sol2/sol/function.hpp
PrincessNyanara 77901bb654 massive rework of stack
get turned into getter<T>, matches pusher<T> and uses same semantics as std::allocator and other things used throughout the codebase
-----
userdata has its traits defined outside in new file of userdata to prevent errors when trying to use those typetraits in places before userdata.hpp gets included
userdata was changed to support returning itself via pointers or references.
rework of stack changes semantics based on T&, T*, and T&& (the last one tries to create a new userdata and move in data)
solves problems maybe presented in https://github.com/Rapptz/sol/issues/25

-----
container.hpp is attempt at solving original problem before going on wild tangent with userdata, stack, and get
is going to attempt to use userdata to allow transporation of containers losslessly, perhaps without copying need
-----
found out trying to return a std::function does not work -- not sure what do exactly?
perhaps should push c closure as last thing, but right now it is tied to a key value (code comes from table.hpp and set_function)
will just have to think over how stack arranges itself and learn what to do
2014-06-09 06:28:55 -04:00

254 lines
9.8 KiB
C++

// The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_HPP
#define SOL_FUNCTION_HPP
#include "reference.hpp"
#include "tuple.hpp"
#include "stack.hpp"
#include <cstdint>
#include <functional>
namespace sol {
class function : public reference {
private:
void luacall (std::size_t argcount, std::size_t resultcount) const {
lua_call(state(), static_cast<uint32_t>(argcount), static_cast<uint32_t>(resultcount));
}
template<typename... Ret>
std::tuple<Ret...> invoke(types<Ret...>, std::size_t n) const {
luacall(n, sizeof...(Ret));
return stack::pop_reverse_call(state(), std::make_tuple<Ret...>, types<Ret...>());
}
template<typename Ret>
Ret invoke(types<Ret>, std::size_t n) const {
luacall(n, 1);
return stack::pop<Ret>(state());
}
void invoke(types<void>, std::size_t n) const {
luacall(n, 0);
}
void invoke(types<>, std::size_t n) const {
luacall(n, 0);
}
public:
function() : reference() {}
function(lua_State* L, int index = -1): reference(L, index) {
type_assert(L, index, type::function);
}
function(const function&) = default;
function& operator=(const function&) = default;
template<typename... Args>
void operator()(Args&&... args) const {
call<>(std::forward<Args>(args)...);
}
template<typename... Ret, typename... Args>
typename return_type<Ret...>::type operator()(types<Ret...>, Args&&... args) const {
return call<Ret...>(std::forward<Args>(args)...);
}
template<typename... Ret, typename... Args>
typename return_type<Ret...>::type call(Args&&... args) const {
push();
stack::push(state(), std::forward<Args>(args)...);
return invoke(types<Ret...>(), sizeof...(Args));
}
};
namespace stack {
template <>
struct pusher<function_t> {
template<typename T, typename TFx>
void set_isfunction_fx(lua_State* L, std::true_type, T&& key, TFx&& fx) {
set_fx(std::false_type(), std::forward<T>(key), std::forward<TFx>(fx));
}
template<typename T, typename TFx>
void set_isfunction_fx(lua_State* L, std::false_type, T&& key, TFx&& fx) {
typedef Decay<TFx> clean_lambda;
typedef typename function_traits<decltype(&clean_lambda::operator())>::free_function_pointer_type raw_func_t;
typedef std::is_convertible<clean_lambda, raw_func_t> isconvertible;
set_isconvertible_fx(isconvertible(), std::forward<T>(key), std::forward<TFx>(fx));
}
template<typename T, typename TFx>
void set_isconvertible_fx(lua_State* L, std::true_type, T&& key, TFx&& fx) {
typedef Decay<TFx> clean_lambda;
typedef typename function_traits<decltype(&clean_lambda::operator())>::free_function_pointer_type raw_func_t;
set_isfunction_fx(std::true_type(), std::forward<T>(key), raw_func_t(std::forward<TFx>(fx)));
}
template<typename T, typename TFx>
void set_isconvertible_fx(lua_State* L, std::false_type, T&& key, TFx&& fx) {
typedef typename std::remove_pointer<Decay<TFx>>::type clean_fx;
std::unique_ptr<base_function> sptr(new functor_function<clean_fx>(std::forward<TFx>(fx)));
set_fx(std::forward<T>(key), std::move(sptr));
}
template<typename T, typename TFx, typename TObj>
void set_lvalue_fx(lua_State* L, std::true_type, T&& key, TFx&& fx, TObj&& obj) {
set_fx(std::true_type(), std::forward<T>(key), std::forward<TFx>(fx), std::forward<TObj>(obj));
}
template<typename T, typename TFx, typename TObj>
void set_lvalue_fx(lua_State* L, std::false_type, T&& key, TFx&& fx, TObj&& obj) {
typedef typename std::remove_pointer<Decay<TFx>>::type clean_fx;
std::unique_ptr<base_function> sptr(new member_function<clean_fx, TObj>(std::forward<TObj>(obj), std::forward<TFx>(fx)));
return set_fx(std::forward<T>(key), std::move(sptr));
}
template<typename T, typename TFx, typename TObj>
void set_fx(lua_State* L, std::true_type, T&& key, TFx&& fx, TObj&& obj) {
std::string fkey(key);
// Layout:
// idx 1...n: verbatim data of member function pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
Decay<TFx> fxptr(std::forward<TFx>(fx));
void* userobjdata = static_cast<void*>(detail::get_ptr(obj));
lua_CFunction freefunc = &static_member_function<Decay<TObj>, TFx>::call;
const char* freefuncname = fkey.c_str();
const luaL_Reg funcreg[2] = {
{ freefuncname, freefunc },
{ nullptr, nullptr }
};
int upvalues = stack::detail::push_as_upvalues(L, fxptr);
stack::push(L, userobjdata);
luaL_setfuncs(L, funcreg, upvalues + 1);
}
template<typename T, typename TFx>
void set_fx(lua_State* L, std::false_type, T&& key, TFx&& fx) {
std::string fkey(key);
Decay<TFx> target(std::forward<TFx>(fx));
lua_CFunction freefunc = &static_function<TFx>::call;
const char* freefuncname = fkey.c_str();
const luaL_Reg funcreg[2] = {
{ freefuncname, freefunc },
{ nullptr, nullptr }
};
int upvalues = stack::detail::push_as_upvalues(L, target);
luaL_setfuncs(L, funcreg, upvalues);
}
template<typename T>
void set_fx(lua_State* L, T&& key, std::unique_ptr<base_function> luafunc) {
std::string fkey(key);
std::string metakey("sol.stateful.");
metakey += fkey;
metakey += ".meta";
base_function* target = luafunc.release();
void* userdata = reinterpret_cast<void*>(target);
lua_CFunction freefunc = &base_function::call;
const char* freefuncname = fkey.c_str();
const char* metatablename = metakey.c_str();
const luaL_Reg funcreg[2] = {
{ freefuncname, freefunc },
{ nullptr, nullptr }
};
if (luaL_newmetatable(L, metatablename) == 1) {
lua_pushstring(L, "__gc");
lua_pushcclosure(L, &base_function::gc, 0);
lua_settable(L, -3);
}
stack::detail::push_userdata(L, userdata, metatablename);
luaL_setfuncs(L, funcreg, 1);
}
template<typename T, typename TFx>
void set_function(T&& key, TFx&& fx) {
typedef typename std::remove_pointer<Decay<TFx>>::type clean_fx;
set_isfunction_fx(std::is_function<clean_fx>(), std::forward<T>(key), std::forward<TFx>(fx));
}
template<typename T, typename TFx, typename TObj>
void set_function(T&& key, TFx&& fx, TObj&& obj) {
set_lvalue_fx(Bool<std::is_lvalue_reference<TObj>::value || std::is_pointer<TObj>::value>(),
std::forward<T>(key), std::forward<TFx>(fx), std::forward<TObj>(obj));
}
template <typename Key, typename... Args>
void push(lua_State* L, Key&& key, Args&&... args) {
set_function(L, std::forward<Key>(key), std::forward<Args>(args)...);
}
};
template <typename Signature>
struct pusher<std::function<Signature>> {
};
template <typename Signature>
struct getter<std::function<Signature>> {
typedef function_traits<Signature> fx_t;
typedef typename fx_t::args_type args_t;
typedef typename tuple_types<typename fx_t::return_type>::type ret_t;
template <typename... FxArgs, typename... Ret>
static std::function<Signature> get_std_func(types<FxArgs...>, types<Ret...>, lua_State* L, int index = -1) {
typedef typename function_traits<Signature>::return_type return_t;
sol::function f(L, index);
auto fx = [ f, L, index ] (FxArgs&&... args) -> return_t {
return f(types<Ret...>(), std::forward<FxArgs>(args)...);
};
return std::move(fx);
}
template <typename... FxArgs>
static std::function<Signature> get_std_func(types<FxArgs...>, types<void>, lua_State* L, int index = -1) {
sol::function f(L, index);
auto fx = [ f, L, index ] (FxArgs&&... args) -> void {
f(std::forward<FxArgs>(args)...);
};
return std::move(fx);
}
template <typename... FxArgs>
static std::function<Signature> get_std_func(types<FxArgs...> t, types<>, lua_State* L, int index = -1) {
return get_std_func(std::move(t), types<void>(), L, index);
}
static std::function<Signature> get(lua_State* L, int index) {
return get_std_func(args_t(), ret_t(), L, index);
}
};
} // stack
} // sol
#endif // SOL_FUNCTION_HPP