sol2/sol/traits.hpp
ThePhD 019c7b037b Huge improvements to the library and fixes to compile in g++.
usertype now respects factory functions and does not make default constructors/destructors unless the compiler says its okay
new and __gc functions can be overridden for usertypes to provide handle-like creation and deletion functions
Overloading match fixes
RAII improvements for all usertypes
Added tests to make sure these features stay
2016-02-21 19:26:58 -05:00

415 lines
13 KiB
C++

// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_TRAITS_HPP
#define SOL_TRAITS_HPP
#include "tuple.hpp"
#include <type_traits>
#include <memory>
#include <functional>
namespace sol {
template<typename T>
struct identity { typedef T type; };
template<typename T>
using identity_t = typename identity<T>::type;
template<typename... Args>
struct is_tuple : std::false_type{ };
template<typename... Args>
struct is_tuple<std::tuple<Args...>> : std::true_type{ };
template<typename T>
struct unwrapped {
typedef T type;
};
template<typename T>
struct unwrapped<std::reference_wrapper<T>> {
typedef T type;
};
template<typename T>
struct remove_member_pointer;
template<typename R, typename T>
struct remove_member_pointer<R T::*> {
typedef R type;
};
template<typename R, typename T>
struct remove_member_pointer<R T::* const> {
typedef R type;
};
template<typename T>
using remove_member_pointer_t = remove_member_pointer<T>;
template<typename T, template<typename...> class Templ>
struct is_specialization_of : std::false_type { };
template<typename... T, template<typename...> class Templ>
struct is_specialization_of<Templ<T...>, Templ> : std::true_type { };
template<class T, class...>
struct are_same : std::true_type { };
template<class T, class U, class... Args>
struct are_same<T, U, Args...> : std::integral_constant <bool, std::is_same<T, U>::value && are_same<T, Args...>::value> { };
template<typename T>
using Type = typename T::type;
template<bool B>
using Bool = std::integral_constant<bool, B>;
template<std::size_t I>
using Index = std::integral_constant<std::size_t, I>;
template<typename T>
using Not = Bool<!T::value>;
template<typename Condition, typename Then, typename Else>
using If = typename std::conditional<Condition::value, Then, Else>::type;
template<typename Condition, typename Then, typename Else>
using TypeIf = typename std::conditional<Condition::value, Type<Then>, Type<Else>>::type;
template<typename... Args>
struct And : Bool<true> {};
template<typename T, typename... Args>
struct And<T, Args...> : If<T, And<Args...>, Bool<false>> {};
template<typename... Args>
struct Or : Bool<false> {};
template<typename T, typename... Args>
struct Or<T, Args...> : If<T, Bool<true>, Or<Args...>> {};
template<typename... Args>
using EnableIf = typename std::enable_if<And<Args...>::value, int>::type;
template<typename... Args>
using DisableIf = typename std::enable_if<Not<And<Args...>>::value, int>::type;
template<typename T>
using Unqualified = std::remove_cv_t<std::remove_reference_t<T>>;
template<typename T>
using Unwrapped = typename unwrapped<T>::type;
template<typename V, typename... Vs>
struct find_in_pack_v : Bool<false> { };
template<typename V, typename Vs1, typename... Vs>
struct find_in_pack_v<V, Vs1, Vs...> : Or<Bool<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> { };
template<std::size_t I, typename... Args>
struct at_in_pack {};
template<std::size_t I, typename... Args>
using at_in_pack_t = typename at_in_pack<I, Args...>::type;
template<std::size_t I, typename Arg, typename... Args>
struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {};
template<typename... Args>
struct return_type {
typedef std::tuple<Args...> type;
};
template<typename T>
struct return_type<T> {
typedef T type;
};
template<>
struct return_type<> {
typedef void type;
};
template <typename... Args>
using return_type_t = typename return_type<Args...>::type;
namespace detail {
template<typename T, bool isclass = std::is_class<Unqualified<T>>::value>
struct is_function_impl : std::is_function<std::remove_pointer_t<T>> {};
template<typename T>
struct is_function_impl<T, true> {
using yes = char;
using no = struct { char s[2]; };
struct F { void operator()(); };
struct Derived : T, F {};
template<typename U, U> struct Check;
template<typename V>
static no test(Check<void (F::*)(), &V::operator()>*);
template<typename>
static yes test(...);
static const bool value = sizeof(test<Derived>(0)) == sizeof(yes);
};
template<class F>
struct check_deducible_signature {
struct nat {};
template<class G>
static auto test(int) -> decltype(&G::operator(), void());
template<class>
static auto test(...) -> nat;
using type = std::is_void<decltype(test<F>(0))>;
};
} // detail
template<class F>
struct has_deducible_signature : detail::check_deducible_signature<F>::type { };
template<typename T>
struct Function : Bool<detail::is_function_impl<T>::value> {};
namespace detail {
template<typename Signature, bool b = has_deducible_signature<Signature>::value>
struct fx_traits;
template<typename Signature>
struct fx_traits<Signature, true> : fx_traits<decltype(&Signature::operator()), false> {
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...), false> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = true;
typedef std::tuple<Args...> args_tuple_type;
typedef types<Args...> args_type;
typedef R(T::* function_pointer_type)(Args...);
typedef std::remove_pointer_t<function_pointer_type> function_type;
typedef R(*free_function_pointer_type)(Args...);
typedef R return_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template<std::size_t i>
using arg = std::tuple_element_t<i, args_tuple_type>;
};
template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) const, false> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = true;
typedef std::tuple<Args...> args_tuple_type;
typedef types<Args...> args_type;
typedef R(T::* function_pointer_type)(Args...);
typedef std::remove_pointer_t<function_pointer_type> function_type;
typedef R(*free_function_pointer_type)(Args...);
typedef R return_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template<std::size_t i>
using arg = std::tuple_element_t<i, args_tuple_type>;
};
template<typename R, typename... Args>
struct fx_traits<R(Args...), false> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = false;
typedef std::tuple<Args...> args_tuple_type;
typedef types<Args...> args_type;
typedef R(function_type)(Args...);
typedef R(*function_pointer_type)(Args...);
typedef R(*free_function_pointer_type)(Args...);
typedef R return_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template<std::size_t i>
using arg = std::tuple_element_t<i, args_tuple_type>;
};
template<typename R, typename... Args>
struct fx_traits<R(*)(Args...), false> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = false;
typedef std::tuple<Args...> args_tuple_type;
typedef types<Args...> args_type;
typedef R(function_type)(Args...);
typedef R(*function_pointer_type)(Args...);
typedef R(*free_function_pointer_type)(Args...);
typedef R return_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template<std::size_t i>
using arg = std::tuple_element_t<i, args_tuple_type>;
};
} // detail
template<typename Signature>
struct function_traits : detail::fx_traits<std::decay_t<Signature>> {};
template<typename Signature>
using function_args_t = typename function_traits<Signature>::args_type;
template<typename Signature>
using function_signature_t = typename function_traits<Signature>::signature_type;
template<typename Signature>
using function_return_t = typename function_traits<Signature>::return_type;
namespace detail {
template<typename Signature, bool b = std::is_member_object_pointer<Signature>::value>
struct callable_traits : function_traits<Signature> {
};
template<typename Signature>
struct callable_traits<Signature, true> {
typedef typename remove_member_pointer<Signature>::type Arg;
typedef typename remove_member_pointer<Signature>::type R;
typedef Signature signature_type;
static const bool is_member_function = false;
static const std::size_t arity = 1;
typedef std::tuple<Arg> args_tuple_type;
typedef types<Arg> args_type;
typedef R return_type;
typedef R(function_type)(Arg);
typedef R(*function_pointer_type)(Arg);
typedef R(*free_function_pointer_type)(Arg);
template<std::size_t i>
using arg = std::tuple_element_t<i, args_tuple_type>;
};
} // detail
template<typename Signature>
struct callable_traits : detail::callable_traits<std::remove_volatile_t<Signature>> {
};
struct has_begin_end_impl {
template<typename T, typename U = Unqualified<T>,
typename B = decltype(std::declval<U&>().begin()),
typename E = decltype(std::declval<U&>().end())>
static std::true_type test(int);
template<typename...>
static std::false_type test(...);
};
template<typename T>
struct has_begin_end : decltype(has_begin_end_impl::test<T>(0)) {};
struct has_key_value_pair_impl {
template<typename T, typename U = Unqualified<T>,
typename V = typename U::value_type,
typename F = decltype(std::declval<V&>().first),
typename S = decltype(std::declval<V&>().second)>
static std::true_type test(int);
template<typename...>
static std::false_type test(...);
};
template<typename T>
struct has_key_value_pair : decltype(has_key_value_pair_impl::test<T>(0)) {};
template <typename T>
using is_string_constructible = Or<std::is_same<Unqualified<T>, const char*>, std::is_same<Unqualified<T>, char>, std::is_same<Unqualified<T>, std::string>, std::is_same<Unqualified<T>, std::initializer_list<char>>>;
template <typename T>
using is_c_str = Or<std::is_same<std::decay_t<Unqualified<T>>, char*>, std::is_same<Unqualified<T>, std::string>>;
template<typename T>
auto unwrap(T&& item) -> decltype(std::forward<T>(item)) {
return std::forward<T>(item);
}
template<typename T>
T& unwrap(std::reference_wrapper<T> arg) {
return arg.get();
}
template<typename T>
T& deref(T& item) {
return item;
}
template<typename T>
T& deref(T* item) {
return *item;
}
template<typename T, typename Dx>
decltype(auto) deref(std::unique_ptr<T, Dx>& item) {
return *item;
}
template<typename T>
T& deref(std::shared_ptr<T>& item) {
return *item;
}
template<typename T, typename Dx>
decltype(auto) deref(const std::unique_ptr<T, Dx>& item) {
return *item;
}
template<typename T>
T& deref(const std::shared_ptr<T>& item) {
return *item;
}
template<typename T>
inline T* ptr(T& val) {
return std::addressof(val);
}
template<typename T>
inline T* ptr(std::reference_wrapper<T> val) {
return std::addressof(val.get());
}
template<typename T>
inline T* ptr(T* val) {
return val;
}
namespace detail {
template <typename T, DisableIf<is_specialization_of<Unqualified<T>, std::tuple>> = 0>
decltype(auto) force_tuple(T&& x) {
return std::forward_as_tuple(x);
}
template <typename T, EnableIf<is_specialization_of<Unqualified<T>, std::tuple>> = 0>
decltype(auto) force_tuple(T&& x) {
return std::forward<T>(x);
}
} // detail
template <typename... X>
decltype(auto) tuplefy(X&&... x ) {
return std::tuple_cat(detail::force_tuple(x)...);
}
} // sol
#endif // SOL_TRAITS_HPP