sol2/test_usertypes.cpp

1427 lines
33 KiB
C++

#define SOL_CHECK_ARGUMENTS
#include <sol.hpp>
#include <catch.hpp>
#include <iostream>
#include <list>
#include <memory>
#include <mutex>
struct vars {
vars() {
}
int boop = 0;
~vars() {
}
};
struct fuser {
int x;
fuser() : x(0) {}
fuser(int x) : x(x) {}
int add(int y) {
return x + y;
}
int add2(int y) {
return x + y + 2;
}
};
namespace crapola {
struct fuser {
int x;
fuser() : x(0) {}
fuser(int x) : x(x) {}
fuser(int x, int x2) : x(x * x2) {}
int add(int y) {
return x + y;
}
int add2(int y) {
return x + y + 2;
}
};
} // crapola
class Base {
public:
Base(int a_num) : m_num(a_num) { }
int get_num() {
return m_num;
}
protected:
int m_num;
};
class Derived : public Base {
public:
Derived(int a_num) : Base(a_num) { }
int get_num_10() {
return 10 * m_num;
}
};
class abstract_A {
public:
virtual void a() = 0;
};
class abstract_B : public abstract_A {
public:
virtual void a() override {
INFO("overridden a() in B : public A - BARK");
}
};
struct Vec {
float x, y, z;
Vec(float x, float y, float z) : x{ x }, y{ y }, z{ z } {}
float length() {
return sqrtf(x*x + y*y + z*z);
}
Vec normalized() {
float invS = 1 / length();
return{ x * invS, y * invS, z * invS };
}
};
struct giver {
int a = 0;
giver() {
}
void gief() {
a = 1;
}
static void stuff() {
}
static void gief_stuff(giver& t, int a) {
t.a = a;
}
~giver() {
}
};
struct factory_test {
private:
factory_test() { a = true_a; }
~factory_test() { a = 0; }
public:
static int num_saved;
static int num_killed;
struct deleter {
void operator()(factory_test* f) {
f->~factory_test();
}
};
static const int true_a;
int a;
static std::unique_ptr<factory_test, deleter> make() {
return std::unique_ptr<factory_test, deleter>(new factory_test(), deleter());
}
static void save(factory_test& f) {
new(&f)factory_test();
++num_saved;
}
static void kill(factory_test& f) {
f.~factory_test();
++num_killed;
}
};
int factory_test::num_saved = 0;
int factory_test::num_killed = 0;
const int factory_test::true_a = 156;
bool something() {
return true;
}
struct thing {
int v = 100;
thing() {}
thing(int x) : v(x) {}
};
struct self_test {
int bark;
self_test() : bark(100) {
}
void g(const std::string& str) {
std::cout << str << '\n';
bark += 1;
}
void f(const self_test& t) {
std::cout << "got test" << '\n';
if (t.bark != bark)
throw sol::error("bark values are not the same for self_test f function");
if (&t != this)
throw sol::error("call does not reference self for self_test f function");
}
};
struct ext_getset {
int bark = 24;
const int meow = 56;
ext_getset() = default;
ext_getset(int v) : bark(v) {}
ext_getset(ext_getset&&) = default;
ext_getset(const ext_getset&) = delete;
ext_getset& operator=(ext_getset&&) = default;
ext_getset& operator=(const ext_getset&) = delete;
~ext_getset() {
}
std::string x() {
return "bark bark bark";
}
int x2(std::string x) {
return static_cast<int>(x.length());
}
void set(sol::variadic_args, sol::this_state, int x) {
bark = x;
}
int get(sol::this_state, sol::variadic_args) {
return bark;
}
static void s_set(int) {
}
static int s_get(int x) {
return x + 20;
}
};
template <typename T>
void des(T& e) {
e.~T();
}
TEST_CASE("usertype/usertype", "Show that we can create classes from usertype and use them") {
sol::state lua;
sol::usertype<fuser> lc{ "add", &fuser::add, "add2", &fuser::add2 };
lua.set_usertype(lc);
lua.script("a = fuser:new()\n"
"b = a:add(1)\n"
"c = a:add2(1)\n");
sol::object a = lua.get<sol::object>("a");
sol::object b = lua.get<sol::object>("b");
sol::object c = lua.get<sol::object>("c");
REQUIRE((a.is<sol::userdata_value>()));
auto atype = a.get_type();
auto btype = b.get_type();
auto ctype = c.get_type();
REQUIRE((atype == sol::type::userdata));
REQUIRE((btype == sol::type::number));
REQUIRE((ctype == sol::type::number));
int bresult = b.as<int>();
int cresult = c.as<int>();
REQUIRE(bresult == 1);
REQUIRE(cresult == 3);
}
TEST_CASE("usertype/usertype-constructors", "Show that we can create classes from usertype and use them with multiple constructors") {
sol::state lua;
sol::constructors<sol::types<>, sol::types<int>, sol::types<int, int>> con;
sol::usertype<crapola::fuser> lc(con, "add", &crapola::fuser::add, "add2", &crapola::fuser::add2);
lua.set_usertype(lc);
lua.script(
"a = fuser.new(2)\n"
"u = a:add(1)\n"
"v = a:add2(1)\n"
"b = fuser:new()\n"
"w = b:add(1)\n"
"x = b:add2(1)\n"
"c = fuser.new(2, 3)\n"
"y = c:add(1)\n"
"z = c:add2(1)\n");
sol::object a = lua.get<sol::object>("a");
auto atype = a.get_type();
REQUIRE((atype == sol::type::userdata));
sol::object u = lua.get<sol::object>("u");
sol::object v = lua.get<sol::object>("v");
REQUIRE((u.as<int>() == 3));
REQUIRE((v.as<int>() == 5));
sol::object b = lua.get<sol::object>("b");
auto btype = b.get_type();
REQUIRE((btype == sol::type::userdata));
sol::object w = lua.get<sol::object>("w");
sol::object x = lua.get<sol::object>("x");
REQUIRE((w.as<int>() == 1));
REQUIRE((x.as<int>() == 3));
sol::object c = lua.get<sol::object>("c");
auto ctype = c.get_type();
REQUIRE((ctype == sol::type::userdata));
sol::object y = lua.get<sol::object>("y");
sol::object z = lua.get<sol::object>("z");
REQUIRE((y.as<int>() == 7));
REQUIRE((z.as<int>() == 9));
}
TEST_CASE("usertype/usertype-utility", "Show internal management of classes registered through new_usertype") {
sol::state lua;
lua.new_usertype<fuser>("fuser", "add", &fuser::add, "add2", &fuser::add2);
lua.script("a = fuser.new()\n"
"b = a:add(1)\n"
"c = a:add2(1)\n");
sol::object a = lua.get<sol::object>("a");
sol::object b = lua.get<sol::object>("b");
sol::object c = lua.get<sol::object>("c");
REQUIRE((a.is<sol::userdata_value>()));
auto atype = a.get_type();
auto btype = b.get_type();
auto ctype = c.get_type();
REQUIRE((atype == sol::type::userdata));
REQUIRE((btype == sol::type::number));
REQUIRE((ctype == sol::type::number));
int bresult = b.as<int>();
int cresult = c.as<int>();
REQUIRE(bresult == 1);
REQUIRE(cresult == 3);
}
TEST_CASE("usertype/usertype-utility-derived", "usertype classes must play nice when a derived class does not overload a publically visible base function") {
sol::state lua;
lua.open_libraries(sol::lib::base);
sol::constructors<sol::types<int>> basector;
sol::usertype<Base> baseusertype(basector, "get_num", &Base::get_num);
lua.set_usertype(baseusertype);
lua.script("base = Base.new(5)");
REQUIRE_NOTHROW(lua.script("print(base:get_num())"));
sol::constructors<sol::types<int>> derivedctor;
sol::usertype<Derived> derivedusertype(derivedctor,
"get_num_10", &Derived::get_num_10,
"get_num", &Derived::get_num
);
lua.set_usertype(derivedusertype);
lua.script("derived = Derived.new(7)");
Derived& derived = lua["derived"];
lua.script("dgn = derived:get_num()\n"
"print(dgn)");
lua.script("dgn10 = derived:get_num_10()\n"
"print(dgn10)");
REQUIRE((lua.get<int>("dgn10") == 70));
REQUIRE((lua.get<int>("dgn") == 7));
}
TEST_CASE("usertype/self-referential usertype", "usertype classes must play nice when C++ object types are requested for C++ code") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<self_test>("test", "g", &self_test::g, "f", &self_test::f);
lua.script(
"local a = test.new()\n"
"a:g(\"woof\")\n"
"a:f(a)\n"
);
}
TEST_CASE("usertype/issue-number-twenty-five", "Using pointers and references from C++ classes in Lua") {
struct test {
int x = 0;
test& set() {
x = 10;
return *this;
}
int get() {
return x;
}
test* pget() {
return this;
}
test create_get() {
return *this;
}
int fun(int xa) {
return xa * 10;
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<test>("test", "set", &test::set, "get", &test::get, "pointer_get", &test::pget, "fun", &test::fun, "create_get", &test::create_get);
REQUIRE_NOTHROW(lua.script("x = test.new()"));
REQUIRE_NOTHROW(lua.script("assert(x:set():get() == 10)"));
REQUIRE_NOTHROW(lua.script("y = x:pointer_get()"));
REQUIRE_NOTHROW(lua.script("y:set():get()"));
REQUIRE_NOTHROW(lua.script("y:fun(10)"));
REQUIRE_NOTHROW(lua.script("x:fun(10)"));
REQUIRE_NOTHROW(lua.script("assert(y:fun(10) == x:fun(10), '...')"));
REQUIRE_NOTHROW(lua.script("assert(y:fun(10) == 100, '...')"));
REQUIRE_NOTHROW(lua.script("assert(y:set():get() == y:set():get(), '...')"));
REQUIRE_NOTHROW(lua.script("assert(y:set():get() == 10, '...')"));
}
TEST_CASE("usertype/issue-number-thirty-five", "using value types created from lua-called C++ code, fixing user-defined types with constructors") {
sol::state lua;
lua.open_libraries(sol::lib::base);
sol::constructors<sol::types<float, float, float>> ctor;
sol::usertype<Vec> udata(ctor, "normalized", &Vec::normalized, "length", &Vec::length);
lua.set_usertype(udata);
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"print(v:length())"));
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"print(v:normalized():length())"));
}
TEST_CASE("usertype/lua-stored-usertype", "ensure usertype values can be stored without keeping usertype object alive") {
sol::state lua;
lua.open_libraries(sol::lib::base);
{
sol::constructors<sol::types<float, float, float>> ctor;
sol::usertype<Vec> udata(ctor,
"normalized", &Vec::normalized,
"length", &Vec::length);
lua.set_usertype(udata);
// usertype dies, but still usable in lua!
}
REQUIRE_NOTHROW(lua.script("collectgarbage()\n"
"v = Vec.new(1, 2, 3)\n"
"print(v:length())"));
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"print(v:normalized():length())"));
}
TEST_CASE("usertype/member-variables", "allow table-like accessors to behave as member variables for usertype") {
sol::state lua;
lua.open_libraries(sol::lib::base);
sol::constructors<sol::types<float, float, float>> ctor;
sol::usertype<Vec> udata(ctor,
"x", &Vec::x,
"y", &Vec::y,
"z", &Vec::z,
"normalized", &Vec::normalized,
"length", &Vec::length);
lua.set_usertype(udata);
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"v2 = Vec.new(0, 1, 0)\n"
"print(v:length())\n"
));
REQUIRE_NOTHROW(lua.script("v.x = 2\n"
"v2.y = 2\n"
"print(v.x, v.y, v.z)\n"
"print(v2.x, v2.y, v2.z)\n"
));
REQUIRE_NOTHROW(lua.script("assert(v.x == 2)\n"
"assert(v2.x == 0)\n"
"assert(v2.y == 2)\n"
));
REQUIRE_NOTHROW(lua.script("v.x = 3\n"
"local x = v.x\n"
"assert(x == 3)\n"
));
struct breaks {
sol::function f;
};
lua.open_libraries(sol::lib::base);
lua.set("b", breaks());
lua.new_usertype<breaks>("breaks",
"f", &breaks::f
);
breaks& b = lua["b"];
REQUIRE_NOTHROW(lua.script("b.f = function () print('BARK!') end"));
REQUIRE_NOTHROW(lua.script("b.f()"));
REQUIRE_NOTHROW(b.f());
}
TEST_CASE("usertype/nonmember-functions", "let users set non-member functions that take unqualified T as first parameter to usertype") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<giver>("giver",
"gief_stuff", giver::gief_stuff,
"gief", &giver::gief,
"__tostring", [](const giver& t) {
return std::to_string(t.a) + ": giving value";
}
).get<sol::table>("giver")
.set_function("stuff", giver::stuff);
REQUIRE_NOTHROW(lua.script("giver.stuff()"));
REQUIRE_NOTHROW(lua.script("t = giver.new()\n"
"print(tostring(t))\n"
"t:gief()\n"
"t:gief_stuff(20)\n"));
giver& g = lua.get<giver>("t");
REQUIRE(g.a == 20);
}
TEST_CASE("usertype/unique-shared-ptr", "manage the conversion and use of unique and shared pointers ('unique usertypes')") {
const int64_t unique_value = 0x7125679355635963;
auto uniqueint = std::make_unique<int64_t>(unique_value);
auto sharedint = std::make_shared<int64_t>(unique_value);
long preusecount = sharedint.use_count();
{ sol::state lua;
lua.open_libraries(sol::lib::base);
lua.set("uniqueint", std::move(uniqueint));
lua.set("sharedint", sharedint);
std::unique_ptr<int64_t>& uniqueintref = lua["uniqueint"];
std::shared_ptr<int64_t>& sharedintref = lua["sharedint"];
int64_t* rawuniqueintref = lua["uniqueint"];
int64_t* rawsharedintref = lua["sharedint"];
int siusecount = sharedintref.use_count();
REQUIRE((uniqueintref.get() == rawuniqueintref && sharedintref.get() == rawsharedintref));
REQUIRE((uniqueintref != nullptr && sharedintref != nullptr && rawuniqueintref != nullptr && rawsharedintref != nullptr));
REQUIRE((unique_value == *uniqueintref.get() && unique_value == *sharedintref.get()));
REQUIRE((unique_value == *rawuniqueintref && unique_value == *rawsharedintref));
REQUIRE(siusecount == sharedint.use_count());
std::shared_ptr<int64_t> moreref = sharedint;
REQUIRE(unique_value == *moreref.get());
REQUIRE(moreref.use_count() == sharedint.use_count());
REQUIRE(moreref.use_count() == sharedintref.use_count());
}
REQUIRE(preusecount == sharedint.use_count());
}
TEST_CASE("regressions/one", "issue number 48") {
sol::state lua;
lua.new_usertype<vars>("vars",
"boop", &vars::boop);
REQUIRE_NOTHROW(lua.script("beep = vars.new()\n"
"beep.boop = 1"));
// test for segfault
auto my_var = lua.get<vars>("beep");
REQUIRE(my_var.boop == 1);
auto* ptr = &my_var;
REQUIRE(ptr->boop == 1);
}
TEST_CASE("usertype/get-set-references", "properly get and set with std::ref semantics. Note that to get, we must not use Unqualified<T> on the type...") {
sol::state lua;
lua.new_usertype<vars>("vars",
"boop", &vars::boop);
vars var{};
vars rvar{};
lua.set("beep", var);
lua.set("rbeep", std::ref(rvar));
auto& my_var = lua.get<vars>("beep");
auto& ref_var = lua.get<std::reference_wrapper<vars>>("rbeep");
vars& proxy_my_var = lua["beep"];
std::reference_wrapper<vars> proxy_ref_var = lua["rbeep"];
var.boop = 2;
rvar.boop = 5;
// Was return as a value: var must be diferent from "beep"
REQUIRE_FALSE(std::addressof(var) == std::addressof(my_var));
REQUIRE_FALSE(std::addressof(proxy_my_var) == std::addressof(var));
REQUIRE((my_var.boop == 0));
REQUIRE(var.boop != my_var.boop);
REQUIRE(std::addressof(ref_var) == std::addressof(rvar));
REQUIRE(std::addressof(proxy_ref_var.get()) == std::addressof(rvar));
REQUIRE(rvar.boop == 5);
REQUIRE(rvar.boop == ref_var.boop);
}
TEST_CASE("usertype/destructor-tests", "Show that proper copies / destruction happens") {
static int created = 0;
static int destroyed = 0;
static void* last_call = nullptr;
struct x {
x() { ++created; }
x(const x&) { ++created; }
x(x&&) { ++created; }
x& operator=(const x&) { return *this; }
x& operator=(x&&) { return *this; }
~x() { ++destroyed; }
};
{
sol::state lua;
lua.new_usertype<x>("x");
x x1;
x x2;
lua.set("x1copy", x1, "x2copy", x2, "x1ref", std::ref(x1));
x& x1copyref = lua["x1copy"];
x& x2copyref = lua["x2copy"];
x& x1ref = lua["x1ref"];
REQUIRE(created == 4);
REQUIRE(destroyed == 0);
REQUIRE(std::addressof(x1) == std::addressof(x1ref));
}
REQUIRE(created == 4);
REQUIRE(destroyed == 4);
}
TEST_CASE("usertype/private-constructible", "Check to make sure special snowflake types from Enterprise thingamahjongs work properly.") {
int numsaved = factory_test::num_saved;
int numkilled = factory_test::num_killed;
{
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<factory_test>("factory_test",
"new", sol::initializers(factory_test::save),
"__gc", sol::destructor(factory_test::kill),
"a", &factory_test::a
);
std::unique_ptr<factory_test, factory_test::deleter> f = factory_test::make();
lua.set("true_a", factory_test::true_a, "f", f.get());
REQUIRE_NOTHROW(lua.script("assert(f.a == true_a)"));
REQUIRE_NOTHROW(lua.script(
"local fresh_f = factory_test:new()\n"
"assert(fresh_f.a == true_a)\n"));
}
int expectednumsaved = numsaved + 1;
int expectednumkilled = numkilled + 1;
REQUIRE(expectednumsaved == factory_test::num_saved);
REQUIRE(expectednumkilled == factory_test::num_killed);
}
TEST_CASE("usertype/const-pointer", "Make sure const pointers can be taken") {
struct A { int x = 201; };
struct B {
int foo(const A* a) { return a->x; };
};
sol::state lua;
lua.new_usertype<B>("B",
"foo", &B::foo
);
lua.set("a", A());
lua.set("b", B());
lua.script("x = b:foo(a)");
int x = lua["x"];
REQUIRE(x == 201);
}
TEST_CASE("usertype/overloading", "Check if overloading works properly for usertypes") {
struct woof {
int var;
int func(int x) {
return var + x;
}
double func2(int x, int y) {
return var + x + y + 0.5;
}
std::string func2s(int x, std::string y) {
return y + " " + std::to_string(x);
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<woof>("woof",
"var", &woof::var,
"func", sol::overload(&woof::func, &woof::func2, &woof::func2s)
);
const std::string bark_58 = "bark 58";
REQUIRE_NOTHROW(lua.script(
"r = woof:new()\n"
"a = r:func(1)\n"
"b = r:func(1, 2)\n"
"c = r:func(58, 'bark')\n"
));
REQUIRE((lua["a"] == 1));
REQUIRE((lua["b"] == 3.5));
REQUIRE((lua["c"] == bark_58));
REQUIRE_THROWS(lua.script("r:func(1,2,'meow')"));
}
TEST_CASE("usertype/overloading_values", "ensure overloads handle properly") {
struct overloading_test {
int print(int i) { INFO("Integer print: " << i); return 500 + i; }
int print() { INFO("No param print."); return 500; }
};
sol::state lua;
lua.new_usertype<overloading_test>("overloading_test", sol::constructors<>(),
"print", sol::overload(static_cast<int (overloading_test::*)(int)>(&overloading_test::print), static_cast<int (overloading_test::*)()>(&overloading_test::print)),
"print2", sol::overload(static_cast<int (overloading_test::*)()>(&overloading_test::print), static_cast<int (overloading_test::*)(int)>(&overloading_test::print))
);
lua.set("test", overloading_test());
sol::function f0_0 = lua.load("return test:print()");
sol::function f0_1 = lua.load("return test:print2()");
sol::function f1_0 = lua.load("return test:print(24)");
sol::function f1_1 = lua.load("return test:print2(24)");
int res = f0_0();
int res2 = f0_1();
int res3 = f1_0();
int res4 = f1_1();
REQUIRE(res == 500);
REQUIRE(res2 == 500);
REQUIRE(res3 == 524);
REQUIRE(res4 == 524);
}
TEST_CASE("usertype/reference-and-constness", "Make sure constness compiles properly and errors out at runtime") {
struct bark {
int var = 50;
};
struct woof {
bark b;
};
struct nested {
const int f = 25;
};
struct outer {
nested n;
};
bool caughterror = false;
std::string msg;
sol::state lua;
lua.new_usertype<woof>("woof",
"b", &woof::b);
lua.new_usertype<bark>("bark",
"var", &bark::var);
lua.new_usertype<outer>("outer",
"n", &outer::n);
lua.set("w", woof());
lua.set("n", nested());
lua.set("o", outer());
lua.set("f", sol::c_call<decltype(&nested::f), &nested::f>);
lua.script(R"(
x = w.b
x.var = 20
val = w.b.var == x.var
v = f(n);
)");
woof& w = lua["w"];
bark& x = lua["x"];
nested& n = lua["n"];
int v = lua["v"];
bool val = lua["val"];
// enforce reference semantics
REQUIRE(std::addressof(w.b) == std::addressof(x));
REQUIRE(n.f == 25);
REQUIRE(v == 25);
REQUIRE(val);
REQUIRE_THROWS(lua.script("f(n, 50)"));
REQUIRE_THROWS(lua.script("o.n = 25"));
}
TEST_CASE("usertype/readonly-and-static-functions", "Check if static functions can be called on userdata and from their originating (meta)tables") {
struct bark {
int var = 50;
void func() {}
static void oh_boy() {}
static int oh_boy(std::string name) {
return static_cast<int>(name.length());
}
int operator()(int x) {
return x;
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<bark>("bark",
"var", &bark::var,
"var2", sol::readonly(&bark::var),
"something", something,
"something2", [](int x, int y) { return x + y; },
"func", &bark::func,
"oh_boy", sol::overload(sol::resolve<void()>(&bark::oh_boy), sol::resolve<int(std::string)>(&bark::oh_boy)),
sol::meta_function::call_function, &bark::operator()
);
REQUIRE_NOTHROW(lua.script("assert(bark.oh_boy('woo') == 3)"));
REQUIRE_NOTHROW(lua.script("bark.oh_boy()"));
bark b;
lua.set("b", &b);
sol::table b_table = lua["b"];
sol::function member_func = b_table["func"];
sol::function s = b_table["something"];
sol::function s2 = b_table["something2"];
sol::table b_metatable = b_table[sol::metatable_key];
bool isvalidmt = b_metatable.valid();
REQUIRE(isvalidmt);
sol::function b_call = b_metatable["__call"];
sol::function b_as_function = lua["b"];
int x = b_as_function(1);
int y = b_call(b, 1);
bool z = s();
int w = s2(2, 3);
REQUIRE(x == 1);
REQUIRE(y == 1);
REQUIRE(z);
REQUIRE(w == 5);
lua.script(R"(
lx = b(1)
ly = getmetatable(b).__call(b, 1)
lz = b.something()
lz2 = bark.something()
lw = b.something2(2, 3)
lw2 = bark.something2(2, 3)
)");
int lx = lua["lx"];
int ly = lua["ly"];
bool lz = lua["lz"];
int lw = lua["lw"];
bool lz2 = lua["lz2"];
int lw2 = lua["lw2"];
REQUIRE(lx == 1);
REQUIRE(ly == 1);
REQUIRE(lz);
REQUIRE(lz2);
REQUIRE(lw == 5);
REQUIRE(lw2 == 5);
REQUIRE(lx == ly);
REQUIRE(lz == lz2);
REQUIRE(lw == lw2);
REQUIRE_THROWS(lua.script("b.var2 = 2"));
}
TEST_CASE("usertype/properties", "Check if member properties/variables work") {
struct bark {
int var = 50;
int var2 = 25;
int get_var2() const {
return var2;
}
int get_var3() {
return var2;
}
void set_var2(int x) {
var2 = x;
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<bark>("bark",
"var", &bark::var,
"var2", sol::readonly(&bark::var2),
"a", sol::property(&bark::get_var2, &bark::set_var2),
"b", sol::property(&bark::get_var2),
"c", sol::property(&bark::get_var3),
"d", sol::property(&bark::set_var2)
);
bark b;
lua.set("b", &b);
lua.script("b.a = 59");
lua.script("var2_0 = b.a");
lua.script("var2_1 = b.b");
lua.script("b.d = 1568");
lua.script("var2_2 = b.c");
int var2_0 = lua["var2_0"];
int var2_1 = lua["var2_1"];
int var2_2 = lua["var2_2"];
REQUIRE(var2_0 == 59);
REQUIRE(var2_1 == 59);
REQUIRE(var2_2 == 1568);
REQUIRE_THROWS(lua.script("b.var2 = 24"));
REQUIRE_THROWS(lua.script("r = b.d"));
REQUIRE_THROWS(lua.script("r = b.d"));
REQUIRE_THROWS(lua.script("b.b = 25"));
REQUIRE_THROWS(lua.script("b.c = 11"));
}
TEST_CASE("usertype/safety", "crash with an exception -- not a segfault -- on bad userdata calls") {
class Test {
public:
void sayHello() { std::cout << "Hey\n"; }
};
sol::state lua;
lua.new_usertype<Test>("Test", "sayHello", &Test::sayHello);
static const std::string code = R"(
local t = Test.new()
t:sayHello() --Works fine
t.sayHello() --Uh oh.
)";
REQUIRE_THROWS(lua.script(code));
}
TEST_CASE("usertype/call_constructor", "make sure lua types can be constructed with function call constructors") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<thing>("thing",
"v", &thing::v
, sol::call_constructor, sol::constructors<sol::types<>, sol::types<int>>()
);
lua.script(R"(
t = thing(256)
)");
thing& y = lua["t"];
INFO(y.v);
REQUIRE(y.v == 256);
}
TEST_CASE("usertype/call_constructor_2", "prevent metatable regression") {
class class01 {
public:
int x = 57;
class01() {}
};
class class02 {
public:
int x = 50;
class02() {}
class02(const class01& other) : x(other.x) {}
};
sol::state lua;
lua.new_usertype<class01>("class01",
sol::call_constructor, sol::constructors<sol::types<>, sol::types<const class01&>>()
);
lua.new_usertype<class02>("class02",
sol::call_constructor, sol::constructors<sol::types<>, sol::types<const class02&>, sol::types<const class01&>>()
);
REQUIRE_NOTHROW(lua.script(R"(
x = class01()
y = class02(x)
)"));
class02& y = lua["y"];
REQUIRE(y.x == 57);
}
TEST_CASE("usertype/blank_constructor", "make sure lua types cannot be constructed if a blank / empty constructor is provided") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<thing>("thing",
"v", &thing::v
, sol::call_constructor, sol::constructors<>()
);
REQUIRE_THROWS(lua.script("t = thing(256)"));
}
TEST_CASE("usertype/no_constructor", "make sure lua types cannot be constructed if a blank / empty constructor is provided") {
sol::state lua;
lua.open_libraries(sol::lib::base);
SECTION("order1")
{
lua.new_usertype<thing>("thing",
"v", &thing::v
, sol::call_constructor, sol::no_constructor
);
REQUIRE_THROWS(lua.script("t = thing.new()"));
}
SECTION("order2")
{
lua.new_usertype<thing>("thing"
, sol::call_constructor, sol::no_constructor
, "v", &thing::v
);
REQUIRE_THROWS(lua.script("t = thing.new()"));
}
REQUIRE_THROWS(lua.script("t = thing.new()"));
}
TEST_CASE("usertype/coverage", "try all the things") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<ext_getset>("ext_getset",
sol::call_constructor, sol::constructors<sol::types<>, sol::types<int>>(),
sol::meta_function::garbage_collect, sol::destructor(des<ext_getset>),
"x", sol::overload(&ext_getset::x, &ext_getset::x2, [](ext_getset& m, std::string x, int y) {
return m.meow + 50 + y + x.length();
}),
"bark", &ext_getset::bark,
"meow", &ext_getset::meow,
"readonlybark", sol::readonly(&ext_getset::bark),
"set", &ext_getset::set,
"get", &ext_getset::get,
"sset", &ext_getset::s_set,
"sget", &ext_getset::s_get,
"propbark", sol::property(&ext_getset::set, &ext_getset::get),
"readonlypropbark", sol::property(&ext_getset::get),
"writeonlypropbark", sol::property(&ext_getset::set)
);
INFO("usertype created");
lua.script(R"(
e = ext_getset()
w = e:x(e:x(), e:x(e:x()))
print(w)
)");
int w = lua["w"];
REQUIRE(w == (56 + 50 + 14 + 14));
INFO("REQUIRE(w) successful");
lua.script(R"(
e:set(500)
e.sset(24)
x = e:get()
y = e.sget(20)
)");
int x = lua["x"];
int y = lua["y"];
REQUIRE(x == 500);
REQUIRE(y == 40);
INFO("REQUIRE(x, y) successful");
lua.script(R"(
e.bark = 5001
a = e:get()
print(e.bark)
print(a)
e.propbark = 9700
b = e:get()
print(e.propbark)
print(b)
)");
int a = lua["a"];
int b = lua["b"];
REQUIRE(a == 5001);
REQUIRE(b == 9700);
INFO("REQUIRE(a, b) successful");
lua.script(R"(
c = e.readonlybark
d = e.meow
print(e.readonlybark)
print(c)
print(e.meow)
print(d)
)");
int c = lua["c"];
int d = lua["d"];
REQUIRE(c == 9700);
REQUIRE(d == 56);
INFO("REQUIRE(c, d) successful");
lua.script(R"(
e.writeonlypropbark = 500
z = e.readonlypropbark
print(e.readonlybark)
print(e.bark)
)");
int z = lua["z"];
REQUIRE(z == 500);
INFO("REQUIRE(z) successful");
REQUIRE_THROWS(lua.script("e.readonlybark = 24"));
INFO("REQUIRE_THROWS 1 successful");
REQUIRE_THROWS(lua.script("e.readonlypropbark = 500"));
INFO("REQUIRE_THROWS 2 successful");
REQUIRE_THROWS(lua.script("y = e.writeonlypropbark"));
INFO("REQUIRE_THROWS 3 successful");
}
TEST_CASE("usertype/copyability", "make sure user can write to a class variable even if the class itself isn't copy-safe") {
struct NoCopy {
int get() const { return _you_can_copy_me; }
void set(int val) { _you_can_copy_me = val; }
int _you_can_copy_me;
std::mutex _haha_you_cant_copy_me;
};
sol::state lua;
lua.new_usertype<NoCopy>("NoCopy", "val", sol::property(&NoCopy::get, &NoCopy::set));
REQUIRE_NOTHROW(
lua.script(R"__(
nocopy = NoCopy.new()
nocopy.val = 5
)__")
);
}
TEST_CASE("usertype/protect", "users should be allowed to manually protect a function") {
struct protect_me {
int gen(int x) {
return x;
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<protect_me>("protect_me",
"gen", sol::protect( &protect_me::gen )
);
REQUIRE_NOTHROW(
lua.script(R"__(
pm = protect_me.new()
value = pcall(pm.gen,pm)
)__");
);
bool value = lua["value"];
REQUIRE_FALSE(value);
}
TEST_CASE("usertype/shared-ptr-regression", "usertype metatables should not screw over unique usertype metatables") {
static int created = 0;
static int destroyed = 0;
struct test {
test() {
++created;
}
~test() {
++destroyed;
}
};
{
std::list<std::shared_ptr<test>> tests;
sol::state lua;
lua.open_libraries();
lua.new_usertype<test>("test",
"create", [&]() -> std::shared_ptr<test> {
tests.push_back(std::make_shared<test>());
return tests.back();
}
);
REQUIRE(created == 0);
REQUIRE(destroyed == 0);
lua.script("x = test.create()");
REQUIRE(created == 1);
REQUIRE(destroyed == 0);
REQUIRE_FALSE(tests.empty());
std::shared_ptr<test>& x = lua["x"];
std::size_t xuse = x.use_count();
std::size_t tuse = tests.back().use_count();
REQUIRE(xuse == tuse);
}
REQUIRE(created == 1);
REQUIRE(destroyed == 1);
}
TEST_CASE("usertype/double-deleter-guards", "usertype metatables internally must not rely on internal ") {
struct c_a { int x; };
struct c_b { int y; };
REQUIRE_NOTHROW( {
sol::state lua;
lua.new_usertype<c_a>("c_a", "x", &c_a::x);
lua.new_usertype<c_b>("c_b", "y", &c_b::y);
lua = sol::state();
lua.new_usertype<c_a>("c_a", "x", &c_a::x);
lua.new_usertype<c_b>("c_b", "y", &c_b::y);
lua = sol::state();
});
}
TEST_CASE("usertype/vars", "usertype vars can bind various class items") {
static int muh_variable = 25;
static int through_variable = 10;
sol::state lua;
lua.open_libraries();
struct test {};
lua.new_usertype<test>("test",
"straight", sol::var(2),
"global", sol::var(muh_variable),
"ref_global", sol::var(std::ref(muh_variable)),
"global2", sol::var(through_variable),
"ref_global2", sol::var(std::ref(through_variable))
);
int prets = lua["test"]["straight"];
int pretg = lua["test"]["global"];
int pretrg = lua["test"]["ref_global"];
int pretg2 = lua["test"]["global2"];
int pretrg2 = lua["test"]["ref_global2"];
REQUIRE(prets == 2);
REQUIRE(pretg == 25);
REQUIRE(pretrg == 25);
REQUIRE(pretg2 == 10);
REQUIRE(pretrg2 == 10);
lua.script(R"(
print(test.straight)
test.straight = 50
print(test.straight)
)");
int s = lua["test"]["straight"];
REQUIRE(s == 50);
lua.script(R"(
t = test.new()
print(t.global)
t.global = 50
print(t.global)
)");
int mv = lua["test"]["global"];
REQUIRE(mv == 50);
REQUIRE(muh_variable == 25);
lua.script(R"(
print(t.ref_global)
t.ref_global = 50
print(t.ref_global)
)");
int rmv = lua["test"]["ref_global"];
REQUIRE(rmv == 50);
REQUIRE(muh_variable == 50);
REQUIRE(through_variable == 10);
lua.script(R"(
print(test.global2)
test.global2 = 35
print(test.global2)
)");
int tv = lua["test"]["global2"];
REQUIRE(through_variable == 10);
REQUIRE(tv == 35);
lua.script(R"(
print(test.ref_global2)
test.ref_global2 = 35
print(test.ref_global2)
)");
int rtv = lua["test"]["ref_global2"];
REQUIRE(rtv == 35);
REQUIRE(through_variable == 35);
}
TEST_CASE("usertypes/var-and-property", "make sure const vars are readonly and properties can handle lambdas") {
const static int arf = 20;
struct test {
int value = 10;
};
sol::state lua;
lua.open_libraries();
lua.new_usertype<test>("test",
"prop", sol::property(
[](test& t) {
return t.value;
},
[](test& t, int x) {
t.value = x;
}
),
"global", sol::var(std::ref(arf))
);
lua.script(R"(
t = test.new()
print(t.prop)
t.prop = 50
print(t.prop)
)");
test& t = lua["t"];
REQUIRE(t.value == 50);
REQUIRE_THROWS(
lua.script(R"(
t = test.new()
print(t.global)
t.global = 20
print(t.global)
)"));
}
TEST_CASE("usertype/unique_usertype-check", "make sure unique usertypes don't get pushed as references with function calls and the like") {
class Entity {
public:
std::string GetName() {
return "Charmander";
}
};
sol::state lua;
lua.open_libraries(sol::lib::base, sol::lib::math, sol::lib::string, sol::lib::io);
lua.new_usertype<Entity>("Entity",
"new", sol::no_constructor,
"get_name", &Entity::GetName
);
lua.script(R"(
function my_func(entity)
print("INSIDE LUA")
print(entity:get_name())
end
)");
sol::function my_func = lua["my_func"];
REQUIRE_NOTHROW({
auto ent = std::make_shared<Entity>();
my_func(ent);
Entity ent2;
my_func(ent2);
my_func(std::make_shared<Entity>());
});
}
TEST_CASE("usertype/abstract-base-class", "Ensure that abstract base classes and such can be registered") {
sol::state lua;
lua.new_usertype<abstract_A>("A", "a", &abstract_A::a);
lua.new_usertype<abstract_B>("B", sol::base_classes, sol::bases<abstract_A>());
lua.script(R"(local b = B.new()
b:a()
)");
}
TEST_CASE("usertype/as_function", "Ensure that variables can be turned into functions by as_function") {
class B {
public:
int bvar = 24;
};
sol::state lua;
lua.open_libraries();
lua.new_usertype<B>("B", "b", &B::bvar, "f", sol::as_function(&B::bvar));
B b;
lua.set("b", &b);
lua.script("x = b:f()");
lua.script("y = b.b");
int x = lua["x"];
int y = lua["y"];
REQUIRE(x == 24);
REQUIRE(y == 24);
}
TEST_CASE("usertype/destruction-test", "make sure usertypes are properly destructed and don't double-delete memory or segfault") {
sol::state lua;
class CrashClass {
public:
CrashClass() {
}
~CrashClass() {
a = 10; // This will cause a crash.
}
private:
int a;
};
lua.new_usertype<CrashClass>("CrashClass",
sol::call_constructor, sol::constructors<sol::types<>>()
);
lua.script(R"(
function testCrash()
local x = CrashClass()
end
)");
for (int i = 0; i < 1000; ++i) {
lua["testCrash"]();
}
}