sol2/sol/stack_core.hpp

1023 lines
36 KiB
C++

// sol2
// The MIT License (MIT)
// Copyright (c) 2013-2018 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_STACK_CORE_HPP
#define SOL_STACK_CORE_HPP
#include "types.hpp"
#include "inheritance.hpp"
#include "error_handler.hpp"
#include "reference.hpp"
#include "stack_reference.hpp"
#include "tuple.hpp"
#include "traits.hpp"
#include "tie.hpp"
#include "stack_guard.hpp"
#include "demangle.hpp"
#include "forward_detail.hpp"
#include <vector>
#include <forward_list>
#include <string>
#include <algorithm>
namespace sol {
namespace detail {
struct as_reference_tag {};
template <typename T>
struct as_pointer_tag {};
template <typename T>
struct as_value_tag {};
template <typename T>
struct as_table_tag {};
using unique_destructor = void (*)(void*);
using unique_tag = detail::inheritance_unique_cast_function;
inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space, std::size_t& required_space) {
// this handels arbitrary alignments...
// make this into a power-of-2-only?
// actually can't: this is a C++14-compatible framework,
// power of 2 alignment is C++17
std::uintptr_t initial = reinterpret_cast<std::uintptr_t>(ptr);
std::uintptr_t offby = static_cast<std::uintptr_t>(initial % alignment);
std::uintptr_t padding = (alignment - offby) % alignment;
required_space += size + padding;
if (space < required_space) {
return nullptr;
}
ptr = static_cast<void*>(static_cast<char*>(ptr) + padding);
space -= padding;
return ptr;
}
inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space) {
std::size_t required_space = 0;
return align(alignment, size, ptr, space, required_space);
}
template <typename... Args>
inline std::size_t aligned_space_for(void* alignment = nullptr) {
char* start = static_cast<char*>(alignment);
auto specific_align = [&alignment](std::size_t a, std::size_t s) {
std::size_t space = (std::numeric_limits<std::size_t>::max)();
alignment = align(a, s, alignment, space);
alignment = static_cast<void*>(static_cast<char*>(alignment) + s);
};
(void)detail::swallow{ int{}, (specific_align(std::alignment_of<Args>::value, sizeof(Args)), int{})... };
return static_cast<char*>(alignment) - start;
}
inline void* align_usertype_pointer(void* ptr) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<void*>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<void*>::value, sizeof(void*), ptr, space);
}
template <bool pre_aligned = false, bool pre_shifted = false>
inline void* align_usertype_unique_destructor(void* ptr) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<unique_destructor>::value > 1)
#endif
>
use_align;
if (!pre_aligned) {
ptr = align_usertype_pointer(ptr);
}
if (!pre_shifted) {
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*));
}
if (!use_align::value) {
return static_cast<void*>(static_cast<void**>(ptr) + 1);
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), ptr, space);
}
template <bool pre_aligned = false, bool pre_shifted = false>
inline void* align_usertype_unique_tag(void* ptr) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<unique_tag>::value > 1)
#endif
>
use_align;
if (!pre_aligned) {
ptr = align_usertype_unique_destructor(ptr);
}
if (!pre_shifted) {
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor));
}
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<unique_tag>::value, sizeof(unique_tag), ptr, space);
}
template <typename T, bool pre_aligned = false, bool pre_shifted = false>
inline void* align_usertype_unique(void* ptr) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T>::value > 1)
#endif
>
use_align;
if (!pre_aligned) {
ptr = align_usertype_unique_tag(ptr);
}
if (!pre_shifted) {
ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_tag));
}
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<T>::value, sizeof(T), ptr, space);
}
template <typename T>
inline void* align_user(void* ptr) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
return ptr;
}
std::size_t space = (std::numeric_limits<std::size_t>::max)();
return align(std::alignment_of<T>::value, sizeof(T), ptr, space);
}
template <typename T>
inline T** usertype_allocate_pointer(lua_State* L) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T*>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*)));
return pointerpointer;
}
static const std::size_t initial_size = aligned_space_for<T*>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T*>(reinterpret_cast<void*>(0x1));
std::size_t allocated_size = initial_size;
void* unadjusted = lua_newuserdata(L, initial_size);
void* adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
if (adjusted == nullptr) {
lua_pop(L, 1);
// what kind of absolute garbage trash allocator are we dealing with?
// whatever, add some padding in the case of MAXIMAL alignment waste...
allocated_size = misaligned_size;
unadjusted = lua_newuserdata(L, allocated_size);
adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
if (adjusted == nullptr) {
// trash allocator can burn in hell
lua_pop(L, 1);
//luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a worse job than malloc/realloc and should go read some books, yeah?");
luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data());
}
}
return static_cast<T**>(adjusted);
}
template <typename T>
inline T* usertype_allocate(lua_State* L) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T*>::value > 1 || std::alignment_of<T>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& pointerreference = *pointerpointer;
T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
pointerreference = allocationtarget;
return allocationtarget;
}
/* the assumption is that `lua_newuserdata` -- unless someone
passes a specific lua_Alloc that gives us bogus, un-aligned pointers
-- uses malloc, which tends to hand out more or less aligned pointers to memory
(most of the time, anyhow)
but it's not guaranteed, so we have to do a post-adjustment check and increase padding
we do this preliminarily with compile-time stuff, to see
if we strike lucky with the allocator and alignment values
otherwise, we have to re-allocate the userdata and
over-allocate some space for additional padding because
compilers are optimized for aligned reads/writes
(and clang will barf UBsan errors on us for not being aligned)
*/
static const std::size_t initial_size = aligned_space_for<T*, T>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T*, T>(reinterpret_cast<void*>(0x1));
void* pointer_adjusted;
void* data_adjusted;
auto attempt_alloc = [](lua_State* L, std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) -> bool {
void* adjusted = lua_newuserdata(L, allocated_size);
pointer_adjusted = align(std::alignment_of<T*>::value, sizeof(T*), adjusted, allocated_size);
if (pointer_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
// subtract size of what we're going to allocate there
allocated_size -= sizeof(T*);
adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + sizeof(T*));
data_adjusted = align(std::alignment_of<T>::value, sizeof(T), adjusted, allocated_size);
if (data_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
return true;
};
bool result = attempt_alloc(L, initial_size, pointer_adjusted, data_adjusted);
if (!result) {
// we're likely to get something that fails to perform the proper allocation a second time,
// so we use the suggested_new_size bump to help us out here
pointer_adjusted = nullptr;
data_adjusted = nullptr;
result = attempt_alloc(L, misaligned_size, pointer_adjusted, data_adjusted);
if (!result) {
if (pointer_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
}
else {
luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
}
return nullptr;
}
}
T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted);
T*& pointerreference = *pointerpointer;
T* allocationtarget = reinterpret_cast<T*>(data_adjusted);
pointerreference = allocationtarget;
return allocationtarget;
}
template <typename T, typename Real>
inline Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx, unique_tag*& id) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T*>::value > 1 || std::alignment_of<unique_tag>::value > 1 || std::alignment_of<unique_destructor>::value > 1 || std::alignment_of<Real>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(unique_tag) + sizeof(Real)));
dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1));
id = static_cast<unique_tag*>(static_cast<void*>(dx + 1));
Real* mem = static_cast<Real*>(static_cast<void*>(id + 1));
return mem;
}
static const std::size_t initial_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(reinterpret_cast<void*>(0x1));
void* pointer_adjusted;
void* dx_adjusted;
void* id_adjusted;
void* data_adjusted;
auto attempt_alloc = [](lua_State* L, std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& id_adjusted, void*& data_adjusted) -> bool {
void* adjusted = lua_newuserdata(L, allocated_size);
pointer_adjusted = align(std::alignment_of<T*>::value, sizeof(T*), adjusted, allocated_size);
if (pointer_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= sizeof(T*);
adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + sizeof(T*));
dx_adjusted = align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), adjusted, allocated_size);
if (dx_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= sizeof(unique_destructor);
adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor));
id_adjusted = align(std::alignment_of<unique_tag>::value, sizeof(unique_tag), adjusted, allocated_size);
if (id_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
allocated_size -= sizeof(unique_tag);
adjusted = static_cast<void*>(static_cast<char*>(id_adjusted) + sizeof(unique_tag));
data_adjusted = align(std::alignment_of<Real>::value, sizeof(Real), adjusted, allocated_size);
if (data_adjusted == nullptr) {
lua_pop(L, 1);
return false;
}
return true;
};
bool result = attempt_alloc(L, initial_size, pointer_adjusted, dx_adjusted, id_adjusted, data_adjusted);
if (!result) {
// we're likely to get something that fails to perform the proper allocation a second time,
// so we use the suggested_new_size bump to help us out here
pointer_adjusted = nullptr;
dx_adjusted = nullptr;
id_adjusted = nullptr;
data_adjusted = nullptr;
result = attempt_alloc(L, misaligned_size, pointer_adjusted, dx_adjusted, id_adjusted, data_adjusted);
if (!result) {
if (pointer_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
}
else if (dx_adjusted == nullptr) {
luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<T>().c_str());
}
else {
luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
}
return nullptr;
}
}
pref = static_cast<T**>(pointer_adjusted);
dx = static_cast<detail::unique_destructor*>(dx_adjusted);
id = static_cast<unique_tag*>(id_adjusted);
Real* mem = static_cast<Real*>(data_adjusted);
return mem;
}
template <typename T>
inline T* user_allocate(lua_State* L) {
typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
false
#else
(std::alignment_of<T>::value > 1)
#endif
>
use_align;
if (!use_align::value) {
T* pointer = static_cast<T*>(lua_newuserdata(L, sizeof(T)));
return pointer;
}
static const std::size_t initial_size = aligned_space_for<T>(nullptr);
static const std::size_t misaligned_size = aligned_space_for<T>(reinterpret_cast<void*>(0x1));
std::size_t allocated_size = initial_size;
void* unadjusted = lua_newuserdata(L, allocated_size);
void* adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size);
if (adjusted == nullptr) {
lua_pop(L, 1);
// try again, add extra space for alignment padding
allocated_size = misaligned_size;
unadjusted = lua_newuserdata(L, allocated_size);
adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size);
if (adjusted == nullptr) {
lua_pop(L, 1);
luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data());
}
}
return static_cast<T*>(adjusted);
}
template <typename T>
inline int usertype_alloc_destruct(lua_State* L) {
void* memory = lua_touserdata(L, 1);
memory = align_usertype_pointer(memory);
T** pdata = static_cast<T**>(memory);
T* data = *pdata;
std::allocator<T> alloc{};
std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
return 0;
}
template <typename T>
inline int unique_destruct(lua_State* L) {
void* memory = lua_touserdata(L, 1);
memory = align_usertype_unique_destructor(memory);
unique_destructor& dx = *static_cast<unique_destructor*>(memory);
memory = align_usertype_unique_tag<true>(memory);
(dx)(memory);
return 0;
}
template <typename T>
inline int user_alloc_destruct(lua_State* L) {
void* memory = lua_touserdata(L, 1);
memory = align_user<T>(memory);
T* data = static_cast<T*>(memory);
std::allocator<T> alloc;
std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
return 0;
}
template <typename T, typename Real>
inline void usertype_unique_alloc_destroy(void* memory) {
memory = align_usertype_unique<Real, true>(memory);
Real* target = static_cast<Real*>(memory);
std::allocator<Real> alloc;
std::allocator_traits<std::allocator<Real>>::destroy(alloc, target);
}
template <typename T>
inline int cannot_destruct(lua_State* L) {
return luaL_error(L, "cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= delete' and thusly this type is being destroyed without properly destructing, invoking undefined behavior: please bind a usertype and specify a custom destructor to define the behavior properly", detail::demangle<T>().data());
}
template <typename T>
void reserve(T&, std::size_t) {
}
template <typename T, typename Al>
void reserve(std::vector<T, Al>& arr, std::size_t hint) {
arr.reserve(hint);
}
template <typename T, typename Tr, typename Al>
void reserve(std::basic_string<T, Tr, Al>& arr, std::size_t hint) {
arr.reserve(hint);
}
} // namespace detail
namespace stack {
template <typename T>
struct extensible {};
template <typename T, bool global = false, bool raw = false, typename = void>
struct field_getter;
template <typename T, typename P, bool global = false, bool raw = false, typename = void>
struct probe_field_getter;
template <typename T, bool global = false, bool raw = false, typename = void>
struct field_setter;
template <typename T, typename = void>
struct getter;
template <typename T, typename = void>
struct qualified_getter;
template <typename T, typename = void>
struct userdata_getter;
template <typename T, typename = void>
struct popper;
template <typename T, typename = void>
struct pusher;
template <typename T, type = lua_type_of<T>::value, typename = void>
struct checker;
template <typename T, type = lua_type_of<T>::value, typename = void>
struct qualified_checker;
template <typename T, typename = void>
struct userdata_checker;
template <typename T, typename = void>
struct check_getter;
template <typename T, typename = void>
struct qualified_check_getter;
struct probe {
bool success;
int levels;
probe(bool s, int l)
: success(s), levels(l) {
}
operator bool() const {
return success;
};
};
struct record {
int last;
int used;
record()
: last(), used() {
}
void use(int count) {
last = count;
used += count;
}
};
namespace stack_detail {
template <typename T>
struct strip {
typedef T type;
};
template <typename T>
struct strip<std::reference_wrapper<T>> {
typedef T& type;
};
template <typename T>
struct strip<user<T>> {
typedef T& type;
};
template <typename T>
struct strip<non_null<T>> {
typedef T type;
};
template <typename T>
using strip_t = typename strip<T>::type;
template <typename T>
struct strip_extensible { typedef T type; };
template <typename T>
struct strip_extensible<extensible<T>> { typedef T type; };
template <typename T>
using strip_extensible_t = typename strip_extensible<T>::type;
template <typename C>
static int get_size_hint(const C& c) {
return static_cast<int>(c.size());
}
template <typename V, typename Al>
static int get_size_hint(const std::forward_list<V, Al>&) {
// forward_list makes me sad
return static_cast<int>(32);
}
template <typename T>
inline decltype(auto) unchecked_unqualified_get(lua_State* L, int index, record& tracking) {
typedef meta::unqualified_t<T> Tu;
getter<Tu> g{};
(void)g;
return g.get(L, index, tracking);
}
template <typename T>
inline decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) {
qualified_getter<T> g{};
(void)g;
return g.get(L, index, tracking);
}
template <typename T, typename Arg, typename... Args>
inline int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
typedef meta::all<
std::is_lvalue_reference<T>,
meta::neg<std::is_const<T>>,
meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
meta::neg<is_unique_usertype<meta::unqualified_t<T>>>>
use_reference_tag;
pusher<std::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>> p{};
(void)p;
return p.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
template <typename T, typename Handler>
bool check_usertype(std::false_type, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) {
typedef meta::unqualified_t<T> Tu;
typedef detail::as_value_tag<Tu> detail_t;
return checker<detail_t, type::userdata>{}.check(types<meta::unqualified_t<T>>(), L, index, indextype, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check_usertype(std::true_type, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) {
typedef meta::unqualified_t<std::remove_pointer_t<meta::unqualified_t<T>>> Tu;
typedef detail::as_pointer_tag<Tu> detail_t;
return checker<detail_t, type::userdata>{}.check(L, index, indextype, std::forward<Handler>(handler), tracking);
}
} // namespace stack_detail
inline bool maybe_indexable(lua_State* L, int index = -1) {
type t = type_of(L, index);
return t == type::userdata || t == type::table;
}
inline int top(lua_State* L) {
return lua_gettop(L);
}
inline bool is_main_thread(lua_State* L) {
int ismainthread = lua_pushthread(L);
lua_pop(L, 1);
return ismainthread == 1;
}
inline void coroutine_create_guard(lua_State* L) {
if (is_main_thread(L)) {
return;
}
int stacksize = lua_gettop(L);
if (stacksize < 1) {
return;
}
if (type_of(L, 1) != type::function) {
return;
}
// well now we're screwed...
// we can clean the stack and pray it doesn't destroy anything?
lua_pop(L, stacksize);
}
template <typename T, typename... Args>
inline int push(lua_State* L, T&& t, Args&&... args) {
return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<T>(t), std::forward<Args>(args)...);
}
// overload allows to use a pusher of a specific type, but pass in any kind of args
template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
inline int push(lua_State* L, Arg&& arg, Args&&... args) {
return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
template <typename T, typename... Args>
inline int push_reference(lua_State* L, T&& t, Args&&... args) {
return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...);
}
template <typename T, typename Arg, typename... Args>
inline int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
inline int multi_push(lua_State*) {
// do nothing
return 0;
}
template <typename T, typename... Args>
inline int multi_push(lua_State* L, T&& t, Args&&... args) {
int pushcount = push(L, std::forward<T>(t));
void(detail::swallow{ (pushcount += stack::push(L, std::forward<Args>(args)), 0)... });
return pushcount;
}
inline int multi_push_reference(lua_State*) {
// do nothing
return 0;
}
template <typename T, typename... Args>
inline int multi_push_reference(lua_State* L, T&& t, Args&&... args) {
int pushcount = push_reference(L, std::forward<T>(t));
void(detail::swallow{ (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... });
return pushcount;
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
qualified_checker<T> c;
// VC++ has a bad warning here: shut it up
(void)c;
return c.check(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler) {
record tracking{};
return check<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check<T>(L, index, handler);
}
template <typename T, typename Handler>
bool unqualified_check(lua_State* L, int index, Handler&& handler, record& tracking) {
typedef meta::unqualified_t<T> Tu;
checker<Tu> c;
// VC++ has a bad warning here: shut it up
(void)c;
return c.check(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool unqualified_check(lua_State* L, int index, Handler&& handler) {
record tracking{};
return unqualified_check<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool unqualified_check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return unqualified_check<T>(L, index, handler);
}
template <typename T, typename Handler>
bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) {
type indextype = type_of(L, index);
return stack_detail::check_usertype<T>(std::is_pointer<T>(), L, index, indextype, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
bool check_usertype(lua_State* L, int index, Handler&& handler) {
record tracking{};
return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T>
bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check_usertype<T>(L, index, handler);
}
template <typename T, typename Handler>
inline decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
check_getter<T> cg{};
(void)cg;
return cg.get(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
inline decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler) {
record tracking{};
return unqualified_check_get<T>(L, index, handler, tracking);
}
template <typename T>
inline decltype(auto) unqualified_check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return unqualified_check_get<T>(L, index, handler);
}
template <typename T, typename Handler>
inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
qualified_check_getter<T> cg{};
(void)cg;
return cg.get(L, index, std::forward<Handler>(handler), tracking);
}
template <typename T, typename Handler>
inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler) {
record tracking{};
return check_get<T>(L, index, handler, tracking);
}
template <typename T>
inline decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
auto handler = no_panic;
return check_get<T>(L, index, handler);
}
namespace stack_detail {
#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER
template <typename T>
inline auto tagged_unqualified_get(types<T>, lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_unqualified_get<T>(L, index, tracking)) {
auto op = unqualified_check_get<T>(L, index, type_panic_c_str, tracking);
return *std::move(op);
}
template <typename T>
inline decltype(auto) tagged_unqualified_get(types<optional<T>>, lua_State* L, int index, record& tracking) {
return stack_detail::unchecked_unqualified_get<optional<T>>(L, index, tracking);
}
template <typename T>
inline auto tagged_get(types<T>, lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) {
auto op = check_get<T>(L, index, type_panic_c_str, tracking);
return *std::move(op);
}
template <typename T>
inline decltype(auto) tagged_get(types<optional<T>>, lua_State* L, int index, record& tracking) {
return stack_detail::unchecked_get<optional<T>>(L, index, tracking);
}
#else
template <typename T>
inline decltype(auto) tagged_unqualified_get(types<T>, lua_State* L, int index, record& tracking) {
return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
}
template <typename T>
inline decltype(auto) tagged_get(types<T>, lua_State* L, int index, record& tracking) {
return stack_detail::unchecked_get<T>(L, index, tracking);
}
#endif
template <bool b>
struct check_types {
template <typename T, typename... Args, typename Handler>
static bool check(types<T, Args...>, lua_State* L, int firstargument, Handler&& handler, record& tracking) {
if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
return false;
return check(types<Args...>(), L, firstargument, std::forward<Handler>(handler), tracking);
}
template <typename Handler>
static bool check(types<>, lua_State*, int, Handler&&, record&) {
return true;
}
};
template <>
struct check_types<false> {
template <typename... Args, typename Handler>
static bool check(types<Args...>, lua_State*, int, Handler&&, record&) {
return true;
}
};
} // namespace stack_detail
template <bool b, typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
return stack_detail::check_types<b>{}.check(types<meta::unqualified_t<Args>...>(), L, index, std::forward<Handler>(handler), tracking);
}
template <bool b, typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler) {
record tracking{};
return multi_check<b, Args...>(L, index, std::forward<Handler>(handler), tracking);
}
template <bool b, typename... Args>
bool multi_check(lua_State* L, int index) {
auto handler = no_panic;
return multi_check<b, Args...>(L, index, handler);
}
template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
return multi_check<true, Args...>(L, index, std::forward<Handler>(handler), tracking);
}
template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler) {
return multi_check<true, Args...>(L, index, std::forward<Handler>(handler));
}
template <typename... Args>
bool multi_check(lua_State* L, int index) {
return multi_check<true, Args...>(L, index);
}
template <typename T>
inline decltype(auto) get_usertype(lua_State* L, int index, record& tracking) {
#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER
return stack_detail::tagged_get(types<std::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>>(), L, index, tracking);
#else
return stack_detail::unchecked_get<std::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>>(L, index, tracking);
#endif
}
template <typename T>
inline decltype(auto) get_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking{};
return get_usertype<T>(L, index, tracking);
}
template <typename T>
inline decltype(auto) unqualified_get(lua_State* L, int index, record& tracking) {
return stack_detail::tagged_unqualified_get(types<T>(), L, index, tracking);
}
template <typename T>
inline decltype(auto) unqualified_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking{};
return unqualified_get<T>(L, index, tracking);
}
template <typename T>
inline decltype(auto) get(lua_State* L, int index, record& tracking) {
return stack_detail::tagged_get(types<T>(), L, index, tracking);
}
template <typename T>
inline decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
record tracking{};
return get<T>(L, index, tracking);
}
template <typename T>
inline decltype(auto) pop(lua_State* L) {
return popper<meta::unqualified_t<T>>{}.pop(L);
}
template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key) {
field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
}
template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key, int tableindex) {
field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key) {
get_field<global, true>(L, std::forward<Key>(key));
}
template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key, int tableindex) {
get_field<global, true>(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_get_field(lua_State* L, Key&& key) {
return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key));
}
template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_get_field(lua_State* L, Key&& key, int tableindex) {
return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key) {
return probe_get_field<global, true, C>(L, std::forward<Key>(key));
}
template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) {
return probe_get_field<global, true, C>(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value) {
field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value) {
set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
template <typename T, typename F>
inline void modify_unique_usertype_as(const stack_reference& obj, F&& f) {
typedef unique_usertype_traits<T> u_traits;
void* raw = lua_touserdata(obj.lua_state(), obj.stack_index());
void* ptr_memory = detail::align_usertype_pointer(raw);
void* uu_memory = detail::align_usertype_unique<T>(raw);
T& uu = *static_cast<T*>(uu_memory);
f(uu);
*static_cast<void**>(ptr_memory) = static_cast<void*>(u_traits::get(uu));
}
template <typename F>
inline void modify_unique_usertype(const stack_reference& obj, F&& f) {
typedef meta::bind_traits<meta::unqualified_t<F>> bt;
typedef typename bt::template arg_at<0> T;
modify_unique_usertype_as<meta::unqualified_t<T>>(obj, std::forward<F>(f));
}
} // namespace stack
} // namespace sol
#endif // SOL_STACK_CORE_HPP