L) {
return core_indexing_call<true, true>(L);
}
static int real_new_index_call(lua_State* L) {
return core_indexing_call<false, true>(L);
}
template <std::size_t Idx, bool is_index = true, bool is_variable = false>
static int real_call(lua_State* L) {
usertype_metatable& f = stack::get<light<usertype_metatable>>(L, upvalue_index(1));
return real_call_with<Idx, is_index, is_variable>(L, f);
}
template <std::size_t Idx, bool is_index = true, bool is_variable = false>
static int real_call_with(lua_State* L, usertype_metatable& um) {
typedef meta::unqualified_tuple_element_t<Idx - 1, Tuple> K;
typedef meta::unqualified_tuple_element_t<Idx, Tuple> F;
static const int boost =
!usertype_detail::is_non_factory_constructor<F>::value
&& std::is_same<K, call_construction>::value ?
1 : 0;
auto& f = std::get<Idx>(um.functions);
return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f);
}
template <std::size_t Idx, bool is_index = true, bool is_variable = false>
static int call(lua_State* L) {
return detail::static_trampoline<(&real_call<Idx, is_index, is_variable>)>(L);
}
template <std::size_t Idx, bool is_index = true, bool is_variable = false>
static int call_with(lua_State* L) {
return detail::static_trampoline<(&real_call_with<Idx, is_index, is_variable>)>(L);
}
static int index_call(lua_State* L) {
return detail::static_trampoline<(&real_index_call)>(L);
}
static int new_index_call(lua_State* L) {
return detail::static_trampoline<(&real_new_index_call)>(L);
}
virtual int push_um(lua_State* L) override {
return stack::push(L, std::move(*this));
}
~usertype_metatable() override {
}
};
namespace stack {
template <typename T, std::size_t... I, typename... Args>
struct pusher<usertype_metatable<T, std::index_sequence<I...>, Args...>> {
typedef usertype_metatable<T, std::index_sequence<I...>, Args...> umt_t;
typedef typename umt_t::regs_t regs_t;
static umt_t& make_cleanup(lua_State* L, umt_t&& umx) {
// ensure some sort of uniqueness
static int uniqueness = 0;
std::string uniquegcmetakey = usertype_traits<T>::user_gc_metatable();
// std::to_string doesn't exist in android still, with NDK, so this bullshit
// is necessary
// thanks, Android :v
int appended = snprintf(nullptr, 0, "%d", uniqueness);
std::size_t insertionpoint = uniquegcmetakey.length() - 1;
uniquegcmetakey.append(appended, '\0');
char* uniquetarget = &uniquegcmetakey[insertionpoint];
snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness);
++uniqueness;
const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
// Make sure userdata's memory is properly in lua first,
// otherwise all the light userdata we make later will become invalid
stack::push<user<umt_t>>(L, metatable_key, uniquegcmetakey, std::move(umx));
// Create the top level thing that will act as our deleter later on
stack_reference umt(L, -1);
stack::set_field<true>(L, gcmetakey, umt);
umt.pop();
stack::get_field<true>(L, gcmetakey);
return stack::pop<light<umt_t>>(L);
}
static int push(lua_State* L, umt_t&& umx) {
umt_t& um = make_cleanup(L, std::move(umx));
usertype_metatable_core& umc = um;
regs_t value_table{ {} };
int lastreg = 0;
(void)detail::swallow{ 0, (um.template make_regs<(I * 2)>(value_table, lastreg, std::get<(I * 2)>(um.functions), std::get<(I * 2 + 1)>(um.functions)), 0)... };
um.finish_regs(value_table, lastreg);
value_table[lastreg] = { nullptr, nullptr };
regs_t ref_table = value_table;
regs_t unique_table = value_table;
bool hasdestructor = !value_table.empty() && name_of(meta_function::garbage_collect) == value_table[lastreg - 1].name;
if (hasdestructor) {
ref_table[lastreg - 1] = { nullptr, nullptr };
unique_table[lastreg - 1] = { value_table[lastreg - 1].name, detail::unique_destruct<T> };
}
// Now use um
const bool& mustindex = umc.mustindex;
for (std::size_t i = 0; i < 3; ++i) {
// Pointer types, AKA "references" from C++
const char* metakey = nullptr;
luaL_Reg* metaregs = nullptr;
switch (i) {
case 0:
metakey = &usertype_traits<T*>::metatable()[0];
metaregs = ref_table.data();
break;
case 1:
metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
metaregs = unique_table.data();
break;
case 2:
default:
metakey = &usertype_traits<T>::metatable()[0];
metaregs = value_table.data();
break;
}
luaL_newmetatable(L, metakey);
stack_reference t(L, -1);
stack::push(L, make_light(um));
luaL_setfuncs(L, metaregs, 1);
if (um.baseclasscheck != nullptr) {
stack::set_field(L, detail::base_class_check_key(), um.baseclasscheck, t.stack_index());
}
if (um.baseclasscast != nullptr) {
stack::set_field(L, detail::base_class_cast_key(), um.baseclasscast, t.stack_index());
}
stack::set_field(L, detail::base_class_index_propogation_key(), make_closure(um.indexbase, make_light(um), make_light(umc)), t.stack_index());
stack::set_field(L, detail::base_class_new_index_propogation_key(), make_closure(um.newindexbase, make_light(um), make_light(umc)), t.stack_index());
if (mustindex) {
// Basic index pushing: specialize
// index and newindex to give variables and stuff
stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, make_light(um), make_light(umc)), t.stack_index());
stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, make_light(um), make_light(umc)), t.stack_index());
}
else {
// If there's only functions, we can use the fast index version
stack::set_field(L, meta_function::index, t, t.stack_index());
}
// metatable on the metatable
// for call constructor purposes and such
lua_createtable(L, 0, 3);
stack_reference metabehind(L, -1);
if (um.callconstructfunc != nullptr) {
stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, make_light(um), make_light(umc)), metabehind.stack_index());
}
if (um.secondarymeta) {
stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, make_light(um), make_light(umc)), metabehind.stack_index());
stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, make_light(um), make_light(umc)), metabehind.stack_index());
}
stack::set_field(L, metatable_key, metabehind, t.stack_index());
metabehind.pop();
// We want to just leave the table
// in the registry only, otherwise we return it
t.pop();
}
// Now for the shim-table that actually gets assigned to the name
luaL_newmetatable(L, &usertype_traits<T>::user_metatable()[0]);
stack_reference t(L, -1);
stack::push(L, make_light(um));
luaL_setfuncs(L, value_table.data(), 1);
{
lua_createtable(L, 0, 3);
stack_reference metabehind(L, -1);
if (um.callconstructfunc != nullptr) {
stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, make_light(um), make_light(umc)), metabehind.stack_index());
}
stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, make_light(um), make_light(umc), 0, usertype_detail::toplevel_magic), metabehind.stack_index());
stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, make_light(um), make_light(umc), 0, usertype_detail::toplevel_magic), metabehind.stack_index());
stack::set_field(L, metatable_key, metabehind, t.stack_index());
metabehind.pop();
}
return 1;
}
};
} // stack
} // sol
// end of sol/usertype_metatable.hpp
// beginning of sol/simple_usertype_metatable.hpp
namespace sol {
namespace usertype_detail {
struct variable_wrapper {
virtual int index(lua_State* L) = 0;
virtual int new_index(lua_State* L) = 0;
virtual ~variable_wrapper() {};
};
template <typename T, typename F>
struct callable_binding : variable_wrapper {
F fx;
template <typename Arg>
callable_binding(Arg&& arg) : fx(std::forward<Arg>(arg)) {}
virtual int index(lua_State* L) override {
return call_detail::call_wrapped<T, true, true>(L, fx);
}
virtual int new_index(lua_State* L) override {
return call_detail::call_wrapped<T, false, true>(L, fx);
}
};
typedef std::unordered_map<std::string, std::unique_ptr<variable_wrapper>> variable_map;
typedef std::unordered_map<std::string, object> function_map;
struct simple_map {
const char* metakey;
variable_map variables;
function_map functions;
base_walk indexbaseclasspropogation;
base_walk newindexbaseclasspropogation;
simple_map(const char* mkey, base_walk index, base_walk newindex, variable_map&& vars, function_map&& funcs) : metakey(mkey), variables(std::move(vars)), functions(std::move(funcs)), indexbaseclasspropogation(index), newindexbaseclasspropogation(newindex) {}
};
template <bool is_index, bool toplevel = false>
inline int simple_core_indexing_call(lua_State* L) {
simple_map& sm = toplevel ? stack::get<user<simple_map>>(L, upvalue_index(1)) : stack::pop<user<simple_map>>(L);
variable_map& variables = sm.variables;
function_map& functions = sm.functions;
static const int keyidx = -2 + static_cast<int>(is_index);
if (toplevel) {
if (stack::get<type>(L, keyidx) != type::string) {
lua_CFunction indexingfunc = is_index ? stack::get<lua_CFunction>(L, upvalue_index(2)) : stack::get<lua_CFunction>(L, upvalue_index(3));
return indexingfunc(L);
}
}
string_detail::string_shim accessor = stack::get<string_detail::string_shim>(L, keyidx);
std::string accessorkey = accessor.c_str();
auto vit = variables.find(accessorkey);
if (vit != variables.cend()) {
auto& varwrap = *(vit->second);
if (is_index) {
return varwrap.index(L);
}
return varwrap.new_index(L);
}
auto fit = functions.find(accessorkey);
if (fit != functions.cend()) {
auto& func = (fit->second);
return stack::push(L, func);
}
// Check table storage first for a method that works
luaL_getmetatable(L, sm.metakey);
if (type_of(L, -1) != type::lua_nil) {
stack::get_field<false, true>(L, accessor.c_str(), lua_gettop(L));
if (type_of(L, -1) != type::lua_nil) {
// Woo, we found it?
lua_remove(L, -2);
return 1;
}
lua_pop(L, 1);
}
lua_pop(L, 1);
int ret = 0;
bool found = false;
// Otherwise, we need to do propagating calls through the bases
if (is_index) {
sm.indexbaseclasspropogation(L, found, ret, accessor);
}
else {
sm.newindexbaseclasspropogation(L, found, ret, accessor);
}
if (found) {
return ret;
}
if (toplevel) {
lua_CFunction indexingfunc = is_index ? stack::get<lua_CFunction>(L, upvalue_index(2)) : stack::get<lua_CFunction>(L, upvalue_index(3));
return indexingfunc(L);
}
return -1;
}
inline int simple_real_index_call(lua_State* L) {
return simple_core_indexing_call<true, true>(L);
}
inline int simple_real_new_index_call(lua_State* L) {
return simple_core_indexing_call<false, true>(L);
}
inline int simple_index_call(lua_State* L) {
return detail::static_trampoline<(&simple_real_index_call)>(L);
}
inline int simple_new_index_call(lua_State* L) {
return detail::static_trampoline<(&simple_real_new_index_call)>(L);
}
}
struct simple_tag {} const simple{};
template <typename T>
struct simple_usertype_metatable : usertype_detail::registrar {
public:
usertype_detail::function_map registrations;
usertype_detail::variable_map varmap;
object callconstructfunc;
lua_CFunction indexfunc;
lua_CFunction newindexfunc;
lua_CFunction indexbase;
lua_CFunction newindexbase;
usertype_detail::base_walk indexbaseclasspropogation;
usertype_detail::base_walk newindexbaseclasspropogation;
void* baseclasscheck;
void* baseclasscast;
bool mustindex;
bool secondarymeta;
template <typename N>
void insert(N&& n, object&& o) {
std::string key = usertype_detail::make_string(std::forward<N>(n));
auto hint = registrations.find(key);
if (hint == registrations.cend()) {
registrations.emplace_hint(hint, std::move(key), std::move(o));
return;
}
hint->second = std::move(o);
}
template <typename N, typename F, typename... Args>
void insert_prepare(std::true_type, lua_State* L, N&&, F&& f, Args&&... args) {
object o = make_object<F>(L, std::forward<F>(f), function_detail::call_indicator(), std::forward<Args>(args)...);
callconstructfunc = std::move(o);
}
template <typename N, typename F, typename... Args>
void insert_prepare(std::false_type, lua_State* L, N&& n, F&& f, Args&&... args) {
object o = make_object<F>(L, std::forward<F>(f), std::forward<Args>(args)...);
insert(std::forward<N>(n), std::move(o));
}
template <typename N, typename F>
void add_member_function(std::true_type, lua_State* L, N&& n, F&& f) {
insert_prepare(std::is_same<meta::unqualified_t<N>, call_construction>(), L, std::forward<N>(n), std::forward<F>(f), function_detail::class_indicator<T>());
}
template <typename N, typename F>
void add_member_function(std::false_type, lua_State* L, N&& n, F&& f) {
insert_prepare(std::is_same<meta::unqualified_t<N>, call_construction>(), L, std::forward<N>(n), std::forward<F>(f));
}
template <typename N, typename F, meta::enable<meta::is_callable<meta::unwrap_unqualified_t<F>>> = meta::enabler>
void add_function(lua_State* L, N&& n, F&& f) {
object o = make_object(L, as_function_reference(std::forward<F>(f)));
if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
callconstructfunc = std::move(o);
return;
}
insert(std::forward<N>(n), std::move(o));
}
template <typename N, typename F, meta::disable<meta::is_callable<meta::unwrap_unqualified_t<F>>> = meta::enabler>
void add_function(lua_State* L, N&& n, F&& f) {
add_member_function(std::is_member_pointer<meta::unwrap_unqualified_t<F>>(), L, std::forward<N>(n), std::forward<F>(f));
}
template <typename N, typename F, meta::disable<is_variable_binding<meta::unqualified_t<F>>> = meta::enabler>
void add(lua_State* L, N&& n, F&& f) {
add_function(L, std::forward<N>(n), std::forward<F>(f));
}
template <typename N, typename F, meta::enable<is_variable_binding<meta::unqualified_t<F>>> = meta::enabler>
void add(lua_State*, N&& n, F&& f) {
mustindex = true;
secondarymeta = true;
std::string key = usertype_detail::make_string(std::forward<N>(n));
auto o = std::make_unique<usertype_detail::callable_binding<T, std::decay_t<F>>>(std::forward<F>(f));
auto hint = varmap.find(key);
if (hint == varmap.cend()) {
varmap.emplace_hint(hint, std::move(key), std::move(o));
return;
}
hint->second = std::move(o);
}
template <typename N, typename... Fxs>
void add(lua_State* L, N&& n, constructor_wrapper<Fxs...> c) {
object o(L, in_place<detail::tagged<T, constructor_wrapper<Fxs...>>>, std::move(c));
if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
callconstructfunc = std::move(o);
return;
}
insert(std::forward<N>(n), std::move(o));
}
template <typename N, typename... Lists>
void add(lua_State* L, N&& n, constructor_list<Lists...> c) {
object o(L, in_place<detail::tagged<T, constructor_list<Lists...>>>, std::move(c));
if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
callconstructfunc = std::move(o);
return;
}
insert(std::forward<N>(n), std::move(o));
}
template <typename N>
void add(lua_State* L, N&& n, destructor_wrapper<void> c) {
object o(L, in_place<detail::tagged<T, destructor_wrapper<void>>>, std::move(c));
if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
callconstructfunc = std::move(o);
return;
}
insert(std::forward<N>(n), std::move(o));
}
template <typename N, typename Fx>
void add(lua_State* L, N&& n, destructor_wrapper<Fx> c) {
object o(L, in_place<detail::tagged<T, destructor_wrapper<Fx>>>, std::move(c));
if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
callconstructfunc = std::move(o);
return;
}
insert(std::forward<N>(n), std::move(o));
}
template <typename... Bases>
void add(lua_State*, base_classes_tag, bases<Bases...>) {
static_assert(sizeof(usertype_detail::base_walk) <= sizeof(void*), "size of function pointer is greater than sizeof(void*); cannot work on this platform. Please file a bug report.");
if (sizeof...(Bases) < 1) {
return;
}
mustindex = true;
(void)detail::swallow{ 0, ((detail::has_derived<Bases>::value = true), 0)... };
static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file a bug report.");
static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file a bug report.");
baseclasscheck = (void*)&detail::inheritance<T, Bases...>::type_check;
baseclasscast = (void*)&detail::inheritance<T, Bases...>::type_cast;
indexbaseclasspropogation = usertype_detail::walk_all_bases<true, Bases...>;
newindexbaseclasspropogation = usertype_detail::walk_all_bases<false, Bases...>;
}
private:
template<std::size_t... I, typename Tuple>
simple_usertype_metatable(usertype_detail::verified_tag, std::index_sequence<I...>, lua_State* L, Tuple&& args)
: callconstructfunc(lua_nil),
indexfunc(&usertype_detail::indexing_fail<true>), newindexfunc(&usertype_detail::metatable_newindex<T, true>),
indexbase(&usertype_detail::simple_core_indexing_call<true>), newindexbase(&usertype_detail::simple_core_indexing_call<false>),
indexbaseclasspropogation(usertype_detail::walk_all_bases<true>), newindexbaseclasspropogation(&usertype_detail::walk_all_bases<false>),
baseclasscheck(nullptr), baseclasscast(nullptr),
mustindex(false), secondarymeta(false) {
(void)detail::swallow{ 0,
(add(L, detail::forward_get<I * 2>(args), detail::forward_get<I * 2 + 1>(args)),0)...
};
}
template<typename... Args>
simple_usertype_metatable(lua_State* L, usertype_detail::verified_tag v, Args&&... args) : simple_usertype_metatable(v, std::make_index_sequence<sizeof...(Args) / 2>(), L, std::forward_as_tuple(std::forward<Args>(args)...)) {}
template<typename... Args>
simple_usertype_metatable(lua_State* L, usertype_detail::add_destructor_tag, Args&&... args) : simple_usertype_metatable(L, usertype_detail::verified, std::forward<Args>(args)..., "__gc", default_destructor) {}
template<typename... Args>
simple_usertype_metatable(lua_State* L, usertype_detail::check_destructor_tag, Args&&... args) : simple_usertype_metatable(L, meta::condition<meta::all<std::is_destructible<T>, meta::neg<usertype_detail::has_destructor<Args...>>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward<Args>(args)...) {}
public:
simple_usertype_metatable(lua_State* L) : simple_usertype_metatable(L, meta::condition<meta::all<std::is_default_constructible<T>>, decltype(default_constructor), usertype_detail::check_destructor_tag>()) {}
template<typename Arg, typename... Args, meta::disable_any<
meta::any_same<meta::unqualified_t<Arg>,
usertype_detail::verified_tag,
usertype_detail::add_destructor_tag,
usertype_detail::check_destructor_tag
>,
meta::is_specialization_of<constructors, meta::unqualified_t<Arg>>,
meta::is_specialization_of<constructor_wrapper, meta::unqualified_t<Arg>>
> = meta::enabler>
simple_usertype_metatable(lua_State* L, Arg&& arg, Args&&... args) : simple_usertype_metatable(L, meta::condition<meta::all<std::is_default_constructible<T>, meta::neg<usertype_detail::has_constructor<Args...>>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward<Arg>(arg), std::forward<Args>(args)...) {}
template<typename... Args, typename... CArgs>
simple_usertype_metatable(lua_State* L, constructors<CArgs...> constructorlist, Args&&... args) : simple_usertype_metatable(L, usertype_detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {}
template<typename... Args, typename... Fxs>
simple_usertype_metatable(lua_State* L, constructor_wrapper<Fxs...> constructorlist, Args&&... args) : simple_usertype_metatable(L, usertype_detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {}
simple_usertype_metatable(const simple_usertype_metatable&) = default;
simple_usertype_metatable(simple_usertype_metatable&&) = default;
simple_usertype_metatable& operator=(const simple_usertype_metatable&) = default;
simple_usertype_metatable& operator=(simple_usertype_metatable&&) = default;
virtual int push_um(lua_State* L) override {
return stack::push(L, std::move(*this));
}
};
namespace stack {
template <typename T>
struct pusher<simple_usertype_metatable<T>> {
typedef simple_usertype_metatable<T> umt_t;
static usertype_detail::simple_map& make_cleanup(lua_State* L, umt_t& umx) {
static int uniqueness = 0;
std::string uniquegcmetakey = usertype_traits<T>::user_gc_metatable();
// std::to_string doesn't exist in android still, with NDK, so this bullshit
// is necessary
// thanks, Android :v
int appended = snprintf(nullptr, 0, "%d", uniqueness);
std::size_t insertionpoint = uniquegcmetakey.length() - 1;
uniquegcmetakey.append(appended, '\0');
char* uniquetarget = &uniquegcmetakey[insertionpoint];
snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness);
++uniqueness;
const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
stack::push<user<usertype_detail::simple_map>>(L, metatable_key, uniquegcmetakey, &usertype_traits<T>::metatable()[0],
umx.indexbaseclasspropogation, umx.newindexbaseclasspropogation,
std::move(umx.varmap), std::move(umx.registrations)
);
stack_reference stackvarmap(L, -1);
stack::set_field<true>(L, gcmetakey, stackvarmap);
stackvarmap.pop();
stack::get_field<true>(L, gcmetakey);
usertype_detail::simple_map& varmap = stack::pop<light<usertype_detail::simple_map>>(L);
return varmap;
}
static int push(lua_State* L, umt_t&& umx) {
auto& varmap = make_cleanup(L, umx);
bool hasequals = false;
bool hasless = false;
bool haslessequals = false;
auto register_kvp = [&](std::size_t i, stack_reference& t, const std::string& first, object& second) {
if (first == name_of(meta_function::equal_to)) {
hasequals = true;
}
else if (first == name_of(meta_function::less_than)) {
hasless = true;
}
else if (first == name_of(meta_function::less_than_or_equal_to)) {
haslessequals = true;
}
else if (first == name_of(meta_function::index)) {
umx.indexfunc = second.template as<lua_CFunction>();
}
else if (first == name_of(meta_function::new_index)) {
umx.newindexfunc = second.template as<lua_CFunction>();
}
switch (i) {
case 0:
if (first == name_of(meta_function::garbage_collect)) {
return;
}
break;
case 1:
if (first == name_of(meta_function::garbage_collect)) {
stack::set_field(L, first, detail::unique_destruct<T>, t.stack_index());
return;
}
break;
case 2:
default:
break;
}
stack::set_field(L, first, second, t.stack_index());
};
for (std::size_t i = 0; i < 3; ++i) {
// Pointer types, AKA "references" from C++
const char* metakey = nullptr;
switch (i) {
case 0:
metakey = &usertype_traits<T*>::metatable()[0];
break;
case 1:
metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
break;
case 2:
default:
metakey = &usertype_traits<T>::metatable()[0];
break;
}
luaL_newmetatable(L, metakey);
stack_reference t(L, -1);
for (auto& kvp : varmap.functions) {
auto& first = std::get<0>(kvp);
auto& second = std::get<1>(kvp);
register_kvp(i, t, first, second);
}
luaL_Reg opregs[4]{};
int opregsindex = 0;
if (!hasless) {
const char* name = name_of(meta_function::less_than).c_str();
usertype_detail::make_reg_op<T, std::less<>, meta::supports_op_less<T>>(opregs, opregsindex, name);
}
if (!haslessequals) {
const char* name = name_of(meta_function::less_than_or_equal_to).c_str();
usertype_detail::make_reg_op<T, std::less_equal<>, meta::supports_op_less_equal<T>>(opregs, opregsindex, name);
}
if (!hasequals) {
const char* name = name_of(meta_function::equal_to).c_str();
usertype_detail::make_reg_op<T, std::conditional_t<meta::supports_op_equal<T>::value, std::equal_to<>, usertype_detail::no_comp>, std::true_type>(opregs, opregsindex, name);
}
t.push();
luaL_setfuncs(L, opregs, 0);
t.pop();
if (umx.baseclasscheck != nullptr) {
stack::set_field(L, detail::base_class_check_key(), umx.baseclasscheck, t.stack_index());
}
if (umx.baseclasscast != nullptr) {
stack::set_field(L, detail::base_class_cast_key(), umx.baseclasscast, t.stack_index());
}
// Base class propagation features
stack::set_field(L, detail::base_class_index_propogation_key(), umx.indexbase, t.stack_index());
stack::set_field(L, detail::base_class_new_index_propogation_key(), umx.newindexbase, t.stack_index());
if (umx.mustindex) {
// use indexing function
stack::set_field(L, meta_function::index,
make_closure(&usertype_detail::simple_index_call,
make_light(varmap),
umx.indexfunc,
umx.newindexfunc
), t.stack_index());
stack::set_field(L, meta_function::new_index,
make_closure(&usertype_detail::simple_new_index_call,
make_light(varmap),
umx.indexfunc,
umx.newindexfunc
), t.stack_index());
}
else {
// Metatable indexes itself
stack::set_field(L, meta_function::index, t, t.stack_index());
}
// metatable on the metatable
// for call constructor purposes and such
lua_createtable(L, 0, 2 * static_cast<int>(umx.secondarymeta) + static_cast<int>(umx.callconstructfunc.valid()));
stack_reference metabehind(L, -1);
if (umx.callconstructfunc.valid()) {
stack::set_field(L, sol::meta_function::call_function, umx.callconstructfunc, metabehind.stack_index());
}
if (umx.secondarymeta) {
stack::set_field(L, meta_function::index,
make_closure(&usertype_detail::simple_index_call,
make_light(varmap),
umx.indexfunc,
umx.newindexfunc
), metabehind.stack_index());
stack::set_field(L, meta_function::new_index,
make_closure(&usertype_detail::simple_new_index_call,
make_light(varmap),
umx.indexfunc,
umx.newindexfunc
), metabehind.stack_index());
}
stack::set_field(L, metatable_key, metabehind, t.stack_index());
metabehind.pop();
t.pop();
}
// Now for the shim-table that actually gets pushed
luaL_newmetatable(L, &usertype_traits<T>::user_metatable()[0]);
stack_reference t(L, -1);
for (auto& kvp : varmap.functions) {
auto& first = std::get<0>(kvp);
auto& second = std::get<1>(kvp);
register_kvp(2, t, first, second);
}
{
lua_createtable(L, 0, 2 + static_cast<int>(umx.callconstructfunc.valid()));
stack_reference metabehind(L, -1);
if (umx.callconstructfunc.valid()) {
stack::set_field(L, sol::meta_function::call_function, umx.callconstructfunc, metabehind.stack_index());
}
// use indexing function
stack::set_field(L, meta_function::index,
make_closure(&usertype_detail::simple_index_call,
make_light(varmap),
umx.indexfunc,
umx.newindexfunc,
usertype_detail::toplevel_magic
), metabehind.stack_index());
stack::set_field(L, meta_function::new_index,
make_closure(&usertype_detail::simple_new_index_call,
make_light(varmap),
umx.indexfunc,
umx.newindexfunc,
usertype_detail::toplevel_magic
), metabehind.stack_index());
stack::set_field(L, metatable_key, metabehind, t.stack_index());
metabehind.pop();
}
// Don't pop the table when we're done;
// return it
return 1;
}
};
} // stack
} // sol
// end of sol/simple_usertype_metatable.hpp
// beginning of sol/container_usertype_metatable.hpp
namespace sol {
namespace detail {
template <typename T>
struct has_find {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C> static one test(decltype(&C::find));
template <typename C> static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_push_back {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C> static one test(decltype(std::declval<C>().push_back(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
template <typename C> static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_clear {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C> static one test(decltype(&C::clear));
template <typename C> static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
struct has_insert {
private:
typedef std::array<char, 1> one;
typedef std::array<char, 2> two;
template <typename C> static one test(decltype(std::declval<C>().insert(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
template <typename C> static two test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
template <typename T>
T& get_first(const T& t) {
return std::forward<T>(t);
}
template <typename A, typename B>
decltype(auto) get_first(const std::pair<A, B>& t) {
return t.first;
}
template <typename C, typename I, meta::enable<has_find<meta::unqualified_t<C>>> = meta::enabler>
auto find(C& c, I&& i) {
return c.find(std::forward<I>(i));
}
template <typename C, typename I, meta::disable<has_find<meta::unqualified_t<C>>> = meta::enabler>
auto find(C& c, I&& i) {
using std::begin;
using std::end;
return std::find_if(begin(c), end(c), [&i](auto&& x) {
return i == get_first(x);
});
}
}
template <typename Raw, typename C = void>
struct container_usertype_metatable {
typedef meta::has_key_value_pair<meta::unqualified_t<Raw>> is_associative;
typedef meta::unqualified_t<Raw> T;
typedef typename T::iterator I;
typedef std::conditional_t<is_associative::value, typename T::value_type, std::pair<std::size_t, typename T::value_type>> KV;
typedef typename KV::first_type K;
typedef typename KV::second_type V;
typedef std::remove_reference_t<decltype(*std::declval<I&>())> IR;
struct iter {
T& source;
I it;
iter(T& source, I it) : source(source), it(std::move(it)) {}
};
static auto& get_src(lua_State* L) {
#ifdef SOL_SAFE_USERTYPE
auto p = stack::check_get<T*>(L, 1);
if (!p || p.value() == nullptr) {
luaL_error(L, "sol: 'self' argument is not the proper type (pass 'self' as first argument with ':' or call on proper type)");
}
return *p.value();
#else
return stack::get<T>(L, 1);
#endif // Safe getting with error
}
static int real_index_call_associative(std::true_type, lua_State* L) {
auto k = stack::check_get<K>(L, 2);
if (k) {
auto& src = get_src(L);
using std::end;
auto it = detail::find(src, *k);
if (it != end(src)) {
auto& v = *it;
return stack::push_reference(L, v.second);
}
}
else {
auto maybename = stack::check_get<string_detail::string_shim>(L, 2);
if (maybename) {
auto& name = *maybename;
if (name == "add") {
return stack::push(L, &add_call);
}
else if (name == "insert") {
return stack::push(L, &insert_call);
}
else if (name == "clear") {
return stack::push(L, &clear_call);
}
}
}
return stack::push(L, lua_nil);
}
static int real_index_call_associative(std::false_type, lua_State* L) {
auto& src = get_src(L);
auto maybek = stack::check_get<K>(L, 2);
if (maybek) {
using std::begin;
auto it = begin(src);
K k = *maybek;
if (k > src.size() || k < 1) {
return stack::push(L, lua_nil);
}
--k;
std::advance(it, k);
return stack::push_reference(L, *it);
}
else {
auto maybename = stack::check_get<string_detail::string_shim>(L, 2);
if (maybename) {
auto& name = *maybename;
if (name == "add") {
return stack::push(L, &add_call);
}
else if (name == "insert") {
return stack::push(L, &insert_call);
}
else if (name == "clear") {
return stack::push(L, &clear_call);
}
}
}
return stack::push(L, lua_nil);
}
static int real_index_call(lua_State* L) {
return real_index_call_associative(is_associative(), L);
}
static int real_new_index_call_const(std::false_type, std::false_type, lua_State* L) {
return luaL_error(L, "sol: cannot write to a const value type or an immutable iterator (e.g., std::set)");
}
static int real_new_index_call_const(std::false_type, std::true_type, lua_State* L) {
return luaL_error(L, "sol: cannot write to a const value type or an immutable iterator (e.g., std::set)");
}
static int real_new_index_call_const(std::true_type, std::true_type, lua_State* L) {
auto& src = get_src(L);
auto k = stack::check_get<K>(L, 2);
if (k) {
using std::end;
auto it = detail::find(src, *k);
if (it != end(src)) {
auto& v = *it;
v.second = stack::get<V>(L, 3);
}
else {
src.insert(it, { std::move(*k), stack::get<V>(L, 3) });
}
}
return 0;
}
static int real_new_index_call_const(std::true_type, std::false_type, lua_State* L) {
auto& src = get_src(L);
#ifdef SOL_SAFE_USERTYPE
auto maybek = stack::check_get<K>(L, 2);
if (!maybek) {
return 0;
}
K k = *maybek;
#else
K k = stack::get<K>(L, 2);
#endif
using std::begin;
auto it = begin(src);
if (k == src.size()) {
real_add_call_push(std::integral_constant<bool, detail::has_push_back<T>::value>(), L, src, 1);
return 0;
}
--k;
std::advance(it, k);
*it = stack::get<V>(L, 3);
return 0;
}
static int real_new_index_call(lua_State* L) {
return real_new_index_call_const(meta::neg<meta::any<std::is_const<V>, std::is_const<IR>>>(), is_associative(), L);
}
static int real_pairs_next_call_assoc(std::true_type, lua_State* L) {
using std::end;
iter& i = stack::get<user<iter>>(L, 1);
auto& source = i.source;
auto& it = i.it;
if (it == end(source)) {
return 0;
}
int p = stack::multi_push_reference(L, it->first, it->second);
std::advance(it, 1);
return p;
}
static int real_pairs_call_assoc(std::true_type, lua_State* L) {
auto& src = get_src(L);
using std::begin;
stack::push(L, pairs_next_call);
stack::push<user<iter>>(L, src, begin(src));
stack::push(L, 1);
return 3;
}
static int real_pairs_next_call_assoc(std::false_type, lua_State* L) {
using std::end;
iter& i = stack::get<user<iter>>(L, 1);
auto& source = i.source;
auto& it = i.it;
K k = stack::get<K>(L, 2);
if (it == end(source)) {
return 0;
}
int p = stack::multi_push_reference(L, k + 1, *it);
std::advance(it, 1);
return p;
}
static int real_pairs_call_assoc(std::false_type, lua_State* L) {
auto& src = get_src(L);
using std::begin;
stack::push(L, pairs_next_call);
stack::push<user<iter>>(L, src, begin(src));
stack::push(L, 0);
return 3;
}
static int real_pairs_next_call(lua_State* L) {
return real_pairs_next_call_assoc(is_associative(), L);
}
static int real_pairs_call(lua_State* L) {
return real_pairs_call_assoc(is_associative(), L);
}
static int real_length_call(lua_State*L) {
auto& src = get_src(L);
return stack::push(L, src.size());
}
static int real_add_call_insert(std::true_type, lua_State*L, T& src, int boost = 0) {
using std::end;
src.insert(end(src), stack::get<V>(L, 2 + boost));
return 0;
}
static int real_add_call_insert(std::false_type, lua_State*L, T&, int = 0) {
static const std::string& s = detail::demangle<T>();
return luaL_error(L, "sol: cannot call insert on type %s", s.c_str());
}
static int real_add_call_push(std::true_type, lua_State*L, T& src, int boost = 0) {
src.push_back(stack::get<V>(L, 2 + boost));
return 0;
}
static int real_add_call_push(std::false_type, lua_State*L, T& src, int boost = 0) {
return real_add_call_insert(std::integral_constant<bool, detail::has_insert<T>::value>(), L, src, boost);
}
static int real_add_call_associative(std::true_type, lua_State* L) {
return real_insert_call(L);
}
static int real_add_call_associative(std::false_type, lua_State* L) {
auto& src = get_src(L);
return real_add_call_push(std::integral_constant<bool, detail::has_push_back<T>::value>(), L, src);
}
static int real_add_call_capable(std::true_type, lua_State* L) {
return real_add_call_associative(is_associative(), L);
}
static int real_add_call_capable(std::false_type, lua_State* L) {
static const std::string& s = detail::demangle<T>();
return luaL_error(L, "sol: cannot call add on type %s", s.c_str());
}
static int real_add_call(lua_State* L) {
return real_add_call_capable(std::integral_constant<bool, detail::has_push_back<T>::value || detail::has_insert<T>::value>(), L);
}
static int real_insert_call_capable(std::false_type, std::false_type, lua_State*L) {
static const std::string& s = detail::demangle<T>();
return luaL_error(L, "sol: cannot call insert on type %s", s.c_str());
}
static int real_insert_call_capable(std::false_type, std::true_type, lua_State*L) {
return real_insert_call_capable(std::false_type(), std::false_type(), L);
}
static int real_insert_call_capable(std::true_type, std::false_type, lua_State* L) {
using std::begin;
auto& src = get_src(L);
src.insert(std::next(begin(src), stack::get<K>(L, 2)), stack::get<V>(L, 3));
return 0;
}
static int real_insert_call_capable(std::true_type, std::true_type, lua_State* L) {
return real_new_index_call(L);
}
static int real_insert_call(lua_State*L) {
return real_insert_call_capable(std::integral_constant<bool, detail::has_insert<T>::value>(), is_associative(), L);
}
static int real_clear_call_capable(std::false_type, lua_State* L) {
static const std::string& s = detail::demangle<T>();
return luaL_error(L, "sol: cannot call clear on type %s", s.c_str());
}
static int real_clear_call_capable(std::true_type, lua_State* L) {
auto& src = get_src(L);
src.clear();
return 0;
}
static int real_clear_call(lua_State*L) {
return real_clear_call_capable(std::integral_constant<bool, detail::has_clear<T>::value>(), L);
}
static int add_call(lua_State*L) {
return detail::static_trampoline<(&real_add_call)>(L);
}
static int insert_call(lua_State*L) {
return detail::static_trampoline<(&real_insert_call)>(L);
}
static int clear_call(lua_State*L) {
return detail::static_trampoline<(&real_clear_call)>(L);
}
static int length_call(lua_State*L) {
return detail::static_trampoline<(&real_length_call)>(L);
}
static int pairs_next_call(lua_State*L) {
return detail::static_trampoline<(&real_pairs_next_call)>(L);
}
static int pairs_call(lua_State*L) {
return detail::static_trampoline<(&real_pairs_call)>(L);
}
static int index_call(lua_State*L) {
return detail::static_trampoline<(&real_index_call)>(L);
}
static int new_index_call(lua_State*L) {
return detail::static_trampoline<(&real_new_index_call)>(L);
}
};
namespace stack {
namespace stack_detail {
template <typename T>
inline auto container_metatable() {
typedef container_usertype_metatable<std::remove_pointer_t<T>> meta_cumt;
std::array<luaL_Reg, 10> reg = { {
{ "__index", &meta_cumt::index_call },
{ "__newindex", &meta_cumt::new_index_call },
{ "__pairs", &meta_cumt::pairs_call },
{ "__ipairs", &meta_cumt::pairs_call },
{ "__len", &meta_cumt::length_call },
{ "clear", &meta_cumt::clear_call },
{ "insert", &meta_cumt::insert_call },
{ "add", &meta_cumt::add_call },
std::is_pointer<T>::value ? luaL_Reg{ nullptr, nullptr } : luaL_Reg{ "__gc", &detail::usertype_alloc_destroy<T> },
{ nullptr, nullptr }
} };
return reg;
}
template <typename T>
inline auto container_metatable_behind() {
typedef container_usertype_metatable<std::remove_pointer_t<T>> meta_cumt;
std::array<luaL_Reg, 3> reg = { {
{ "__index", &meta_cumt::index_call },
{ "__newindex", &meta_cumt::new_index_call },
{ nullptr, nullptr }
} };
return reg;
}
template <typename T>
struct metatable_setup {
lua_State* L;
metatable_setup(lua_State* L) : L(L) {}
void operator()() {
static const auto reg = container_metatable<T>();
static const auto containerreg = container_metatable_behind<T>();
static const char* metakey = &usertype_traits<T>::metatable()[0];
if (luaL_newmetatable(L, metakey) == 1) {
stack_reference metatable(L, -1);
luaL_setfuncs(L, reg.data(), 0);
lua_createtable(L, 0, static_cast<int>(containerreg.size()));
stack_reference metabehind(L, -1);
luaL_setfuncs(L, containerreg.data(), 0);
stack::set_field(L, metatable_key, metabehind, metatable.stack_index());
metabehind.pop();
}
lua_setmetatable(L, -2);
}
};
}
template<typename T>
struct pusher<T, std::enable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<meta::any<std::is_base_of<reference, meta::unqualified_t<T>>, std::is_base_of<stack_reference, meta::unqualified_t<T>>>>>::value>> {
static int push(lua_State* L, const T& cont) {
stack_detail::metatable_setup<T> fx(L);
return pusher<detail::as_value_tag<T>>{}.push_fx(L, fx, cont);
}
static int push(lua_State* L, T&& cont) {
stack_detail::metatable_setup<T> fx(L);
return pusher<detail::as_value_tag<T>>{}.push_fx(L, fx, std::move(cont));
}
};
template<typename T>
struct pusher<T*, std::enable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<meta::any<std::is_base_of<reference, meta::unqualified_t<T>>, std::is_base_of<stack_reference, meta::unqualified_t<T>>>>>::value>> {
static int push(lua_State* L, T* cont) {
stack_detail::metatable_setup<meta::unqualified_t<std::remove_pointer_t<T>>*> fx(L);
return pusher<detail::as_pointer_tag<T>>{}.push_fx(L, fx, cont);
}
};
} // stack
} // sol
// end of sol/container_usertype_metatable.hpp
namespace sol {
template<typename T>
class usertype {
private:
std::unique_ptr<usertype_detail::registrar, detail::deleter> metatableregister;
template<typename... Args>
usertype(usertype_detail::verified_tag, Args&&... args) : metatableregister(detail::make_unique_deleter<usertype_metatable<T, std::make_index_sequence<sizeof...(Args) / 2>, Args...>, detail::deleter>(std::forward<Args>(args)...)) {}
template<typename... Args>
usertype(usertype_detail::add_destructor_tag, Args&&... args) : usertype(usertype_detail::verified, std::forward<Args>(args)..., "__gc", default_destructor) {}
template<typename... Args>
usertype(usertype_detail::check_destructor_tag, Args&&... args) : usertype(meta::condition<meta::all<std::is_destructible<T>, meta::neg<usertype_detail::has_destructor<Args...>>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward<Args>(args)...) {}
public:
template<typename... Args>
usertype(Args&&... args) : usertype(meta::condition<meta::all<std::is_default_constructible<T>, meta::neg<usertype_detail::has_constructor<Args...>>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward<Args>(args)...) {}
template<typename... Args, typename... CArgs>
usertype(constructors<CArgs...> constructorlist, Args&&... args) : usertype(usertype_detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {}
template<typename... Args, typename... Fxs>
usertype(constructor_wrapper<Fxs...> constructorlist, Args&&... args) : usertype(usertype_detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) {}
template<typename... Args>
usertype(simple_tag, lua_State* L, Args&&... args) : metatableregister(detail::make_unique_deleter<simple_usertype_metatable<T>, detail::deleter>(L, std::forward<Args>(args)...)) {}
usertype_detail::registrar* registrar_data() {
return metatableregister.get();
}
int push(lua_State* L) {
int r = metatableregister->push_um(L);
metatableregister = nullptr;
return r;
}
};
template<typename T>
class simple_usertype : public usertype<T> {
private:
typedef usertype<T> base_t;
lua_State* state;
public:
template<typename... Args>
simple_usertype(lua_State* L, Args&&... args) : base_t(simple, L, std::forward<Args>(args)...), state(L) {}
template <typename N, typename F>
void set(N&& n, F&& f) {
auto meta = static_cast<simple_usertype_metatable<T>*>(base_t::registrar_data());
meta->add(state, n, f);
}
};
namespace stack {
template<typename T>
struct pusher<usertype<T>> {
static int push(lua_State* L, usertype<T>& user) {
return user.push(L);
}
};
} // stack
} // sol
// end of sol/usertype.hpp
// beginning of sol/table_iterator.hpp
namespace sol {
template <typename reference_type>
class basic_table_iterator : public std::iterator<std::input_iterator_tag, std::pair<object, object>> {
private:
typedef std::iterator<std::input_iterator_tag, std::pair<object, object>> base_t;
public:
typedef object key_type;
typedef object mapped_type;
typedef base_t::value_type value_type;
typedef base_t::iterator_category iterator_category;
typedef base_t::difference_type difference_type;
typedef base_t::pointer pointer;
typedef base_t::reference reference;
typedef const value_type& const_reference;
private:
std::pair<object, object> kvp;
reference_type ref;
int tableidx = 0;
int keyidx = 0;
std::ptrdiff_t idx = 0;
public:
basic_table_iterator() : keyidx(-1), idx(-1) {
}
basic_table_iterator(reference_type x) : ref(std::move(x)) {
ref.push();
tableidx = lua_gettop(ref.lua_state());
stack::push(ref.lua_state(), lua_nil);
this->operator++();
if (idx == -1) {
return;
}
--idx;
}
basic_table_iterator& operator++() {
if (idx == -1)
return *this;
if (lua_next(ref.lua_state(), tableidx) == 0) {
idx = -1;
keyidx = -1;
return *this;
}
++idx;
kvp.first = object(ref.lua_state(), -2);
kvp.second = object(ref.lua_state(), -1);
lua_pop(ref.lua_state(), 1);
// leave key on the stack
keyidx = lua_gettop(ref.lua_state());
return *this;
}
basic_table_iterator operator++(int) {
auto saved = *this;
this->operator++();
return saved;
}
reference operator*() {
return kvp;
}
const_reference operator*() const {
return kvp;
}
bool operator== (const basic_table_iterator& right) const {
return idx == right.idx;
}
bool operator!= (const basic_table_iterator& right) const {
return idx != right.idx;
}
~basic_table_iterator() {
if (keyidx != -1) {
stack::remove(ref.lua_state(), keyidx, 1);
}
if (ref.valid()) {
stack::remove(ref.lua_state(), tableidx, 1);
}
}
};
} // sol
// end of sol/table_iterator.hpp
namespace sol {
namespace detail {
template <std::size_t n>
struct clean { lua_State* L; clean(lua_State* luastate) : L(luastate) {} ~clean() { lua_pop(L, static_cast<int>(n)); } };
struct ref_clean { lua_State* L; int& n; ref_clean(lua_State* luastate, int& n) : L(luastate), n(n) {} ~ref_clean() { lua_pop(L, static_cast<int>(n)); } };
inline int fail_on_newindex(lua_State* L) {
return luaL_error(L, "sol: cannot modify the elements of an enumeration table");
}
}
template <bool top_level, typename base_t>
class basic_table_core : public base_t {
friend class state;
friend class state_view;
template <typename... Args>
using is_global = meta::all<meta::boolean<top_level>, meta::is_c_str<Args>...>;
template<typename Fx>
void for_each(std::true_type, Fx&& fx) const {
auto pp = stack::push_pop(*this);
stack::push(base_t::lua_state(), lua_nil);
while (lua_next(base_t::lua_state(), -2)) {
sol::object key(base_t::lua_state(), -2);
sol::object value(base_t::lua_state(), -1);
std::pair<sol::object&, sol::object&> keyvalue(key, value);
auto pn = stack::pop_n(base_t::lua_state(), 1);
fx(keyvalue);
}
}
template<typename Fx>
void for_each(std::false_type, Fx&& fx) const {
auto pp = stack::push_pop(*this);
stack::push(base_t::lua_state(), lua_nil);
while (lua_next(base_t::lua_state(), -2)) {
sol::object key(base_t::lua_state(), -2);
sol::object value(base_t::lua_state(), -1);
auto pn = stack::pop_n(base_t::lua_state(), 1);
fx(key, value);
}
}
template<typename Ret0, typename Ret1, typename... Ret, std::size_t... I, typename Keys>
auto tuple_get(types<Ret0, Ret1, Ret...>, std::index_sequence<0, 1, I...>, Keys&& keys) const
-> decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr)) {
typedef decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr)) Tup;
return Tup(
traverse_get_optional<top_level, Ret0>(meta::is_specialization_of<sol::optional, meta::unqualified_t<Ret0>>(), detail::forward_get<0>(keys)),
traverse_get_optional<top_level, Ret1>(meta::is_specialization_of<sol::optional, meta::unqualified_t<Ret1>>(), detail::forward_get<1>(keys)),
traverse_get_optional<top_level, Ret>(meta::is_specialization_of<sol::optional, meta::unqualified_t<Ret>>(), detail::forward_get<I>(keys))...
);
}
template<typename Ret, std::size_t I, typename Keys>
decltype(auto) tuple_get(types<Ret>, std::index_sequence<I>, Keys&& keys) const {
return traverse_get_optional<top_level, Ret>(meta::is_specialization_of<sol::optional, meta::unqualified_t<Ret>>(), detail::forward_get<I>(keys));
}
template<typename Pairs, std::size_t... I>
void tuple_set(std::index_sequence<I...>, Pairs&& pairs) {
auto pp = stack::push_pop<top_level && (is_global<decltype(detail::forward_get<I * 2>(pairs))...>::value)>(*this);
void(detail::swallow{ (stack::set_field<top_level>(base_t::lua_state(),
detail::forward_get<I * 2>(pairs),
detail::forward_get<I * 2 + 1>(pairs),
lua_gettop(base_t::lua_state())
), 0)... });
}
template <bool global, typename T, typename Key>
decltype(auto) traverse_get_deep(Key&& key) const {
stack::get_field<global>(base_t::lua_state(), std::forward<Key>(key));
return stack::get<T>(base_t::lua_state());
}
template <bool global, typename T, typename Key, typename... Keys>
decltype(auto) traverse_get_deep(Key&& key, Keys&&... keys) const {
stack::get_field<global>(base_t::lua_state(), std::forward<Key>(key));
return traverse_get_deep<false, T>(std::forward<Keys>(keys)...);
}
template <bool global, typename T, std::size_t I, typename Key>
decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key) const {
typedef decltype(stack::get<T>(base_t::lua_state())) R;
auto p = stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), lua_gettop(base_t::lua_state()));
popcount += p.levels;
if (!p.success)
return R(nullopt);
return stack::get<T>(base_t::lua_state());
}
template <bool global, typename T, std::size_t I, typename Key, typename... Keys>
decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key, Keys&&... keys) const {
auto p = I > 0 ? stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), -1) : stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), lua_gettop(base_t::lua_state()));
popcount += p.levels;
if (!p.success)
return T(nullopt);
return traverse_get_deep_optional<false, T, I + 1>(popcount, std::forward<Keys>(keys)...);
}
template <bool global, typename T, typename... Keys>
decltype(auto) traverse_get_optional(std::false_type, Keys&&... keys) const {
detail::clean<sizeof...(Keys)> c(base_t::lua_state());
return traverse_get_deep<top_level, T>(std::forward<Keys>(keys)...);
}
template <bool global, typename T, typename... Keys>
decltype(auto) traverse_get_optional(std::true_type, Keys&&... keys) const {
int popcount = 0;
detail::ref_clean c(base_t::lua_state(), popcount);
return traverse_get_deep_optional<top_level, T, 0>(popcount, std::forward<Keys>(keys)...);
}
template <bool global, typename Key, typename Value>
void traverse_set_deep(Key&& key, Value&& value) const {
stack::set_field<global>(base_t::lua_state(), std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global, typename Key, typename... Keys>
void traverse_set_deep(Key&& key, Keys&&... keys) const {
stack::get_field<global>(base_t::lua_state(), std::forward<Key>(key));
traverse_set_deep<false>(std::forward<Keys>(keys)...);
}
basic_table_core(lua_State* L, detail::global_tag t) noexcept : reference(L, t) { }
public:
typedef basic_table_iterator<base_t> iterator;
typedef iterator const_iterator;
basic_table_core() noexcept : base_t() { }
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<base_t, stack_reference>>, std::is_base_of<base_t, meta::unqualified_t<T>>> = meta::enabler>
basic_table_core(T&& r) noexcept : base_t(std::forward<T>(r)) {
#ifdef SOL_CHECK_ARGUMENTS
if (!is_table<meta::unqualified_t<T>>::value) {
auto pp = stack::push_pop(*this);
stack::check<basic_table_core>(base_t::lua_state(), -1, type_panic);
}
#endif // Safety
}
basic_table_core(const basic_table_core&) = default;
basic_table_core(basic_table_core&&) = default;
basic_table_core& operator=(const basic_table_core&) = default;
basic_table_core& operator=(basic_table_core&&) = default;
basic_table_core(const stack_reference& r) : basic_table_core(r.lua_state(), r.stack_index()) {}
basic_table_core(stack_reference&& r) : basic_table_core(r.lua_state(), r.stack_index()) {}
template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
basic_table_core(lua_State* L, T&& r) : basic_table_core(L, sol::ref_index(r.registry_index())) {}
basic_table_core(lua_State* L, int index = -1) : base_t(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
stack::check<basic_table_core>(L, index, type_panic);
#endif // Safety
}
basic_table_core(lua_State* L, ref_index index) : base_t(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
auto pp = stack::push_pop(*this);
stack::check<basic_table_core>(L, -1, type_panic);
#endif // Safety
}
iterator begin() const {
return iterator(*this);
}
iterator end() const {
return iterator();
}
const_iterator cbegin() const {
return begin();
}
const_iterator cend() const {
return end();
}
template<typename... Ret, typename... Keys>
decltype(auto) get(Keys&&... keys) const {
static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
return tuple_get(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), std::forward_as_tuple(std::forward<Keys>(keys)...));
}
template<typename T, typename Key>
decltype(auto) get_or(Key&& key, T&& otherwise) const {
typedef decltype(get<T>("")) U;
sol::optional<U> option = get<sol::optional<U>>(std::forward<Key>(key));
if (option) {
return static_cast<U>(option.value());
}
return static_cast<U>(std::forward<T>(otherwise));
}
template<typename T, typename Key, typename D>
decltype(auto) get_or(Key&& key, D&& otherwise) const {
sol::optional<T> option = get<sol::optional<T>>(std::forward<Key>(key));
if (option) {
return static_cast<T>(option.value());
}
return static_cast<T>(std::forward<D>(otherwise));
}
template <typename T, typename... Keys>
decltype(auto) traverse_get(Keys&&... keys) const {
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
return traverse_get_optional<top_level, T>(meta::is_specialization_of<sol::optional, meta::unqualified_t<T>>(), std::forward<Keys>(keys)...);
}
template <typename... Keys>
basic_table_core& traverse_set(Keys&&... keys) {
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
auto pn = stack::pop_n(base_t::lua_state(), static_cast<int>(sizeof...(Keys)-2));
traverse_set_deep<top_level>(std::forward<Keys>(keys)...);
return *this;
}
template<typename... Args>
basic_table_core& set(Args&&... args) {
tuple_set(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
return *this;
}
template<typename T>
basic_table_core& set_usertype(usertype<T>& user) {
return set_usertype(usertype_traits<T>::name(), user);
}
template<typename Key, typename T>
basic_table_core& set_usertype(Key&& key, usertype<T>& user) {
return set(std::forward<Key>(key), user);
}
template<typename Class, typename... Args>
basic_table_core& new_usertype(const std::string& name, Args&&... args) {
usertype<Class> utype(std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template<typename Class, typename CTor0, typename... CTor, typename... Args>
basic_table_core& new_usertype(const std::string& name, Args&&... args) {
constructors<types<CTor0, CTor...>> ctor{};
return new_usertype<Class>(name, ctor, std::forward<Args>(args)...);
}
template<typename Class, typename... CArgs, typename... Args>
basic_table_core& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
usertype<Class> utype(ctor, std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template<typename Class, typename... Args>
basic_table_core& new_simple_usertype(const std::string& name, Args&&... args) {
simple_usertype<Class> utype(base_t::lua_state(), std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template<typename Class, typename CTor0, typename... CTor, typename... Args>
basic_table_core& new_simple_usertype(const std::string& name, Args&&... args) {
constructors<types<CTor0, CTor...>> ctor{};
return new_simple_usertype<Class>(name, ctor, std::forward<Args>(args)...);
}
template<typename Class, typename... CArgs, typename... Args>
basic_table_core& new_simple_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
simple_usertype<Class> utype(base_t::lua_state(), ctor, std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template<typename Class, typename... Args>
simple_usertype<Class> create_simple_usertype(Args&&... args) {
simple_usertype<Class> utype(base_t::lua_state(), std::forward<Args>(args)...);
return utype;
}
template<typename Class, typename CTor0, typename... CTor, typename... Args>
simple_usertype<Class> create_simple_usertype(Args&&... args) {
constructors<types<CTor0, CTor...>> ctor{};
return create_simple_usertype<Class>(ctor, std::forward<Args>(args)...);
}
template<typename Class, typename... CArgs, typename... Args>
simple_usertype<Class> create_simple_usertype(constructors<CArgs...> ctor, Args&&... args) {
simple_usertype<Class> utype(base_t::lua_state(), ctor, std::forward<Args>(args)...);
return utype;
}
template<bool read_only = true, typename... Args>
basic_table_core& new_enum(const std::string& name, Args&&... args) {
if (read_only) {
table idx = create_with(std::forward<Args>(args)...);
table x = create_with(
meta_function::new_index, detail::fail_on_newindex,
meta_function::index, idx
);
table target = create_named(name);
target[metatable_key] = x;
}
else {
create_named(name, std::forward<Args>(args)...);
}
return *this;
}
template<typename Fx>
void for_each(Fx&& fx) const {
typedef meta::is_invokable<Fx(std::pair<sol::object, sol::object>)> is_paired;
for_each(is_paired(), std::forward<Fx>(fx));
}
size_t size() const {
auto pp = stack::push_pop(*this);
lua_len(base_t::lua_state(), -1);
return stack::pop<size_t>(base_t::lua_state());
}
bool empty() const {
return cbegin() == cend();
}
template<typename T>
proxy<basic_table_core&, T> operator[](T&& key) & {
return proxy<basic_table_core&, T>(*this, std::forward<T>(key));
}
template<typename T>
proxy<const basic_table_core&, T> operator[](T&& key) const & {
return proxy<const basic_table_core&, T>(*this, std::forward<T>(key));
}
template<typename T>
proxy<basic_table_core, T> operator[](T&& key) && {
return proxy<basic_table_core, T>(*this, std::forward<T>(key));
}
template<typename Sig, typename Key, typename... Args>
basic_table_core& set_function(Key&& key, Args&&... args) {
set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template<typename Key, typename... Args>
basic_table_core& set_function(Key&& key, Args&&... args) {
set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename... Args>
basic_table_core& add(Args&&... args) {
auto pp = stack::push_pop(*this);
(void)detail::swallow{0,
(stack::set_ref(base_t::lua_state(), std::forward<Args>(args)), 0)...
};
return *this;
}
private:
template<typename R, typename... Args, typename Fx, typename Key, typename = std::result_of_t<Fx(Args...)>>
void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) {
set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx));
}
template<typename Fx, typename Key, meta::enable<meta::is_specialization_of<overload_set, meta::unqualified_t<Fx>>> = meta::enabler>
void set_fx(types<>, Key&& key, Fx&& fx) {
set(std::forward<Key>(key), std::forward<Fx>(fx));
}
template<typename Fx, typename Key, typename... Args, meta::disable<meta::is_specialization_of<overload_set, meta::unqualified_t<Fx>>> = meta::enabler>
void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) {
set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...));
}
template<typename... Sig, typename... Args, typename Key>
void set_resolved_function(Key&& key, Args&&... args) {
set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...));
}
public:
static inline table create(lua_State* L, int narr = 0, int nrec = 0) {
lua_createtable(L, narr, nrec);
table result(L);
lua_pop(L, 1);
return result;
}
template <typename Key, typename Value, typename... Args>
static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
lua_createtable(L, narr, nrec);
table result(L);
result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
lua_pop(L, 1);
return result;
}
template <typename... Args>
static inline table create_with(lua_State* L, Args&&... args) {
static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list.");
static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value);
return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...);
}
table create(int narr = 0, int nrec = 0) {
return create(base_t::lua_state(), narr, nrec);
}
template <typename Key, typename Value, typename... Args>
table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename Name>
table create(Name&& name, int narr = 0, int nrec = 0) {
table x = create(base_t::lua_state(), narr, nrec);
this->set(std::forward<Name>(name), x);
return x;
}
template <typename Name, typename Key, typename Value, typename... Args>
table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
this->set(std::forward<Name>(name), x);
return x;
}
template <typename... Args>
table create_with(Args&&... args) {
return create_with(base_t::lua_state(), std::forward<Args>(args)...);
}
template <typename Name, typename... Args>
table create_named(Name&& name, Args&&... args) {
static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value);
return create(std::forward<Name>(name), narr, sizeof...(Args) / 2 - narr, std::forward<Args>(args)...);
}
~basic_table_core() {
}
};
} // sol
// end of sol/table_core.hpp
namespace sol {
typedef table_core<false> table;
} // sol
// end of sol/table.hpp
// beginning of sol/load_result.hpp
namespace sol {
struct load_result : public proxy_base<load_result> {
private:
lua_State* L;
int index;
int returncount;
int popcount;
load_status err;
template <typename T>
decltype(auto) tagged_get(types<sol::optional<T>>) const {
if (!valid()) {
return sol::optional<T>(nullopt);
}
return stack::get<sol::optional<T>>(L, index);
}
template <typename T>
decltype(auto) tagged_get(types<T>) const {
#ifdef SOL_CHECK_ARGUMENTS
if (!valid()) {
type_panic(L, index, type_of(L, index), type::none);
}
#endif // Check Argument Safety
return stack::get<T>(L, index);
}
sol::optional<sol::error> tagged_get(types<sol::optional<sol::error>>) const {
if (valid()) {
return nullopt;
}
return sol::error(detail::direct_error, stack::get<std::string>(L, index));
}
sol::error tagged_get(types<sol::error>) const {
#ifdef SOL_CHECK_ARGUMENTS
if (valid()) {
type_panic(L, index, type_of(L, index), type::none);
}
#endif // Check Argument Safety
return sol::error(detail::direct_error, stack::get<std::string>(L, index));
}
public:
load_result() = default;
load_result(lua_State* Ls, int stackindex = -1, int retnum = 0, int popnum = 0, load_status lerr = load_status::ok) noexcept : L(Ls), index(stackindex), returncount(retnum), popcount(popnum), err(lerr) {
}
load_result(const load_result&) = default;
load_result& operator=(const load_result&) = default;
load_result(load_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.L = nullptr;
o.index = 0;
o.returncount = 0;
o.popcount = 0;
o.err = load_status::syntax;
}
load_result& operator=(load_result&& o) noexcept {
L = o.L;
index = o.index;
returncount = o.returncount;
popcount = o.popcount;
err = o.err;
// Must be manual, otherwise destructor will screw us
// return count being 0 is enough to keep things clean
// but we will be thorough
o.L = nullptr;
o.index = 0;
o.returncount = 0;
o.popcount = 0;
o.err = load_status::syntax;
return *this;
}
load_status status() const noexcept {
return err;
}
bool valid() const noexcept {
return status() == load_status::ok;
}
template<typename T>
T get() const {
return tagged_get(types<meta::unqualified_t<T>>());
}
template<typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
return get<protected_function>().template call<Ret...>(std::forward<Args>(args)...);
}
template<typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
lua_State* lua_state() const noexcept { return L; };
int stack_index() const noexcept { return index; };
~load_result() {
stack::remove(L, index, popcount);
}
};
} // sol
// end of sol/load_result.hpp
namespace sol {
enum class lib : char {
base,
package,
coroutine,
string,
os,
math,
table,
debug,
bit32,
io,
ffi,
jit,
utf8,
count
};
inline std::size_t total_memory_used(lua_State* L) {
std::size_t kb = lua_gc(L, LUA_GCCOUNT, 0);
kb *= 1024;
kb += lua_gc(L, LUA_GCCOUNTB, 0);
return kb;
}
inline protected_function_result default_on_error( lua_State* L, const protected_function_result& pfr ) {
type t = type_of(L, pfr.stack_index());
std::string err = to_string(pfr.status()) + " error";
if (t == type::string) {
err += " ";
err += stack::get<std::string>(L, pfr.stack_index());
}
#ifdef SOL_NO_EXCEPTIONS
if (t != type::nil) {
lua_pop(L, 1);
}
stack::push(L, err);
lua_error(L);
#else
throw error(detail::direct_error, err);
#endif
return pfr;
}
class state_view {
private:
lua_State* L;
table reg;
global_table global;
optional<object> is_loaded_package(const std::string& key) {
auto loaded = reg.traverse_get<optional<object>>("_LOADED", key);
bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>());
if (is53mod)
return loaded;
#if SOL_LUA_VERSION <= 501
auto loaded51 = global.traverse_get<optional<object>>("package", "loaded", key);
bool is51mod = loaded51 && !(loaded51->is<bool>() && !loaded51->as<bool>());
if (is51mod)
return loaded51;
#endif
return nullopt;
}
template <typename T>
void ensure_package(const std::string& key, T&& sr) {
#if SOL_LUA_VERSION <= 501
auto pkg = global["package"];
if (!pkg.valid()) {
pkg = create_table_with("loaded", create_table_with(key, sr));
}
else {
auto ld = pkg["loaded"];
if (!ld.valid()) {
ld = create_table_with(key, sr);
}
else {
ld[key] = sr;
}
}
#endif
auto loaded = reg["_LOADED"];
if (!loaded.valid()) {
loaded = create_table_with(key, sr);
}
else {
loaded[key] = sr;
}
}
template <typename Fx>
object require_core(const std::string& key, Fx&& action, bool create_global = true) {
optional<object> loaded = is_loaded_package(key);
if (loaded && loaded->valid())
return std::move(*loaded);
action();
auto sr = stack::get<stack_reference>(L);
if (create_global)
set(key, sr);
ensure_package(key, sr);
return stack::pop<object>(L);
}
public:
typedef global_table::iterator iterator;
typedef global_table::const_iterator const_iterator;
state_view(lua_State* Ls) :
L(Ls),
reg(Ls, LUA_REGISTRYINDEX),
global(Ls, detail::global_) {
}
state_view(this_state Ls) : state_view(Ls.L){
}
lua_State* lua_state() const {
return L;
}
template<typename... Args>
void open_libraries(Args&&... args) {
static_assert(meta::all_same<lib, Args...>::value, "all types must be libraries");
if (sizeof...(args) == 0) {
luaL_openlibs(L);
return;
}
lib libraries[1 + sizeof...(args)] = { lib::count, std::forward<Args>(args)... };
for (auto&& library : libraries) {
switch (library) {
#if SOL_LUA_VERSION <= 501 && defined(SOL_LUAJIT)
case lib::coroutine:
#endif // luajit opens coroutine base stuff
case lib::base:
luaL_requiref(L, "base", luaopen_base, 1);
lua_pop(L, 1);
break;
case lib::package:
luaL_requiref(L, "package", luaopen_package, 1);
lua_pop(L, 1);
break;
#if !defined(SOL_LUAJIT)
case lib::coroutine:
#if SOL_LUA_VERSION > 501
luaL_requiref(L, "coroutine", luaopen_coroutine, 1);
lua_pop(L, 1);
#endif // Lua 5.2+ only
break;
#endif // Not LuaJIT - comes builtin
case lib::string:
luaL_requiref(L, "string", luaopen_string, 1);
lua_pop(L, 1);
break;
case lib::table:
luaL_requiref(L, "table", luaopen_table, 1);
lua_pop(L, 1);
break;
case lib::math:
luaL_requiref(L, "math", luaopen_math, 1);
lua_pop(L, 1);
break;
case lib::bit32:
#ifdef SOL_LUAJIT
luaL_requiref(L, "bit32", luaopen_bit, 1);
lua_pop(L, 1);
#elif (SOL_LUA_VERSION == 502) || defined(LUA_COMPAT_BITLIB) || defined(LUA_COMPAT_5_2)
luaL_requiref(L, "bit32", luaopen_bit32, 1);
lua_pop(L, 1);
#else
#endif // Lua 5.2 only (deprecated in 5.3 (503)) (Can be turned on with Compat flags)
break;
case lib::io:
luaL_requiref(L, "io", luaopen_io, 1);
lua_pop(L, 1);
break;
case lib::os:
luaL_requiref(L, "os", luaopen_os, 1);
lua_pop(L, 1);
break;
case lib::debug:
luaL_requiref(L, "debug", luaopen_debug, 1);
lua_pop(L, 1);
break;
case lib::utf8:
#if SOL_LUA_VERSION > 502 && !defined(SOL_LUAJIT)
luaL_requiref(L, "utf8", luaopen_utf8, 1);
lua_pop(L, 1);
#endif // Lua 5.3+ only
break;
case lib::ffi:
#ifdef SOL_LUAJIT
luaL_requiref(L, "ffi", luaopen_ffi, 1);
lua_pop(L, 1);
#endif // LuaJIT only
break;
case lib::jit:
#ifdef SOL_LUAJIT
luaL_requiref(L, "jit", luaopen_jit, 1);
lua_pop(L, 1);
#endif // LuaJIT Only
break;
case lib::count:
default:
break;
}
}
}
object require(const std::string& key, lua_CFunction open_function, bool create_global = true) {
luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0);
return stack::pop<object>(L);
}
object require_script(const std::string& key, const std::string& code, bool create_global = true) {
return require_core(key, [this, &code]() {stack::script(L, code); }, create_global);
}
object require_file(const std::string& key, const std::string& filename, bool create_global = true) {
return require_core(key, [this, &filename]() {stack::script_file(L, filename); }, create_global);
}
protected_function_result do_string(const std::string& code) {
load_status x = static_cast<load_status>(luaL_loadstring(L, code.c_str()));
if (x != load_status::ok) {
return protected_function_result(L, -1, 0, 1, static_cast<call_status>(x));
}
protected_function pf(L, -1);
return pf();
}
protected_function_result do_file(const std::string& filename) {
load_status x = static_cast<load_status>(luaL_loadfile(L, filename.c_str()));
if (x != load_status::ok) {
return protected_function_result(L, -1, 0, 1, static_cast<call_status>(x));
}
protected_function pf(L, -1);
return pf();
}
template <typename Fx>
protected_function_result script(const std::string& code, Fx&& on_error) {
protected_function_result pfr = do_string(code);
if (!pfr.valid()) {
return on_error(L, pfr);
}
return pfr;
}
template <typename Fx>
protected_function_result script_file(const std::string& filename, Fx&& on_error) {
protected_function_result pfr = do_file(filename);
if (!pfr.valid()) {
return on_error(L, pfr);
}
return pfr;
}
function_result script(const std::string& code) {
int index = lua_gettop(L);
stack::script(L, code);
int postindex = lua_gettop(L);
int returns = postindex - index;
return function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
function_result script_file(const std::string& filename) {
int index = lua_gettop(L);
stack::script_file(L, filename);
int postindex = lua_gettop(L);
int returns = postindex - index;
return function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
}
load_result load(const std::string& code) {
load_status x = static_cast<load_status>(luaL_loadstring(L, code.c_str()));
return load_result(L, lua_absindex(L, -1), 1, 1, x);
}
load_result load_file(const std::string& filename) {
load_status x = static_cast<load_status>(luaL_loadfile(L, filename.c_str()));
return load_result(L, lua_absindex(L, -1), 1, 1, x);
}
load_result load_buffer(const char *buff, size_t size, const char *name, const char* mode = nullptr) {
load_status x = static_cast<load_status>(luaL_loadbufferx(L, buff, size, name, mode));
return load_result(L, lua_absindex(L, -1), 1, 1, x);
}
iterator begin() const {
return global.begin();
}
iterator end() const {
return global.end();
}
const_iterator cbegin() const {
return global.cbegin();
}
const_iterator cend() const {
return global.cend();
}
global_table globals() const {
return global;
}
table registry() const {
return reg;
}
std::size_t memory_used() const {
return total_memory_used(lua_state());
}
void collect_garbage() {
lua_gc(lua_state(), LUA_GCCOLLECT, 0);
}
operator lua_State* () const {
return lua_state();
}
void set_panic(lua_CFunction panic) {
lua_atpanic(L, panic);
}
template<typename... Args, typename... Keys>
decltype(auto) get(Keys&&... keys) const {
return global.get<Args...>(std::forward<Keys>(keys)...);
}
template<typename T, typename Key>
decltype(auto) get_or(Key&& key, T&& otherwise) const {
return global.get_or(std::forward<Key>(key), std::forward<T>(otherwise));
}
template<typename T, typename Key, typename D>
decltype(auto) get_or(Key&& key, D&& otherwise) const {
return global.get_or<T>(std::forward<Key>(key), std::forward<D>(otherwise));
}
template<typename... Args>
state_view& set(Args&&... args) {
global.set(std::forward<Args>(args)...);
return *this;
}
template<typename T, typename... Keys>
decltype(auto) traverse_get(Keys&&... keys) const {
return global.traverse_get<T>(std::forward<Keys>(keys)...);
}
template<typename... Args>
state_view& traverse_set(Args&&... args) {
global.traverse_set(std::forward<Args>(args)...);
return *this;
}
template<typename T>
state_view& set_usertype(usertype<T>& user) {
return set_usertype(usertype_traits<T>::name(), user);
}
template<typename Key, typename T>
state_view& set_usertype(Key&& key, usertype<T>& user) {
global.set_usertype(std::forward<Key>(key), user);
return *this;
}
template<typename Class, typename... Args>
state_view& new_usertype(const std::string& name, Args&&... args) {
global.new_usertype<Class>(name, std::forward<Args>(args)...);
return *this;
}
template<typename Class, typename CTor0, typename... CTor, typename... Args>
state_view& new_usertype(const std::string& name, Args&&... args) {
global.new_usertype<Class, CTor0, CTor...>(name, std::forward<Args>(args)...);
return *this;
}
template<typename Class, typename... CArgs, typename... Args>
state_view& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
global.new_usertype<Class>(name, ctor, std::forward<Args>(args)...);
return *this;
}
template<typename Class, typename... Args>
state_view& new_simple_usertype(const std::string& name, Args&&... args) {
global.new_simple_usertype<Class>(name, std::forward<Args>(args)...);
return *this;
}
template<typename Class, typename CTor0, typename... CTor, typename... Args>
state_view& new_simple_usertype(const std::string& name, Args&&... args) {
global.new_simple_usertype<Class, CTor0, CTor...>(name, std::forward<Args>(args)...);
return *this;
}
template<typename Class, typename... CArgs, typename... Args>
state_view& new_simple_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
global.new_simple_usertype<Class>(name, ctor, std::forward<Args>(args)...);
return *this;
}
template<typename Class, typename... Args>
simple_usertype<Class> create_simple_usertype(Args&&... args) {
return global.create_simple_usertype<Class>(std::forward<Args>(args)...);
}
template<typename Class, typename CTor0, typename... CTor, typename... Args>
simple_usertype<Class> create_simple_usertype(Args&&... args) {
return global.create_simple_usertype<Class, CTor0, CTor...>(std::forward<Args>(args)...);
}
template<typename Class, typename... CArgs, typename... Args>
simple_usertype<Class> create_simple_usertype(constructors<CArgs...> ctor, Args&&... args) {
return global.create_simple_usertype<Class>(ctor, std::forward<Args>(args)...);
}
template<bool read_only = true, typename... Args>
state_view& new_enum(const std::string& name, Args&&... args) {
global.new_enum<read_only>(name, std::forward<Args>(args)...);
return *this;
}
template <typename Fx>
void for_each(Fx&& fx) {
global.for_each(std::forward<Fx>(fx));
}
template<typename T>
proxy<global_table&, T> operator[](T&& key) {
return global[std::forward<T>(key)];
}
template<typename T>
proxy<const global_table&, T> operator[](T&& key) const {
return global[std::forward<T>(key)];
}
template<typename Sig, typename... Args, typename Key>
state_view& set_function(Key&& key, Args&&... args) {
global.set_function<Sig>(std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template<typename... Args, typename Key>
state_view& set_function(Key&& key, Args&&... args) {
global.set_function(std::forward<Key>(key), std::forward<Args>(args)...);
return *this;
}
template <typename Name>
table create_table(Name&& name, int narr = 0, int nrec = 0) {
return global.create(std::forward<Name>(name), narr, nrec);
}
template <typename Name, typename Key, typename Value, typename... Args>
table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return global.create(std::forward<Name>(name), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename Name, typename... Args>
table create_named_table(Name&& name, Args&&... args) {
table x = global.create_with(std::forward<Args>(args)...);
global.set(std::forward<Name>(name), x);
return x;
}
table create_table(int narr = 0, int nrec = 0) {
return create_table(lua_state(), narr, nrec);
}
template <typename Key, typename Value, typename... Args>
table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return create_table(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename... Args>
table create_table_with(Args&&... args) {
return create_table_with(lua_state(), std::forward<Args>(args)...);
}
static inline table create_table(lua_State* L, int narr = 0, int nrec = 0) {
return global_table::create(L, narr, nrec);
}
template <typename Key, typename Value, typename... Args>
static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return global_table::create(L, narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename... Args>
static inline table create_table_with(lua_State* L, Args&&... args) {
return global_table::create_with(L, std::forward<Args>(args)...);
}
};
} // sol
// end of sol/state_view.hpp
namespace sol {
inline int default_at_panic(lua_State* L) {
#ifdef SOL_NO_EXCEPTIONS
(void)L;
return -1;
#else
const char* message = lua_tostring(L, -1);
if (message) {
std::string err = message;
lua_pop(L, 1);
throw error(err);
}
throw error(std::string("An unexpected error occurred and forced the lua state to call atpanic"));
#endif
}
inline int default_error_handler(lua_State*L) {
using namespace sol;
std::string msg = "An unknown error has triggered the default error handler";
optional<string_detail::string_shim> maybetopmsg = stack::check_get<string_detail::string_shim>(L, 1);
if (maybetopmsg) {
const string_detail::string_shim& topmsg = maybetopmsg.value();
msg.assign(topmsg.c_str(), topmsg.size());
}
luaL_traceback(L, L, msg.c_str(), 1);
optional<string_detail::string_shim> maybetraceback = stack::check_get<string_detail::string_shim>(L, -1);
if (maybetraceback) {
const string_detail::string_shim& traceback = maybetraceback.value();
msg.assign(traceback.c_str(), traceback.size());
}
return stack::push(L, msg);
}
class state : private std::unique_ptr<lua_State, void(*)(lua_State*)>, public state_view {
private:
typedef std::unique_ptr<lua_State, void(*)(lua_State*)> unique_base;
public:
state(lua_CFunction panic = default_at_panic) : unique_base(luaL_newstate(), lua_close),
state_view(unique_base::get()) {
set_panic(panic);
stack::luajit_exception_handler(unique_base::get());
}
state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr) : unique_base(lua_newstate(alfunc, alpointer), lua_close),
state_view(unique_base::get()) {
set_panic(panic);
sol::protected_function::set_default_handler(sol::object(lua_state(), in_place, default_error_handler));
stack::luajit_exception_handler(unique_base::get());
}
state(const state&) = delete;
state(state&&) = default;
state& operator=(const state&) = delete;
state& operator=(state&& that) {
state_view::operator=(std::move(that));
unique_base::operator=(std::move(that));
return *this;
}
using state_view::get;
~state() {
auto& handler = protected_function::get_default_handler();
if (handler.lua_state() == this->lua_state()) {
protected_function::set_default_handler(reference());
}
}
};
} // sol
// end of sol/state.hpp
// beginning of sol/coroutine.hpp
// beginning of sol/thread.hpp
namespace sol {
struct lua_thread_state {
lua_State* L;
operator lua_State* () const {
return L;
}
lua_State* operator-> () const {
return L;
}
};
namespace stack {
template <>
struct pusher<lua_thread_state> {
int push(lua_State*, lua_thread_state lts) {
lua_pushthread(lts.L);
return 1;
}
};
template <>
struct getter<lua_thread_state> {
lua_thread_state get(lua_State* L, int index, record& tracking) {
tracking.use(1);
lua_thread_state lts{ lua_tothread(L, index) };
return lts;
}
};
template <>
struct check_getter<lua_thread_state> {
template <typename Handler>
optional<lua_thread_state> get(lua_State* L, int index, Handler&& handler, record& tracking) {
lua_thread_state lts{ lua_tothread(L, index) };
if (lts.L == nullptr) {
handler(L, index, type::thread, type_of(L, index));
return nullopt;
}
tracking.use(1);
return lts;
}
};
}
#if SOL_LUA_VERSION < 502
inline lua_State* main_thread(lua_State*, lua_State* backup_if_unsupported = nullptr) {
return backup_if_unsupported;
}
#else
inline lua_State* main_thread(lua_State* L, lua_State* = nullptr) {
lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_MAINTHREAD);
lua_thread_state s = stack::pop<lua_thread_state>(L);
return s.L;
}
#endif // Lua 5.2+ has the main thread getter
class thread : public reference {
public:
thread() noexcept = default;
thread(const thread&) = default;
thread(thread&&) = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, thread>>, std::is_base_of<reference, meta::unqualified_t<T>>> = meta::enabler>
thread(T&& r) : reference(std::forward<T>(r)) {}
thread(const stack_reference& r) : thread(r.lua_state(), r.stack_index()) {};
thread(stack_reference&& r) : thread(r.lua_state(), r.stack_index()) {};
thread& operator=(const thread&) = default;
thread& operator=(thread&&) = default;
template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
thread(lua_State* L, T&& r) : thread(L, sol::ref_index(r.registry_index())) {}
thread(lua_State* L, int index = -1) : reference(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
type_assert(L, index, type::thread);
#endif // Safety
}
thread(lua_State* L, ref_index index) : reference(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
auto pp = stack::push_pop(*this);
type_assert(L, -1, type::thread);
#endif // Safety
}
thread(lua_State* L, lua_State* actualthread) : thread(L, lua_thread_state{ actualthread }) {}
thread(lua_State* L, sol::this_state actualthread) : thread(L, lua_thread_state{ actualthread.L }) {}
thread(lua_State* L, lua_thread_state actualthread) : reference(L, -stack::push(L, actualthread)) {
#ifdef SOL_CHECK_ARGUMENTS
type_assert(L, -1, type::thread);
#endif // Safety
lua_pop(L, 1);
}
state_view state() const {
return state_view(this->thread_state());
}
bool is_main_thread() const {
int ismainthread = lua_pushthread(this->thread_state());
lua_pop(this->thread_state(), 1);
return ismainthread == 1;
}
lua_State* thread_state() const {
auto pp = stack::push_pop(*this);
lua_State* lthread = lua_tothread(lua_state(), -1);
return lthread;
}
thread_status status() const {
lua_State* lthread = thread_state();
thread_status lstat = static_cast<thread_status>(lua_status(lthread));
if (lstat != thread_status::ok && lua_gettop(lthread) == 0) {
// No thing on the thread's stack means its dead
return thread_status::dead;
}
return lstat;
}
thread create() {
return create(lua_state());
}
static thread create(lua_State* L) {
lua_newthread(L);
thread result(L);
lua_pop(L, 1);
return result;
}
};
} // sol
// end of sol/thread.hpp
namespace sol {
class coroutine : public reference {
private:
call_status stats = call_status::yielded;
void luacall(std::ptrdiff_t argcount, std::ptrdiff_t) {
#if SOL_LUA_VERSION < 502
stats = static_cast<call_status>(lua_resume(lua_state(), static_cast<int>(argcount)));
#else
stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount)));
#endif // Lua 5.1 compat
}
template<std::size_t... I, typename... Ret>
auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) {
luacall(n, sizeof...(Ret));
return stack::pop<std::tuple<Ret...>>(lua_state());
}
template<std::size_t I, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) {
luacall(n, 1);
return stack::pop<Ret>(lua_state());
}
template <std::size_t I>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) {
luacall(n, 0);
}
protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) {
int stacksize = lua_gettop(lua_state());
int firstreturn = (std::max)(1, stacksize - static_cast<int>(n));
luacall(n, LUA_MULTRET);
int poststacksize = lua_gettop(lua_state());
int returncount = poststacksize - (firstreturn - 1);
if (error()) {
return protected_function_result(lua_state(), lua_absindex(lua_state(), -1), 1, returncount, status());
}
return protected_function_result(lua_state(), firstreturn, returncount, returncount, status());
}
public:
coroutine() noexcept = default;
coroutine(const coroutine&) noexcept = default;
coroutine(coroutine&&) noexcept = default;
coroutine& operator=(const coroutine&) noexcept = default;
coroutine& operator=(coroutine&&) noexcept = default;
template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, coroutine>>, std::is_base_of<reference, meta::unqualified_t<T>>> = meta::enabler>
coroutine(T&& r) : reference(std::forward<T>(r)) {}
coroutine(lua_nil_t r) : reference(r) {}
coroutine(const stack_reference& r) noexcept : coroutine(r.lua_state(), r.stack_index()) {}
coroutine(stack_reference&& r) noexcept : coroutine(r.lua_state(), r.stack_index()) {}
template <typename T, meta::enable<meta::neg<std::is_integral<meta::unqualified_t<T>>>, meta::neg<std::is_same<T, ref_index>>> = meta::enabler>
coroutine(lua_State* L, T&& r) : coroutine(L, sol::ref_index(r.registry_index())) {}
coroutine(lua_State* L, int index = -1) : reference(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
stack::check<coroutine>(L, index, type_panic);
#endif // Safety
}
coroutine(lua_State* L, ref_index index) : reference(L, index) {
#ifdef SOL_CHECK_ARGUMENTS
auto pp = stack::push_pop(*this);
stack::check<coroutine>(L, -1, type_panic);
#endif // Safety
}
call_status status() const noexcept {
return stats;
}
bool error() const noexcept {
call_status cs = status();
return cs != call_status::ok && cs != call_status::yielded;
}
bool runnable() const noexcept {
return valid()
&& (status() == call_status::yielded);
}
explicit operator bool() const noexcept {
return runnable();
}
template<typename... Args>
protected_function_result operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
template<typename... Ret, typename... Args>
decltype(auto) operator()(types<Ret...>, Args&&... args) {
return call<Ret...>(std::forward<Args>(args)...);
}
template<typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
push();
int pushcount = stack::multi_push(lua_state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
}
};
} // sol
// end of sol/coroutine.hpp
#ifdef __GNUC__
#pragma GCC diagnostic pop
#elif defined _MSC_VER
#pragma warning( push )
#endif // g++
#ifdef SOL_INSIDE_UNREAL
#ifdef SOL_INSIDE_UNREAL_REMOVED_CHECK
#if DO_CHECK
#define check(expr) { if(UNLIKELY(!(expr))) { FDebug::LogAssertFailedMessage( #expr, __FILE__, __LINE__ ); _DebugBreakAndPromptForRemote(); FDebug::AssertFailed( #expr, __FILE__, __LINE__ ); CA_ASSUME(false); } }
#else
#define check(expr) { CA_ASSUME(expr); }
#endif
#endif
#endif // Unreal Engine 4 Bullshit
#endif // SOL_HPP
// end of sol.hpp
#endif // SOL_SINGLE_INCLUDE_HPP