sol2/sol/traits.hpp
ThePhD 37c3883eb6 Free functions and lambdas whos first arguments match the userdata type (unqualified)
now are usable as functions for userdata.
allows free functions and lambdas to provide useful operations, like operator+*-/
and other things which may not be implemented as class members.
2014-08-09 04:54:58 -07:00

320 lines
10 KiB
C++

// The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_TRAITS_HPP
#define SOL_TRAITS_HPP
#include "tuple.hpp"
#include <type_traits>
#include <functional>
namespace sol {
template<typename T>
struct identity { typedef T type; };
template<typename... Args>
struct is_tuple : std::false_type{ };
template<typename... Args>
struct is_tuple<std::tuple<Args...>> : std::true_type{ };
template<typename T>
struct unwrap {
typedef T type;
};
template<typename T>
struct unwrap<std::reference_wrapper<T>> {
typedef typename std::add_lvalue_reference<T>::type type;
};
template<typename T>
struct remove_member_pointer;
template<typename R, typename T>
struct remove_member_pointer<R T::*> {
typedef R type;
};
template<typename T, template<typename...> class Templ>
struct is_specialization_of : std::false_type { };
template<typename... T, template<typename...> class Templ>
struct is_specialization_of<Templ<T...>, Templ> : std::true_type { };
template<class T, class...>
struct are_same : std::true_type { };
template<class T, class U, class... Args>
struct are_same<T, U, Args...> : std::integral_constant <bool, std::is_same<T, U>::value && are_same<T, Args...>::value> { };
template<typename T>
using Type = typename T::type;
template<bool B>
using Bool = std::integral_constant<bool, B>;
template<typename T>
using Not = Bool<!T::value>;
template<typename Condition, typename Then, typename Else>
using If = typename std::conditional<Condition::value, Then, Else>::type;
template<typename Condition, typename Then, typename Else>
using TypeIf = typename std::conditional<Condition::value, Type<Then>, Type<Else>>::type;
template<typename... Args>
struct And : Bool<true> {};
template<typename T, typename... Args>
struct And<T, Args...> : If<T, And<Args...>, Bool<false>> {};
template<typename... Args>
struct Or : Bool<true> {};
template<typename T, typename... Args>
struct Or<T, Args...> : If<T, Bool<true>, Or<Args...>> {};
template<typename... Args>
using EnableIf = typename std::enable_if<And<Args...>::value, int>::type;
template<typename... Args>
using DisableIf = typename std::enable_if<Not<And<Args...>>::value, int>::type;
template<typename T>
using Unqualified = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
template<typename T>
using Decay = typename std::decay<T>::type;
template<typename T>
using Unwrap = typename unwrap<T>::type;
template<typename... Args>
struct return_type {
typedef std::tuple<Args...> type;
};
template<typename T>
struct return_type<T> {
typedef T type;
};
template<>
struct return_type<> : types<>{
typedef void type;
};
namespace detail {
template<typename T, bool isclass = std::is_class<Unqualified<T>>::value>
struct is_function_impl : std::is_function<typename std::remove_pointer<T>::type> {};
template<typename T>
struct is_function_impl<T, true> {
using yes = char;
using no = struct { char s[2]; };
struct F { void operator()(); };
struct Derived : T, F {};
template<typename U, U> struct Check;
template<typename V>
static no test(Check<void (F::*)(), &V::operator()>*);
template<typename>
static yes test(...);
static const bool value = sizeof(test<Derived>(0)) == sizeof(yes);
};
} // detail
namespace detail {
template<class F>
struct check_deducible_signature {
template<class G>
static auto test( int ) -> decltype( &G::operator(), void( ) );
template<class>
static auto test( ... ) -> struct nat;
using type = std::is_void < decltype( test<F>( 0 ) ) > ;
};
} // detail
template<class F>
struct has_deducible_signature : detail::check_deducible_signature<F>::type { };
template<typename T>
using has_deducible_signature_t = typename has_deducible_signature<T>::type;
template<typename T>
struct Function : Bool<detail::is_function_impl<T>::value> {};
namespace detail {
template<typename Signature, bool b = std::is_class<Signature>::value>
struct fx_traits;
template<typename Signature>
struct fx_traits<Signature, true> : fx_traits<decltype(Signature::operator()), false> {
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...), false> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = true;
typedef std::tuple<Args...> arg_tuple_type;
typedef types<Args...> args_type;
typedef R(T::* function_pointer_type)(Args...);
typedef typename std::remove_pointer<function_pointer_type>::type function_type;
typedef R(*free_function_pointer_type)(Args...);
typedef R return_type;
typedef typename std::remove_pointer<free_function_pointer_type>::type signature_type;
template<std::size_t i>
using arg = typename std::tuple_element<i, arg_tuple_type>::type;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) const, false> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = true;
typedef std::tuple<Args...> arg_tuple_type;
typedef types<Args...> args_type;
typedef R(T::* function_pointer_type)(Args...);
typedef typename std::remove_pointer<function_pointer_type>::type function_type;
typedef R(*free_function_pointer_type)(Args...);
typedef R return_type;
typedef typename std::remove_pointer<free_function_pointer_type>::type signature_type;
template<std::size_t i>
using arg = typename std::tuple_element<i, arg_tuple_type>::type;
};
template<typename R, typename... Args>
struct fx_traits<R(Args...), false> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = false;
typedef std::tuple<Args...> arg_tuple_type;
typedef types<Args...> args_type;
typedef R(function_type)(Args...);
typedef R(*function_pointer_type)(Args...);
typedef R(*free_function_pointer_type)(Args...);
typedef R return_type;
typedef typename std::remove_pointer<free_function_pointer_type>::type signature_type;
template<std::size_t i>
using arg = typename std::tuple_element<i, arg_tuple_type>::type;
};
template<typename R, typename... Args>
struct fx_traits<R(*)(Args...), false> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = false;
typedef std::tuple<Args...> arg_tuple_type;
typedef types<Args...> args_type;
typedef R(function_type)(Args...);
typedef R(*function_pointer_type)(Args...);
typedef R(*free_function_pointer_type)(Args...);
typedef R return_type;
typedef typename std::remove_pointer<free_function_pointer_type>::type signature_type;
template<std::size_t i>
using arg = typename std::tuple_element<i, arg_tuple_type>::type;
};
} // detail
template<typename Signature>
struct function_traits : detail::fx_traits<Signature> {};
template<typename Signature>
using function_args_t = typename function_traits<Signature>::args_type;
template<typename Signature>
using function_signature_t = typename function_traits<Signature>::signature_type;
template<typename Signature>
using function_return_t = typename function_traits<Signature>::return_type;
namespace detail {
template<typename Signature, bool b = std::is_member_object_pointer<Signature>::value>
struct member_traits : function_traits<Signature> {
};
template<typename Signature>
struct member_traits<Signature, true> {
typedef typename remove_member_pointer<Signature>::type Arg;
typedef typename remove_member_pointer<Signature>::type R;
typedef Signature signature_type;
static const bool is_member_function = false;
static const std::size_t arity = 1;
typedef std::tuple<Arg> arg_tuple_type;
typedef types<Arg> args_type;
typedef R return_type;
typedef R(function_type)(Arg);
typedef R(*function_pointer_type)(Arg);
typedef R(*free_function_pointer_type)(Arg);
template<std::size_t i>
using arg = typename std::tuple_element<i, arg_tuple_type>::type;
};
} // detail
template<typename Signature>
struct member_traits : detail::member_traits<Signature> {
};
struct has_begin_end_impl {
template<typename T, typename U = Unqualified<T>,
typename B = decltype(std::declval<U&>().begin()),
typename E = decltype(std::declval<U&>().end())>
static std::true_type test(int);
template<typename...>
static std::false_type test(...);
};
template<typename T>
struct has_begin_end : decltype(has_begin_end_impl::test<T>(0)) {};
struct has_key_value_pair_impl {
template<typename T, typename U = Unqualified<T>,
typename V = typename U::value_type,
typename F = decltype(std::declval<V&>().first),
typename S = decltype(std::declval<V&>().second)>
static std::true_type test(int);
template<typename...>
static std::false_type test(...);
};
template<typename T>
struct has_key_value_pair : decltype(has_key_value_pair_impl::test<T>(0)) {};
template<typename T>
auto unwrapper(T&& item) -> decltype(std::forward<T>(item)) {
return std::forward<T>(item);
}
template<typename Arg>
Unwrap<Arg> unwrapper(std::reference_wrapper<Arg> arg) {
return arg.get();
}
} // sol
#endif // SOL_TRAITS_HPP