sol2/sol/stack.hpp
ThePhD 29f171e124 Style fixes and fixes for templates not usually used by MSVC (broken two-phase lookup killing me here. :c)
Member functions now work as well for set_function. If performance of `new`ing a type ever becomes too large, we can create a custom allocator for the std::shared_ptr's of the types. We can also up-front allocate for the unordered_map as well.
2013-12-02 18:11:25 -05:00

189 lines
5.6 KiB
C++

// The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_STACK_HPP
#define SOL_STACK_HPP
#include "reference.hpp"
#include "tuple.hpp"
#include <utility>
#include <type_traits>
namespace sol {
template<typename T, typename R = void>
using EnableIf = typename std::enable_if<T::value, R>::type;
template<typename T, typename R = void>
using DisableIf = typename std::enable_if<!T::value, R>::type;
namespace stack {
namespace detail {
template<class T, class F, class... Vs>
auto ltr_pop(T&& extra, F f, types<>, Vs&&... vs)
-> decltype(f(std::forward<Vs>(vs)...)) {
return f(std::forward<Vs>(vs)...);
}
// take head, produce value from it, pass after other values
template<class F, class Head, class... Tail, class... Vs>
auto ltr_pop(lua_State* L, F f, types<Head, Tail...>, Vs&&... vs)
-> decltype(ltr_pop(L, f, types<Tail...>{}, std::forward<Vs>(vs)..., pop<Head>(L))) {
return ltr_pop(L, f, types<Tail...>{}, std::forward<Vs>(vs)..., pop<Head>(L));
}
template<typename T>
inline T get_unsigned(lua_State* L, std::true_type, int index = -1) {
return lua_tounsigned(L, index);
}
template<typename T>
inline T get_unsigned(lua_State* L, std::false_type, int index = -1) {
return lua_tointeger(L, index);
}
template<typename T>
inline T get_arithmetic(lua_State* L, std::false_type, int index = -1) {
// T is a floating point
return lua_tonumber(L, index);
}
template<typename T>
inline T get_arithmetic(lua_State* L, std::true_type, int index = -1) {
// T is an integral
return get_unsigned<T>(L, std::is_unsigned<T>{}, index);
}
template<typename T>
inline T get_helper(lua_State* L, std::true_type, int index = -1) {
// T is a class type
return T(L, index);
}
template<typename T>
inline T get_helper(lua_State* L, std::false_type, int index = -1) {
// T is a fundamental type
return get_arithmetic<T>(L, std::is_integral<T>{}, index);
}
template<typename T>
inline void push_unsigned(lua_State* L, T x, std::true_type) {
lua_pushunsigned(L, x);
}
template<typename T>
inline void push_unsigned(lua_State* L, T x, std::false_type) {
lua_pushinteger(L, x);
}
template<typename T>
inline void push_arithmetic(lua_State* L, T x, std::true_type) {
// T is an integral type
push_unsigned(L, x, std::is_unsigned<T>{});
}
template<typename T>
inline void push_arithmetic(lua_State* L, T x, std::false_type) {
// T is an floating point type
lua_pushnumber(L, x);
}
} // detail
template<typename T>
inline T get(lua_State* L, int index = -1) {
return detail::get_helper<T>(L, std::is_class<T>{}, index);
}
template<>
inline bool get<bool>(lua_State* L, int index) {
return lua_toboolean(L, index) != 0;
}
template<>
inline std::string get<std::string>(lua_State* L, int index) {
std::string::size_type len;
auto str = lua_tolstring(L, index, &len);
return { str, len };
}
template<>
inline const char* get<const char*>(lua_State* L, int index) {
return lua_tostring(L, index);
}
template<typename T>
inline T pop(lua_State* L) {
auto r = get<T>(L);
lua_pop(L, 1);
return r;
}
template<typename T>
inline EnableIf<std::is_arithmetic<T>> push(lua_State* L, T arithmetic) {
detail::push_arithmetic(L, arithmetic, std::is_integral<T>{});
}
inline void push(lua_State*, reference& ref) {
ref.push();
}
inline void push(lua_State* L, bool boolean) {
lua_pushboolean(L, boolean);
}
inline void push(lua_State* L, const nil_t&) {
lua_pushnil(L);
}
inline void push(lua_State* L, lua_CFunction func) {
lua_pushcfunction(L, func);
}
template<size_t N>
inline void push(lua_State* L, const char (&str)[N]) {
lua_pushlstring(L, str, N - 1);
}
inline void push(lua_State* L, const std::string& str) {
lua_pushlstring(L, str.c_str(), str.size());
}
namespace detail {
template<typename T, std::size_t... I>
inline void push(lua_State* L, indices<I...>, const T& tuplen) {
using swallow = char [];
void(swallow{ '\0', (sol::stack::push(L, std::get<I>(tuplen)), '\0')... });
}
} // detail
template<typename... Args>
inline void push(lua_State* L, const std::tuple<Args...>& tuplen) {
detail::push(L, build_indices<sizeof...(Args)>(), tuplen);
}
template<typename... Args, typename TFx>
inline auto pop_call(lua_State* L, TFx&& fx, types<Args...> t)->decltype(detail::ltr_pop(L, fx, t)) {
return detail::ltr_pop(L, fx, t);
}
} // stack
} // sol
#endif // SOL_STACK_HPP