sol2/sol/stack.hpp
ThePhD 88155d44e0 sol::property is implemented for usertypes now
sol::this_state is  a transparent argument that gets the current state at any position in any callback
sol::variadic_args allows a person to get something that can reference the "rest of the arguments", though it doesn't enforce that it has to be the last argument

Closes #57
Closes #59
Closes #60
2016-04-17 02:18:34 -04:00

189 lines
9.1 KiB
C++

// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_STACK_HPP
#define SOL_STACK_HPP
#include "stack_core.hpp"
#include "stack_reference.hpp"
#include "stack_proxy.hpp"
#include "stack_check.hpp"
#include "stack_get.hpp"
#include "stack_check_get.hpp"
#include "stack_push.hpp"
#include "stack_pop.hpp"
#include "stack_field.hpp"
#include "stack_probe.hpp"
#include <cstring>
#include <array>
namespace sol {
namespace stack {
namespace stack_detail {
template<typename T>
inline int push_as_upvalues(lua_State* L, T& item) {
typedef std::decay_t<T> TValue;
const static std::size_t itemsize = sizeof(TValue);
const static std::size_t voidsize = sizeof(void*);
const static std::size_t voidsizem1 = voidsize - 1;
const static std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
typedef std::array<void*, data_t_count> data_t;
data_t data{{}};
std::memcpy(&data[0], std::addressof(item), itemsize);
int pushcount = 0;
for(auto&& v : data) {
pushcount += push(L, light_userdata_value(v));
}
return pushcount;
}
template<typename T>
inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 1) {
const static std::size_t data_t_count = (sizeof(T)+(sizeof(void*)-1)) / sizeof(void*);
typedef std::array<void*, data_t_count> data_t;
data_t voiddata{ {} };
for(std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) {
voiddata[i] = get<light_userdata_value>(L, up_value_index(index++));
}
return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
}
template <bool checkargs = default_check_arguments, std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
typedef meta::index_in_pack<this_state, Args...> state_pack_index;
typedef std::integral_constant<int, state_pack_index::value == -1 ? std::numeric_limits<int>::max() : static_cast<int>(state_pack_index::value)> state_idx;
check_types<checkargs>{}.check(ta, tai, L, start, type_panic);
return fx(std::forward<FxArgs>(args)..., stack_detail::unchecked_get<Args>(L, start + (state_idx::value < I ? I - 1 : I))...);
}
template <bool checkargs = default_check_arguments, std::size_t... I, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
typedef meta::index_in_pack<this_state, Args...> state_pack_index;
typedef std::integral_constant<int, state_pack_index::value == -1 ? std::numeric_limits<int>::max() : static_cast<int>(state_pack_index::value)> state_idx;
check_types<checkargs>{}.check(ta, tai, L, start, type_panic);
fx(std::forward<FxArgs>(args)..., stack_detail::unchecked_get<Args>(L, start + (state_idx::value < I ? I - 1 : I))...);
}
} // stack_detail
inline void remove( lua_State* L, int index, int count ) {
if ( count < 1 )
return;
int top = lua_gettop( L );
if ( index == -1 || top == index ) {
// Slice them right off the top
lua_pop( L, static_cast<int>(count) );
return;
}
// Remove each item one at a time using stack operations
// Probably slower, maybe, haven't benchmarked,
// but necessary
if ( index < 0 ) {
index = lua_gettop( L ) + (index + 1);
}
int last = index + count;
for ( int i = index; i < last; ++i ) {
lua_remove( L, i );
}
}
template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
typedef std::make_index_sequence<sizeof...(Args)> args_indices;
return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
typedef std::make_index_sequence<sizeof...(Args)> args_indices;
stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
return call<check_args>(tr, ta, L, static_cast<int>(lua_gettop(L) - sizeof...(Args)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void call_from_top(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
call<check_args>(tr, ta, L, static_cast<int>(lua_gettop(L) - sizeof...(Args)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template<int additionalpop = 0, bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline int call_into_lua(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
int nargs = static_cast<int>(sizeof...(Args)) + additionalpop;
lua_pop(L, nargs);
return 0;
}
template<int additionalpop = 0, bool check_args = stack_detail::default_check_arguments, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<meta::Not<std::is_void<Ret0>>::value>>
inline int call_into_lua(types<Ret0, Ret...>, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
decltype(auto) r = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
int nargs = static_cast<int>(sizeof...(Args)) + additionalpop;
lua_pop(L, nargs);
return push_reference(L, std::forward<decltype(r)>(r));
}
inline call_syntax get_call_syntax(lua_State* L, const std::string& key) {
luaL_getmetatable(L, key.c_str());
if (lua_compare(L, -1, -2, LUA_OPEQ) == 1) {
lua_pop(L, 1);
return call_syntax::colon;
}
lua_pop(L, 1);
return call_syntax::dot;
}
inline void luajit_exception_handler(lua_State* L, int(*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) {
#ifdef SOL_LUAJIT
lua_pushlightuserdata(L, (void*)handler);
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
lua_pop(L, 1);
#else
(void)L;
(void)handler;
#endif
}
inline void luajit_exception_off(lua_State* L) {
#ifdef SOL_LUAJIT
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
#else
(void)L;
#endif
}
} // stack
} // sol
#endif // SOL_STACK_HPP