sol2/sol/userdata.hpp
PrincessNyanara 423e44d6dc all tests compile excepted related to test_table_return_two(), which uses contiguous container std::vector but has key-value pairs inside of it
c++ semantics dictate that it's accessed by index, but the tests seem to want to indicate that it should be accessed like a hashmap (or just using basic lua table semantics)
i have no idea how to make this incompatibility work in the new system...
i will ask repo master if he knows anything
2014-06-09 06:29:03 -04:00

264 lines
11 KiB
C++

// The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_USERDATA_HPP
#define SOL_USERDATA_HPP
#include "state.hpp"
#include "function_types.hpp"
#include "userdata_traits.hpp"
#include <vector>
#include <array>
#include <algorithm>
namespace sol {
namespace detail {
template<typename T, typename... Args>
inline std::unique_ptr<T> make_unique(Args&&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
} // detail
template<typename T>
class userdata {
private:
const static std::array<std::string, 19> metafunctionnames;
std::string luaname;
std::vector<std::string> functionnames;
std::vector<std::unique_ptr<base_function>> funcs;
std::vector<std::unique_ptr<base_function>> ptrfuncs;
std::vector<std::unique_ptr<base_function>> metafuncs;
std::vector<std::unique_ptr<base_function>> ptrmetafuncs;
std::vector<luaL_Reg> functiontable;
std::vector<luaL_Reg> ptrfunctiontable;
std::vector<luaL_Reg> metafunctiontable;
std::vector<luaL_Reg> ptrmetafunctiontable;
template<typename... TTypes>
struct constructor {
template<typename... Args>
static void do_constructor(lua_State* L, T* obj, call_syntax syntax, int, types<Args...>) {
auto fx = [&obj] (Args&&... args) -> void {
std::allocator<T> alloc{};
alloc.construct(obj, std::forward<Args>(args)...);
};
stack::get_call(L, 1 + static_cast<int>(syntax), fx, types<Args...>());
}
static void match_constructor(lua_State*, T*, call_syntax, int) {
throw error("No matching constructor for the arguments provided");
}
template<typename ...CArgs, typename... Args>
static void match_constructor(lua_State* L, T* obj, call_syntax syntax, int argcount, types<CArgs...> t, Args&&... args) {
if (argcount == sizeof...(CArgs)) {
do_constructor(L, obj, syntax, argcount, t);
return;
}
match_constructor(L, obj, syntax, argcount, std::forward<Args>(args)...);
}
static int construct(lua_State* L) {
auto&& meta = userdata_traits<T>::metatable;
call_syntax syntax = stack::get_call_syntax(L, meta);
int argcount = lua_gettop(L);
void* udata = lua_newuserdata(L, sizeof(T));
T* obj = static_cast<T*>(udata);
match_constructor(L, obj, syntax, argcount - static_cast<int>(syntax), typename std::common_type<TTypes>::type()...);
luaL_getmetatable(L, std::addressof(meta[0]));
lua_setmetatable(L, -1);
return 1;
}
};
template<std::size_t N>
struct destructor {
static int destruct(lua_State* L) {
userdata_t udata = stack::get<userdata_t>(L, 1);
T* obj = static_cast<T*>(udata.value);
std::allocator<T> alloc{};
alloc.destroy(obj);
return 0;
}
};
template<std::size_t N>
void build_function_tables() {}
template<std::size_t N, typename... Args, typename TBase, typename Ret>
void build_function_tables(std::string funcname, Ret TBase::* func, Args&&... args) {
static_assert(std::is_base_of<TBase, T>::value, "Any registered function must be part of the class");
typedef typename std::decay<decltype(func)>::type function_type;
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
auto metamethod = std::find(metafunctionnames.begin(), metafunctionnames.end(), name);
if (metamethod != metafunctionnames.end()) {
metafuncs.emplace_back(detail::make_unique<userdata_function<function_type, T>>(std::move(func)));
ptrmetafuncs.emplace_back(detail::make_unique<userdata_function<function_type, typename std::add_pointer<T>::type>>(std::move(func)));
metafunctiontable.push_back({ name.c_str(), &base_function::userdata<N>::call });
ptrmetafunctiontable.push_back({ name.c_str(), &base_function::userdata<N>::call });
}
else {
funcs.emplace_back(detail::make_unique<userdata_function<function_type, T>>(std::move(func)));
ptrfuncs.emplace_back(detail::make_unique<userdata_function<function_type, typename std::add_pointer<T>::type>>(std::move(func)));
functiontable.push_back({ name.c_str(), &base_function::userdata<N>::call });
ptrfunctiontable.push_back({ name.c_str(), &base_function::userdata<N>::call });
}
build_function_tables<N + 1>(std::forward<Args>(args)...);
}
public:
template<typename... Args>
userdata(Args&&... args): userdata(userdata_traits<T>::name, default_constructor, std::forward<Args>(args)...) {}
template<typename... Args, typename... CArgs>
userdata(constructors<CArgs...> c, Args&&... args): userdata(userdata_traits<T>::name, std::move(c), std::forward<Args>(args)...) {}
template<typename... Args, typename... CArgs>
userdata(std::string name, constructors<CArgs...>, Args&&... args): luaname(std::move(name)) {
functionnames.reserve(sizeof...(args) + 2);
functiontable.reserve(sizeof...(args) + 2);
ptrfunctiontable.reserve(sizeof...(args) + 2);
metafunctiontable.reserve(sizeof...(args) + 2);
ptrmetafunctiontable.reserve(sizeof...(args) + 2);
funcs.reserve(sizeof...(args) + 2);
ptrfuncs.reserve(sizeof...(args) + 2);
metafuncs.reserve(sizeof...(args) + 2);
ptrmetafuncs.reserve(sizeof...(args) + 2);
build_function_tables<0>(std::forward<Args>(args)...);
functionnames.push_back("new");
functiontable.push_back({ functionnames.back().c_str(), &constructor<CArgs...>::construct });
functionnames.push_back("__gc");
metafunctiontable.push_back({ functionnames.back().c_str(), &destructor<sizeof...(Args) / 2>::destruct });
// ptr_functions does not participate in garbage collection/new,
// as all pointered types are considered
// to be references. This makes returns of
// `std::vector<int>&` and `std::vector<int>*` work
functiontable.push_back({ nullptr, nullptr });
metafunctiontable.push_back({ nullptr, nullptr });
ptrfunctiontable.push_back({ nullptr, nullptr });
ptrmetafunctiontable.push_back({ nullptr, nullptr });
}
template<typename... Args, typename... CArgs>
userdata(const char* name, constructors<CArgs...> c, Args&&... args) :
userdata(std::string(name), std::move(c), std::forward<Args>(args)...) {}
const std::vector<std::string>& function_names () const {
return functionnames;
}
const std::vector<std::unique_ptr<base_function>>& functions () const {
return funcs;
}
const std::vector<std::unique_ptr<base_function>>& reference_functions () const {
return ptrfuncs;
}
const std::vector<std::unique_ptr<base_function>>& meta_functions () const {
return metafuncs;
}
const std::vector<std::unique_ptr<base_function>>& meta_reference_functions () const {
return ptrmetafuncs;
}
const std::vector<luaL_Reg>& function_table () const {
return functiontable;
}
const std::vector<luaL_Reg>& reference_function_table () const {
return ptrfunctiontable;
}
const std::vector<luaL_Reg>& meta_function_table () const {
return metafunctiontable;
}
const std::vector<luaL_Reg>& meta_reference_function_table () const {
return ptrmetafunctiontable;
}
const std::string& name () const {
return luaname;
}
};
template <typename T>
const std::array<std::string, 19> userdata<T>::metafunctionnames = {
"__index",
"__newindex",
"__mode",
"__call",
"__metatable",
"__tostring",
"__len",
"__gc",
"__unm",
"__add",
"__sub",
"__mul",
"__div",
"__mod",
"__pow",
"__concat",
"__eq",
"__lt",
"__le",
};
namespace stack {
template <typename T>
struct pusher<userdata<T>> {
template <typename Meta, typename Funcs, typename FuncTable, typename MetaFuncs, typename MetaFuncTable>
static void push_metatable(lua_State* L, Meta&& meta, Funcs&& funcs, FuncTable&& functable, MetaFuncs&& metafuncs, MetaFuncTable&& metafunctable) {
luaL_newmetatable(L, std::addressof(meta[0]));
// regular functions accessed through __index semantics
lua_pushvalue(L, -1);
lua_setfield(L, -1, "__index");
for (std::size_t u = 0; u < funcs.size(); ++u) {
stack::push<upvalue_t>(L, funcs[ u ].get());
}
luaL_setfuncs(L, functable.data(), static_cast<uint32_t>(funcs.size()));
// meta functions
for (std::size_t u = 0; u < metafuncs.size(); ++u) {
stack::push<upvalue_t>(L, metafuncs[ u ].get());
}
luaL_setfuncs(L, metafunctable.data(), static_cast<uint32_t>(metafuncs.size()));
}
static void push (lua_State* L, userdata<T>& user) {
push_metatable(L, userdata_traits<T>::metatable, user.functions(), user.function_table(), user.meta_functions(), user.meta_function_table());
push_metatable(L, userdata_traits<T*>::metatable, user.reference_functions(), user.reference_function_table(), user.meta_reference_functions(), user.meta_reference_function_table());
}
};
} // stack
} // sol
#endif // SOL_USERDATA_HPP