mirror of
https://github.com/ThePhD/sol2.git
synced 2024-03-22 13:10:44 +08:00
8970d3cd79
We don't need to make the function names `open_usertype` now, since `new_usertype` makes sense.
262 lines
10 KiB
C++
262 lines
10 KiB
C++
// The MIT License (MIT)
|
|
|
|
// Copyright (c) 2013 Danny Y., Rapptz
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
// this software and associated documentation files (the "Software"), to deal in
|
|
// the Software without restriction, including without limitation the rights to
|
|
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
// the Software, and to permit persons to whom the Software is furnished to do so,
|
|
// subject to the following conditions:
|
|
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
#ifndef SOL_FUNCTION_HPP
|
|
#define SOL_FUNCTION_HPP
|
|
|
|
#include "reference.hpp"
|
|
#include "tuple.hpp"
|
|
#include "stack.hpp"
|
|
#include "function_types.hpp"
|
|
#include "usertype_traits.hpp"
|
|
#include "resolve.hpp"
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <memory>
|
|
|
|
namespace sol {
|
|
class function : public reference {
|
|
private:
|
|
void luacall(std::size_t argcount, std::size_t resultcount) const {
|
|
lua_call(state(), static_cast<uint32_t>(argcount), static_cast<uint32_t>(resultcount));
|
|
}
|
|
|
|
template<typename... Ret>
|
|
std::tuple<Ret...> invoke(types<Ret...>, std::size_t n) const {
|
|
luacall(n, sizeof...(Ret));
|
|
return stack::pop_reverse_call(state(), std::make_tuple<Ret...>, types<Ret...>());
|
|
}
|
|
|
|
template<typename Ret>
|
|
Ret invoke(types<Ret>, std::size_t n) const {
|
|
luacall(n, 1);
|
|
return stack::pop<Ret>(state());
|
|
}
|
|
|
|
void invoke(types<void>, std::size_t n) const {
|
|
luacall(n, 0);
|
|
}
|
|
|
|
void invoke(types<>, std::size_t n) const {
|
|
luacall(n, 0);
|
|
}
|
|
|
|
public:
|
|
function() = default;
|
|
function(lua_State* L, int index = -1): reference(L, index) {
|
|
type_assert(L, index, type::function);
|
|
}
|
|
function(const function&) = default;
|
|
function& operator=(const function&) = default;
|
|
|
|
template<typename... Args>
|
|
void operator()(Args&&... args) const {
|
|
call<>(std::forward<Args>(args)...);
|
|
}
|
|
|
|
template<typename... Ret, typename... Args>
|
|
typename return_type<Ret...>::type operator()(types<Ret...>, Args&&... args) const {
|
|
return call<Ret...>(std::forward<Args>(args)...);
|
|
}
|
|
|
|
template<typename... Ret, typename... Args>
|
|
typename return_type<Ret...>::type call(Args&&... args) const {
|
|
push();
|
|
stack::push_args(state(), std::forward<Args>(args)...);
|
|
return invoke(types<Ret...>(), sizeof...(Args));
|
|
}
|
|
};
|
|
|
|
namespace stack {
|
|
template<typename... Sigs>
|
|
struct pusher<function_sig_t<Sigs...>> {
|
|
|
|
template<typename R, typename... Args, typename Fx, typename = typename std::result_of<Fx(Args...)>::type>
|
|
static void set_memfx(types<R(Args...)> t, lua_State* L, Fx&& fx) {
|
|
typedef Decay<Unwrap<Fx>> raw_fx_t;
|
|
typedef R(* fx_ptr_t)(Args...);
|
|
typedef std::is_convertible<raw_fx_t, fx_ptr_t> is_convertible;
|
|
set_isconvertible_fx(is_convertible(), t, L, std::forward<Fx>(fx));
|
|
}
|
|
|
|
template<typename... Args, typename Fx, typename R = typename std::result_of<Fx(Args...)>::type>
|
|
static void set_memfx(types<Args...>, lua_State* L, Fx&& fx){
|
|
set_memfx(types<R(Args...)>(), L, std::forward<Fx>(fx));
|
|
}
|
|
|
|
template<typename Fx>
|
|
static void set_memfx(types<>, lua_State* L, Fx&& fx) {
|
|
typedef Unqualified<Unwrap<Fx>> fx_t;
|
|
typedef decltype(&fx_t::operator()) Sig;
|
|
set_memfx(types<function_signature_t<Sig>>(), L, std::forward<Fx>(fx));
|
|
}
|
|
|
|
template<typename... Args, typename R>
|
|
static void set(lua_State* L, R fxptr(Args...)){
|
|
set_fx(std::false_type(), L, fxptr);
|
|
}
|
|
|
|
template<typename Sig>
|
|
static void set(lua_State* L, Sig* fxptr){
|
|
set_fx(std::false_type(), L, fxptr);
|
|
}
|
|
|
|
template<typename... Args, typename R, typename C, typename T>
|
|
static void set(lua_State* L, R (C::*memfxptr)(Args...), T&& obj) {
|
|
typedef Bool<is_specialization_of<T, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
|
|
set_reference_fx(is_reference(), L, memfxptr, std::forward<T>(obj));
|
|
}
|
|
|
|
template<typename Sig, typename C, typename T>
|
|
static void set(lua_State* L, Sig C::* memfxptr, T&& obj) {
|
|
typedef Bool<is_specialization_of<T, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
|
|
set_reference_fx(is_reference(), L, memfxptr, std::forward<T>(obj));
|
|
}
|
|
|
|
template<typename... Sig, typename Fx>
|
|
static void set(lua_State* L, Fx&& fx) {
|
|
set_memfx(types<Sig...>(), L, std::forward<Fx>(fx));
|
|
}
|
|
|
|
template<typename Fx, typename R, typename... Args>
|
|
static void set_isconvertible_fx(std::true_type, types<R(Args...)>, lua_State* L, Fx&& fx) {
|
|
typedef R(* fx_ptr_t)(Args...);
|
|
fx_ptr_t fxptr = unwrapper(std::forward<Fx>(fx));
|
|
set(L, fxptr);
|
|
}
|
|
|
|
template<typename Fx, typename R, typename... Args>
|
|
static void set_isconvertible_fx(std::false_type, types<R(Args...)>, lua_State* L, Fx&& fx) {
|
|
typedef Decay<Unwrap<Fx>> fx_t;
|
|
std::unique_ptr<base_function> sptr(new functor_function<fx_t>(std::forward<Fx>(fx)));
|
|
set_fx<Fx>(L, std::move(sptr));
|
|
}
|
|
|
|
template<typename Fx, typename T>
|
|
static void set_reference_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) {
|
|
set_fx(std::true_type(), L, std::forward<Fx>(fx), std::forward<T>(obj));
|
|
}
|
|
|
|
template<typename Fx, typename T>
|
|
static void set_reference_fx(std::false_type, lua_State* L, Fx&& fx, T&& obj) {
|
|
typedef typename std::remove_pointer<Decay<Fx>>::type clean_fx;
|
|
std::unique_ptr<base_function> sptr(new member_function<clean_fx, T>(std::forward<T>(obj), std::forward<Fx>(fx)));
|
|
return set_fx<Fx>(L, std::move(sptr));
|
|
}
|
|
|
|
template<typename Fx, typename T>
|
|
static void set_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) {
|
|
// Layout:
|
|
// idx 1...n: verbatim data of member function pointer
|
|
// idx n + 1: is the object's void pointer
|
|
// We don't need to store the size, because the other side is templated
|
|
// with the same member function pointer type
|
|
Decay<Fx> memfxptr(std::forward<Fx>(fx));
|
|
auto userptr = sol::detail::get_ptr(obj);
|
|
void* userobjdata = static_cast<void*>(userptr);
|
|
lua_CFunction freefunc = &static_member_function<Decay<decltype(*userptr)>, Fx>::call;
|
|
|
|
int upvalues = stack::detail::push_as_upvalues(L, memfxptr);
|
|
stack::push(L, userobjdata);
|
|
++upvalues;
|
|
stack::push(L, freefunc, upvalues);
|
|
}
|
|
|
|
template<typename Fx>
|
|
static void set_fx(std::false_type, lua_State* L, Fx&& fx) {
|
|
Decay<Fx> target(std::forward<Fx>(fx));
|
|
lua_CFunction freefunc = &static_function<Fx>::call;
|
|
|
|
int upvalues = stack::detail::push_as_upvalues(L, target);
|
|
stack::push(L, freefunc, upvalues);
|
|
}
|
|
|
|
template<typename Fx>
|
|
static void set_fx(lua_State* L, std::unique_ptr<base_function> luafunc) {
|
|
auto&& metakey = usertype_traits<Unqualified<Fx>>::metatable;
|
|
const char* metatablename = std::addressof(metakey[0]);
|
|
base_function* target = luafunc.release();
|
|
void* userdata = reinterpret_cast<void*>(target);
|
|
lua_CFunction freefunc = &base_function::call;
|
|
|
|
if(luaL_newmetatable(L, metatablename) == 1) {
|
|
lua_pushstring(L, "__gc");
|
|
stack::push(L, &base_function::gc);
|
|
lua_settable(L, -3);
|
|
lua_pop(L, 1);
|
|
}
|
|
|
|
stack::detail::push_userdata<void*>(L, metatablename, userdata);
|
|
stack::push(L, freefunc, 1);
|
|
}
|
|
|
|
template<typename... Args>
|
|
static void push(lua_State* L, Args&&... args) {
|
|
set(L, std::forward<Args>(args)...);
|
|
}
|
|
};
|
|
|
|
template<typename Signature>
|
|
struct pusher<std::function<Signature>> {
|
|
static void push(lua_State* L, std::function<Signature> fx) {
|
|
pusher<function_t>{}.push(L, std::move(fx));
|
|
}
|
|
};
|
|
|
|
template<typename Signature>
|
|
struct getter<std::function<Signature>> {
|
|
typedef function_traits<Signature> fx_t;
|
|
typedef typename fx_t::args_type args_t;
|
|
typedef typename tuple_types<typename fx_t::return_type>::type ret_t;
|
|
|
|
template<typename... FxArgs, typename... Ret>
|
|
static std::function<Signature> get_std_func(types<FxArgs...>, types<Ret...>, lua_State* L, int index = -1) {
|
|
typedef typename function_traits<Signature>::return_type return_t;
|
|
sol::function f(L, index);
|
|
auto fx = [f, L, index](FxArgs&&... args) -> return_t {
|
|
return f(types<Ret...>(), std::forward<FxArgs>(args)...);
|
|
};
|
|
return std::move(fx);
|
|
}
|
|
|
|
template<typename... FxArgs>
|
|
static std::function<Signature> get_std_func(types<FxArgs...>, types<void>, lua_State* L, int index = -1) {
|
|
sol::function f(L, index);
|
|
auto fx = [f, L, index](FxArgs&&... args) -> void {
|
|
f(std::forward<FxArgs>(args)...);
|
|
};
|
|
return std::move(fx);
|
|
}
|
|
|
|
template<typename... FxArgs>
|
|
static std::function<Signature> get_std_func(types<FxArgs...> t, types<>, lua_State* L, int index = -1) {
|
|
return get_std_func(std::move(t), types<void>(), L, index);
|
|
}
|
|
|
|
static std::function<Signature> get(lua_State* L, int index) {
|
|
return get_std_func(args_t(), ret_t(), L, index);
|
|
}
|
|
};
|
|
} // stack
|
|
} // sol
|
|
|
|
#endif // SOL_FUNCTION_HPP
|