sol2/sol/types.hpp

1193 lines
32 KiB
C++

// sol2
// The MIT License (MIT)
// Copyright (c) 2013-2018 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_TYPES_HPP
#define SOL_TYPES_HPP
#include "error.hpp"
#include "optional.hpp"
#include "compatibility.hpp"
#include "forward.hpp"
#include "forward_detail.hpp"
#include "traits.hpp"
#include "string_view.hpp"
#include "raii.hpp"
#include "filters.hpp"
#include <array>
#include <initializer_list>
#include <string>
#ifdef SOL_CXX17_FEATURES
#include <string_view>
#include <variant>
#endif // C++17
namespace sol {
namespace detail {
#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
typedef int(*lua_CFunction_noexcept)(lua_State* L) noexcept;
#else
typedef int(*lua_CFunction_noexcept)(lua_State* L);
#endif // noexcept function type for lua_CFunction
template <typename T>
struct unique_usertype {};
template <typename T>
struct implicit_wrapper {
T& item;
implicit_wrapper(T* item)
: item(*item) {
}
implicit_wrapper(T& item)
: item(item) {
}
operator T&() {
return item;
}
operator T*() {
return std::addressof(item);
}
};
struct unchecked_t {};
const unchecked_t unchecked = unchecked_t{};
struct yield_tag_t {};
const yield_tag_t yield_tag = yield_tag_t{};
} // namespace detail
struct lua_nil_t {};
const lua_nil_t lua_nil{};
inline bool operator==(lua_nil_t, lua_nil_t) {
return true;
}
inline bool operator!=(lua_nil_t, lua_nil_t) {
return false;
}
typedef lua_nil_t nil_t;
#if !defined(SOL_NO_NIL)
const nil_t nil{};
#endif
struct metatable_t {};
const metatable_t metatable_key = {};
struct env_t {};
const env_t env_key = {};
struct no_metatable_t {};
const no_metatable_t no_metatable = {};
template <typename T>
struct yielding_t {
T func;
yielding_t() = default;
yielding_t(const yielding_t&) = default;
yielding_t(yielding_t&&) = default;
yielding_t& operator=(const yielding_t&) = default;
yielding_t& operator=(yielding_t&&) = default;
template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, yielding_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
yielding_t(Arg&& arg)
: func(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
yielding_t(Arg0&& arg0, Arg1&& arg1, Args&&... args)
: func(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
};
template <typename F>
inline yielding_t<std::decay_t<F>> yielding(F&& f) {
return yielding_t<std::decay_t<F>>(std::forward<F>(f));
}
typedef std::remove_pointer_t<lua_CFunction> lua_CFunction_ref;
template <typename T>
struct unique_usertype_traits {
typedef T type;
typedef T actual_type;
static const bool value = false;
template <typename U>
static bool is_null(U&&) {
return false;
}
template <typename U>
static auto get(U&& value) {
return std::addressof(detail::deref(value));
}
};
template <typename T>
struct unique_usertype_traits<std::shared_ptr<T>> {
typedef T type;
typedef std::shared_ptr<T> actual_type;
static const bool value = true;
static bool is_null(const actual_type& p) {
return p == nullptr;
}
static type* get(const actual_type& p) {
return p.get();
}
};
template <typename T, typename D>
struct unique_usertype_traits<std::unique_ptr<T, D>> {
typedef T type;
typedef std::unique_ptr<T, D> actual_type;
static const bool value = true;
static bool is_null(const actual_type& p) {
return p == nullptr;
}
static type* get(const actual_type& p) {
return p.get();
}
};
template <typename T>
struct non_null {};
template <typename... Args>
struct function_sig {};
struct upvalue_index {
int index;
upvalue_index(int idx)
: index(lua_upvalueindex(idx)) {
}
operator int() const {
return index;
}
};
struct raw_index {
int index;
raw_index(int i)
: index(i) {
}
operator int() const {
return index;
}
};
struct absolute_index {
int index;
absolute_index(lua_State* L, int idx)
: index(lua_absindex(L, idx)) {
}
operator int() const {
return index;
}
};
struct ref_index {
int index;
ref_index(int idx)
: index(idx) {
}
operator int() const {
return index;
}
};
struct stack_count {
int count;
stack_count(int cnt)
: count(cnt) {
}
};
struct lightuserdata_value {
void* value;
lightuserdata_value(void* data)
: value(data) {
}
operator void*() const {
return value;
}
};
struct userdata_value {
void* value;
userdata_value(void* data)
: value(data) {
}
operator void*() const {
return value;
}
};
template <typename L>
struct light {
L* value;
light(L& x)
: value(std::addressof(x)) {
}
light(L* x)
: value(x) {
}
light(void* x)
: value(static_cast<L*>(x)) {
}
operator L*() const {
return value;
}
operator L&() const {
return *value;
}
};
template <typename T>
auto make_light(T& l) {
typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L;
return light<L>(l);
}
template <typename U>
struct user {
U value;
user(U x)
: value(std::forward<U>(x)) {
}
operator std::add_pointer_t<std::remove_reference_t<U>>() {
return std::addressof(value);
}
operator std::add_lvalue_reference_t<U>() {
return value;
}
operator std::add_const_t<std::add_lvalue_reference_t<U>>&() const {
return value;
}
};
template <typename T>
auto make_user(T&& u) {
typedef meta::unwrapped_t<meta::unqualified_t<T>> U;
return user<U>(std::forward<T>(u));
}
template <typename T>
struct metatable_registry_key {
T key;
metatable_registry_key(T key)
: key(std::forward<T>(key)) {
}
};
template <typename T>
auto meta_registry_key(T&& key) {
typedef meta::unqualified_t<T> K;
return metatable_registry_key<K>(std::forward<T>(key));
}
template <typename... Upvalues>
struct closure {
lua_CFunction c_function;
std::tuple<Upvalues...> upvalues;
closure(lua_CFunction f, Upvalues... targetupvalues)
: c_function(f), upvalues(std::forward<Upvalues>(targetupvalues)...) {
}
};
template <>
struct closure<> {
lua_CFunction c_function;
int upvalues;
closure(lua_CFunction f, int upvalue_count = 0)
: c_function(f), upvalues(upvalue_count) {
}
};
typedef closure<> c_closure;
template <typename... Args>
closure<Args...> make_closure(lua_CFunction f, Args&&... args) {
return closure<Args...>(f, std::forward<Args>(args)...);
}
template <typename Sig, typename... Ps>
struct function_arguments {
std::tuple<Ps...> arguments;
template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler>
function_arguments(Arg&& arg, Args&&... args)
: arguments(std::forward<Arg>(arg), std::forward<Args>(args)...) {
}
};
template <typename Sig = function_sig<>, typename... Args>
auto as_function(Args&&... args) {
return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...);
}
template <typename Sig = function_sig<>, typename... Args>
auto as_function_reference(Args&&... args) {
return function_arguments<Sig, Args...>(std::forward<Args>(args)...);
}
template <typename T>
struct as_table_t {
T source;
as_table_t() = default;
as_table_t(const as_table_t&) = default;
as_table_t(as_table_t&&) = default;
as_table_t& operator=(const as_table_t&) = default;
as_table_t& operator=(as_table_t&&) = default;
template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_table_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
as_table_t(Arg&& arg)
: source(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
as_table_t(Arg0&& arg0, Arg1&& arg1, Args&&... args)
: source(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
operator std::add_lvalue_reference_t<T>() {
return source;
}
};
template <typename T>
struct nested {
T source;
nested() = default;
nested(const nested&) = default;
nested(nested&&) = default;
nested& operator=(const nested&) = default;
nested& operator=(nested&&) = default;
template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, nested>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
nested(Arg&& arg)
: source(std::forward<Arg>(arg)) {
}
template <typename Arg0, typename Arg1, typename... Args>
nested(Arg0&& arg0, Arg1&& arg1, Args&&... args)
: source(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
}
operator std::add_lvalue_reference_t<T>() {
return source;
}
};
template <typename T>
as_table_t<T> as_table_ref(T&& container) {
return as_table_t<T>(std::forward<T>(container));
}
template <typename T>
as_table_t<meta::unqualified_t<T>> as_table(T&& container) {
return as_table_t<meta::unqualified_t<T>>(std::forward<T>(container));
}
template <typename T>
nested<T> as_nested_ref(T&& container) {
return nested<T>(std::forward<T>(container));
}
template <typename T>
nested<meta::unqualified_t<T>> as_nested(T&& container) {
return nested<meta::unqualified_t<T>>(std::forward<T>(container));
}
struct this_state {
lua_State* L;
this_state(lua_State* Ls)
: L(Ls) {
}
operator lua_State*() const noexcept {
return lua_state();
}
lua_State* operator->() const noexcept {
return lua_state();
}
lua_State* lua_state() const noexcept {
return L;
}
};
struct this_main_state {
lua_State* L;
this_main_state(lua_State* Ls)
: L(Ls) {
}
operator lua_State*() const noexcept {
return lua_state();
}
lua_State* operator->() const noexcept {
return lua_state();
}
lua_State* lua_state() const noexcept {
return L;
}
};
struct new_table {
int sequence_hint = 0;
int map_hint = 0;
new_table() = default;
new_table(const new_table&) = default;
new_table(new_table&&) = default;
new_table& operator=(const new_table&) = default;
new_table& operator=(new_table&&) = default;
new_table(int sequence_hint, int map_hint = 0)
: sequence_hint(sequence_hint), map_hint(map_hint) {
}
};
enum class lib : char {
// print, assert, and other base functions
base,
// require and other package functions
package,
// coroutine functions and utilities
coroutine,
// string library
string,
// functionality from the OS
os,
// all things math
math,
// the table manipulator and observer functions
table,
// the debug library
debug,
// the bit library: different based on which you're using
bit32,
// input/output library
io,
// LuaJIT only
ffi,
// LuaJIT only
jit,
// library for handling utf8: new to Lua
utf8,
// do not use
count
};
enum class call_syntax {
dot = 0,
colon = 1
};
enum class load_mode {
any = 0,
text = 1,
binary = 2,
};
enum class call_status : int {
ok = LUA_OK,
yielded = LUA_YIELD,
runtime = LUA_ERRRUN,
memory = LUA_ERRMEM,
handler = LUA_ERRERR,
gc = LUA_ERRGCMM,
syntax = LUA_ERRSYNTAX,
file = LUA_ERRFILE,
};
enum class thread_status : int {
ok = LUA_OK,
yielded = LUA_YIELD,
runtime = LUA_ERRRUN,
memory = LUA_ERRMEM,
gc = LUA_ERRGCMM,
handler = LUA_ERRERR,
dead = -1,
};
enum class load_status : int {
ok = LUA_OK,
syntax = LUA_ERRSYNTAX,
memory = LUA_ERRMEM,
gc = LUA_ERRGCMM,
file = LUA_ERRFILE,
};
enum class type : int {
none = LUA_TNONE,
lua_nil = LUA_TNIL,
#if !defined(SOL_NO_NIL)
nil = lua_nil,
#endif // Objective C/C++ Keyword that's found in OSX SDK and OBJC -- check for all forms to protect
string = LUA_TSTRING,
number = LUA_TNUMBER,
thread = LUA_TTHREAD,
boolean = LUA_TBOOLEAN,
function = LUA_TFUNCTION,
userdata = LUA_TUSERDATA,
lightuserdata = LUA_TLIGHTUSERDATA,
table = LUA_TTABLE,
poly = -0xFFFF
};
inline const std::string& to_string(call_status c) {
static const std::array<std::string, 10> names{ {
"ok",
"yielded",
"runtime",
"memory",
"handler",
"gc",
"syntax",
"file",
"CRITICAL_EXCEPTION_FAILURE",
"CRITICAL_INDETERMINATE_STATE_FAILURE"
} };
switch (c) {
case call_status::ok:
return names[0];
case call_status::yielded:
return names[1];
case call_status::runtime:
return names[2];
case call_status::memory:
return names[3];
case call_status::handler:
return names[4];
case call_status::gc:
return names[5];
case call_status::syntax:
return names[6];
case call_status::file:
return names[7];
}
if (static_cast<std::ptrdiff_t>(c) == -1) {
// One of the many cases where a critical exception error has occurred
return names[8];
}
return names[9];
}
inline bool is_indeterminate_call_failure(call_status c) {
switch (c) {
case call_status::ok:
case call_status::yielded:
case call_status::runtime:
case call_status::memory:
case call_status::handler:
case call_status::gc:
case call_status::syntax:
case call_status::file:
return false;
}
return true;
}
inline const std::string& to_string(load_status c) {
static const std::array<std::string, 7> names{ {
"ok",
"memory",
"gc",
"syntax",
"file",
"CRITICAL_EXCEPTION_FAILURE",
"CRITICAL_INDETERMINATE_STATE_FAILURE"
} };
switch (c) {
case load_status::ok:
return names[0];
case load_status::memory:
return names[1];
case load_status::gc:
return names[2];
case load_status::syntax:
return names[3];
case load_status::file:
return names[4];
}
if (static_cast<int>(c) == -1) {
// One of the many cases where a critical exception error has occurred
return names[5];
}
return names[6];
}
inline const std::string& to_string(load_mode c) {
static const std::array<std::string, 3> names{ {
"bt",
"t",
"b",
} };
return names[static_cast<std::size_t>(c)];
}
enum class meta_function {
construct,
index,
new_index,
mode,
call,
call_function = call,
metatable,
to_string,
length,
unary_minus,
addition,
subtraction,
multiplication,
division,
modulus,
power_of,
involution = power_of,
concatenation,
equal_to,
less_than,
less_than_or_equal_to,
garbage_collect,
floor_division,
bitwise_left_shift,
bitwise_right_shift,
bitwise_not,
bitwise_and,
bitwise_or,
bitwise_xor,
pairs,
ipairs,
next,
type,
type_info,
};
typedef meta_function meta_method;
inline const std::array<std::string, 32>& meta_function_names() {
static const std::array<std::string, 32> names = { { "new",
"__index",
"__newindex",
"__mode",
"__call",
"__mt",
"__tostring",
"__len",
"__unm",
"__add",
"__sub",
"__mul",
"__div",
"__mod",
"__pow",
"__concat",
"__eq",
"__lt",
"__le",
"__gc",
"__idiv",
"__shl",
"__shr",
"__bnot",
"__band",
"__bor",
"__bxor",
"__pairs",
"__ipairs",
"__next",
"__type",
"__typeinfo" } };
return names;
}
inline const std::string& to_string(meta_function mf) {
return meta_function_names()[static_cast<int>(mf)];
}
inline type type_of(lua_State* L, int index) {
return static_cast<type>(lua_type(L, index));
}
inline std::string type_name(lua_State* L, type t) {
return lua_typename(L, static_cast<int>(t));
}
namespace detail {
template <typename T>
struct is_initializer_list : std::false_type {};
template <typename T>
struct is_initializer_list<std::initializer_list<T>> : std::true_type {};
template <typename T, typename C = void>
struct is_container : std::false_type {};
template <typename T>
struct is_container<std::initializer_list<T>> : std::false_type {};
template <typename T>
struct is_container<T, std::enable_if_t<meta::is_string_like<meta::unqualified_t<T>>::value>> : std::false_type {};
template <typename T>
struct is_container<T, std::enable_if_t<meta::all<
std::is_array<meta::unqualified_t<T>>
, meta::neg<meta::any_same<std::remove_all_extents_t<meta::unqualified_t<T>>, char, wchar_t, char16_t, char32_t>>
>::value
>> : std::true_type {};
template <typename T>
struct is_container<T, std::enable_if_t<meta::all<
meta::has_begin_end<meta::unqualified_t<T>>
, meta::neg<is_initializer_list<meta::unqualified_t<T>>>
, meta::neg<meta::is_string_like<meta::unqualified_t<T>>>
>::value
>> : std::true_type {};
} // namespace detail
template <typename T>
struct is_container : detail::is_container<T> {};
template <typename T>
struct is_to_stringable : meta::any<meta::supports_to_string_member<meta::unqualified_t<T>>, meta::supports_adl_to_string<meta::unqualified_t<T>>, meta::supports_ostream_op<meta::unqualified_t<T>>> {};
namespace detail {
template <typename T, typename = void>
struct lua_type_of : std::integral_constant<type, type::userdata> {};
template <typename C, typename T, typename A>
struct lua_type_of<std::basic_string<C, T, A>> : std::integral_constant<type, type::string> {};
template <typename C, typename T>
struct lua_type_of<basic_string_view<C, T>> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<char[N]> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> {};
template <std::size_t N>
struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<char> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<char16_t> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<char32_t> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<const char*> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> {};
template <>
struct lua_type_of<bool> : std::integral_constant<type, type::boolean> {};
template <>
struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> {};
template <>
struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> {};
template <>
struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> {};
template <>
struct lua_type_of<error> : std::integral_constant<type, type::string> {};
template <bool b, typename Base>
struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> {};
template <>
struct lua_type_of<metatable_t> : std::integral_constant<type, type::table> {};
template <typename B>
struct lua_type_of<basic_environment<B>> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<env_t> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<new_table> : std::integral_constant<type, type::table> {};
template <typename T>
struct lua_type_of<as_table_t<T>> : std::integral_constant<type, type::table> {};
template <typename T>
struct lua_type_of<std::initializer_list<T>> : std::integral_constant<type, type::table> {};
template <bool b>
struct lua_type_of<basic_reference<b>> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> {};
template <typename Base>
struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> {};
template <typename... Args>
struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> {};
template <typename A, typename B>
struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> {};
template <>
struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> {};
template <>
struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> {};
template <typename T>
struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> {};
template <typename T>
struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> {};
template <typename Base>
struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> {};
template <typename Base>
struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> {};
template <>
struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> {};
template <>
struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> {};
template <typename Base, bool aligned>
struct lua_type_of<basic_function<Base, aligned>> : std::integral_constant<type, type::function> {};
template <typename Base, bool aligned, typename Handler>
struct lua_type_of<basic_protected_function<Base, aligned, Handler>> : std::integral_constant<type, type::function> {};
template <typename Base>
struct lua_type_of<basic_coroutine<Base>> : std::integral_constant<type, type::function> {};
template <typename Base>
struct lua_type_of<basic_thread<Base>> : std::integral_constant<type, type::thread> {};
template <typename Signature>
struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> {};
template <typename T>
struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<variadic_results> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<stack_count> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<this_state> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<this_main_state> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<this_environment> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<type> : std::integral_constant<type, type::poly> {};
template <typename T>
struct lua_type_of<T*> : std::integral_constant<type, type::userdata> {};
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_arithmetic<T>::value>> : std::integral_constant<type, type::number> {};
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_enum<T>::value>> : std::integral_constant<type, type::number> {};
template <>
struct lua_type_of<meta_function> : std::integral_constant<type, type::string> {};
#ifdef SOL_CXX17_FEATURES
template <typename... Tn>
struct lua_type_of<std::variant<Tn...>> : std::integral_constant<type, type::poly> {};
#endif // C++ 17 (or not) features
template <typename T>
struct lua_type_of<nested<T>, std::enable_if_t<::sol::is_container<T>::value>> : std::integral_constant<type, type::table> {};
template <typename T>
struct lua_type_of<nested<T>, std::enable_if_t<!::sol::is_container<T>::value>> : lua_type_of<T> {};
template <typename C, C v, template <typename...> class V, typename... Args>
struct accumulate : std::integral_constant<C, v> {};
template <typename C, C v, template <typename...> class V, typename T, typename... Args>
struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> {};
} // namespace detail
template <typename T>
struct is_unique_usertype : std::integral_constant<bool, unique_usertype_traits<T>::value> {};
template <typename T>
struct lua_type_of : detail::lua_type_of<T> {
typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
};
template <typename T>
struct lua_size : std::integral_constant<int, 1> {
typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
};
template <typename A, typename B>
struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> {};
template <typename... Args>
struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> {};
namespace detail {
template <typename...>
struct void_ { typedef void type; };
template <typename T, typename = void>
struct has_internal_marker_impl : std::false_type {};
template <typename T>
struct has_internal_marker_impl<T, typename void_<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>::type> : std::true_type {};
template <typename T>
struct has_internal_marker : has_internal_marker_impl<T> {};
} // namespace detail
template <typename T>
struct is_lua_primitive : std::integral_constant<bool,
type::userdata != lua_type_of<meta::unqualified_t<T>>::value
|| ((type::userdata == lua_type_of<meta::unqualified_t<T>>::value)
&& detail::has_internal_marker<lua_type_of<meta::unqualified_t<T>>>::value
&& !detail::has_internal_marker<lua_size<meta::unqualified_t<T>>>::value)
|| std::is_base_of<reference, meta::unqualified_t<T>>::value
|| std::is_base_of<main_reference, meta::unqualified_t<T>>::value
|| std::is_base_of<stack_reference, meta::unqualified_t<T>>::value
|| meta::is_specialization_of<meta::unqualified_t<T>, std::tuple>::value
|| meta::is_specialization_of<meta::unqualified_t<T>, std::pair>::value> {};
template <typename T>
struct is_lua_reference : std::integral_constant<bool,
std::is_base_of<reference, meta::unqualified_t<T>>::value
|| std::is_base_of<main_reference, meta::unqualified_t<T>>::value
|| std::is_base_of<stack_reference, meta::unqualified_t<T>>::value> {};
template <typename T>
struct is_lua_reference_or_proxy : std::integral_constant<bool,
is_lua_reference<meta::unqualified_t<T>>::value
|| meta::is_specialization_of<meta::unqualified_t<T>, proxy>::value> {};
template <typename T>
struct is_main_threaded : std::is_base_of<main_reference, T> {};
template <typename T>
struct is_stack_based : std::is_base_of<stack_reference, T> {};
template <>
struct is_stack_based<variadic_args> : std::true_type {};
template <>
struct is_stack_based<unsafe_function_result> : std::true_type {};
template <>
struct is_stack_based<protected_function_result> : std::true_type {};
template <>
struct is_stack_based<stack_proxy> : std::true_type {};
template <>
struct is_stack_based<stack_proxy_base> : std::true_type {};
template <typename T>
struct is_lua_primitive<T*> : std::true_type {};
template <>
struct is_lua_primitive<unsafe_function_result> : std::true_type {};
template <>
struct is_lua_primitive<protected_function_result> : std::true_type {};
template <typename T>
struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type {};
template <typename T>
struct is_lua_primitive<user<T>> : std::true_type {};
template <typename T>
struct is_lua_primitive<light<T>> : is_lua_primitive<T*> {};
template <typename T>
struct is_lua_primitive<optional<T>> : std::true_type {};
template <typename T>
struct is_lua_primitive<as_table_t<T>> : std::true_type {};
template <typename T>
struct is_lua_primitive<nested<T>> : std::true_type {};
template <>
struct is_lua_primitive<userdata_value> : std::true_type {};
template <>
struct is_lua_primitive<lightuserdata_value> : std::true_type {};
template <typename T>
struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> {};
template <typename T>
struct is_proxy_primitive : is_lua_primitive<T> {};
template <typename T>
struct is_transparent_argument : std::false_type {};
template <>
struct is_transparent_argument<this_state> : std::true_type {};
template <>
struct is_transparent_argument<this_main_state> : std::true_type {};
template <>
struct is_transparent_argument<this_environment> : std::true_type {};
template <>
struct is_transparent_argument<variadic_args> : std::true_type {};
template <typename T>
struct is_variadic_arguments : std::is_same<meta::unqualified_t<T>, variadic_args> {};
template <typename T>
struct is_lua_index : std::is_integral<T> {};
template <>
struct is_lua_index<raw_index> : std::true_type {};
template <>
struct is_lua_index<absolute_index> : std::true_type {};
template <>
struct is_lua_index<ref_index> : std::true_type {};
template <>
struct is_lua_index<upvalue_index> : std::true_type {};
template <typename Signature>
struct lua_bind_traits : meta::bind_traits<Signature> {
private:
typedef meta::bind_traits<Signature> base_t;
public:
typedef std::integral_constant<bool, meta::count_for<is_variadic_arguments, typename base_t::args_list>::value != 0> runtime_variadics_t;
static const std::size_t true_arity = base_t::arity;
static const std::size_t arity = base_t::arity - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
static const std::size_t true_free_arity = base_t::free_arity;
static const std::size_t free_arity = base_t::free_arity - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
};
template <typename T>
struct is_table : std::false_type {};
template <bool x, typename T>
struct is_table<basic_table_core<x, T>> : std::true_type {};
template <typename T>
struct is_function : std::false_type {};
template <typename T, bool aligned>
struct is_function<basic_function<T, aligned>> : std::true_type {};
template <typename T, bool aligned, typename Handler>
struct is_function<basic_protected_function<T, aligned, Handler>> : std::true_type {};
template <typename T>
struct is_lightuserdata : std::false_type {};
template <typename T>
struct is_lightuserdata<basic_lightuserdata<T>> : std::true_type {};
template <typename T>
struct is_userdata : std::false_type {};
template <typename T>
struct is_userdata<basic_userdata<T>> : std::true_type {};
template <typename T>
struct is_environment : std::integral_constant<bool, is_userdata<T>::value || is_table<T>::value> {};
template <typename T>
struct is_automagical : std::true_type {};
template <typename T>
inline type type_of() {
return lua_type_of<meta::unqualified_t<T>>::value;
}
namespace detail {
template <typename T>
struct is_non_factory_constructor : std::false_type {};
template <typename... Args>
struct is_non_factory_constructor<constructors<Args...>> : std::true_type {};
template <typename... Args>
struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type {};
template <>
struct is_non_factory_constructor<no_construction> : std::true_type {};
template <typename T>
struct is_constructor : is_non_factory_constructor<T> {};
template <typename... Args>
struct is_constructor<factory_wrapper<Args...>> : std::true_type {};
template <typename T>
struct is_constructor<protect_t<T>> : is_constructor<meta::unqualified_t<T>> {};
template <typename F, typename... Filters>
struct is_constructor<filter_wrapper<F, Filters...>> : is_constructor<meta::unqualified_t<F>> {};
template <typename... Args>
using has_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>;
template <typename T>
struct is_destructor : std::false_type {};
template <typename Fx>
struct is_destructor<destructor_wrapper<Fx>> : std::true_type {};
template <typename... Args>
using has_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>;
struct add_destructor_tag {};
struct check_destructor_tag {};
struct verified_tag {
} const verified{};
} // namespace detail
} // namespace sol
#endif // SOL_TYPES_HPP