sol2/sol/table_core.hpp

339 lines
13 KiB
C++

// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_TABLE_CORE_HPP
#define SOL_TABLE_CORE_HPP
#include "proxy.hpp"
#include "stack.hpp"
#include "function_types.hpp"
#include "usertype.hpp"
#include "table_iterator.hpp"
namespace sol {
template <bool top_level>
class table_core : public reference {
friend class state;
friend class state_view;
template <typename... Args>
using is_global = meta::And<meta::Bool<top_level>, meta::is_c_str<Args>...>;
template<typename Fx>
void for_each(std::true_type, Fx&& fx) const {
auto pp = stack::push_pop( *this );
stack::push( lua_state( ), nil );
while ( lua_next( this->lua_state( ), -2 ) ) {
sol::object key( lua_state( ), -2 );
sol::object value( lua_state( ), -1 );
std::pair<sol::object&, sol::object&> keyvalue(key, value);
fx( keyvalue );
lua_pop( lua_state( ), 1 );
}
}
template<typename Fx>
void for_each(std::false_type, Fx&& fx) const {
auto pp = stack::push_pop( *this );
stack::push( lua_state( ), nil );
while ( lua_next( this->lua_state( ), -2 ) ) {
sol::object key( lua_state( ), -2 );
sol::object value( lua_state( ), -1 );
fx( key, value );
lua_pop( lua_state( ), 1 );
}
}
template<typename Ret0, typename Ret1, typename... Ret, std::size_t... I, typename Keys>
auto tuple_get( types<Ret0, Ret1, Ret...>, std::index_sequence<I...>, Keys&& keys ) const
-> decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr)){
auto pp = stack::push_pop<is_global<meta::tuple_element_t<I, Keys>...>::value>(*this);
int tableindex = lua_gettop(lua_state());
void(detail::swallow{ ( stack::get_field<top_level>(lua_state(), detail::forward_get<I>(keys), tableindex), 0)... });
return stack::pop<std::tuple<Ret0, Ret1, Ret...>>( lua_state() );
}
template<typename Ret, std::size_t I, typename Keys>
decltype(auto) tuple_get( types<Ret>, std::index_sequence<I>, Keys&& keys ) const {
auto pp = stack::push_pop<is_global<meta::tuple_element_t<I, Keys>>::value>(*this);
stack::get_field<top_level>( lua_state( ), detail::forward_get<I>(keys));
return stack::pop<Ret>( lua_state( ) );
}
template<typename Pairs, std::size_t... I>
void tuple_set( std::index_sequence<I...>, Pairs&& pairs ) {
auto pp = stack::push_pop<is_global<decltype(detail::forward_get<I>(pairs))...>::value>(*this);
void(detail::swallow{ (stack::set_field<top_level>(lua_state(),
detail::forward_get<I * 2>(pairs),
detail::forward_get<I * 2 + 1>(pairs)
), 0)... });
}
template <bool global, typename T, typename Key>
decltype(auto) traverse_get_deep( Key&& key ) const {
stack::get_field<global>( lua_state( ), std::forward<Key>( key ) );
return stack::get<T>( lua_state( ) );
}
template <bool global, typename T, typename Key, typename... Keys>
decltype(auto) traverse_get_deep( Key&& key, Keys&&... keys ) const {
stack::get_field<global>( lua_state( ), std::forward<Key>( key ) );
return traverse_get_deep<false, T>(std::forward<Keys>(keys)...);
}
template <bool global, typename Key, typename Value>
void traverse_set_deep( Key&& key, Value&& value ) const {
stack::set_field<global>( lua_state( ), std::forward<Key>( key ), std::forward<Value>(value) );
}
template <bool global, typename Key, typename... Keys>
void traverse_set_deep( Key&& key, Keys&&... keys ) const {
stack::get_field<global>( lua_state( ), std::forward<Key>( key ) );
traverse_set_deep<false>(std::forward<Keys>(keys)...);
}
table_core(lua_State* L, detail::global_tag t) noexcept : reference(L, t) { }
public:
table_core( ) noexcept : reference( ) { }
table_core( const table_core<true>& global ) noexcept : reference( global ) { }
table_core( lua_State* L, int index = -1 ) : reference( L, index ) {
type_assert( L, index, type::table );
}
table_iterator begin () const {
return table_iterator(*this);
}
table_iterator end() const {
return table_iterator();
}
table_iterator cbegin() const {
return begin();
}
table_iterator cend() const {
return end();
}
template<typename... Ret, typename... Keys>
decltype(auto) get( Keys&&... keys ) const {
return tuple_get( types<Ret...>( ), std::index_sequence_for<Ret...>( ), std::forward_as_tuple(std::forward<Keys>(keys)...));
}
template <typename T, typename... Keys>
decltype(auto) traverse_get( Keys&&... keys ) const {
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
struct clean { lua_State* L; clean(lua_State* L) : L(L) {} ~clean() { lua_pop(L, static_cast<int>(sizeof...(Keys))); } } c(lua_state());
return traverse_get_deep<top_level, T>(std::forward<Keys>(keys)...);
}
template <typename... Keys>
table_core& traverse_set( Keys&&... keys ) {
auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
traverse_set_deep<top_level>(std::forward<Keys>(keys)...);
lua_pop(lua_state(), static_cast<int>(sizeof...(Keys)-2));
return *this;
}
template<typename... Args>
table_core& set( Args&&... args ) {
tuple_set(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
return *this;
}
template<typename T>
table_core& set_usertype( usertype<T>& user ) {
return set_usertype(usertype_traits<T>::name, user);
}
template<typename Key, typename T>
table_core& set_usertype( Key&& key, usertype<T>& user ) {
return set(std::forward<Key>(key), user);
}
template<typename Class, typename... Args>
table_core& new_usertype(const std::string& name, Args&&... args) {
usertype<Class> utype(std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template<typename Class, typename CTor0, typename... CTor, typename... Args>
table_core& new_usertype(const std::string& name, Args&&... args) {
constructors<types<CTor0, CTor...>> ctor{};
return new_usertype<Class>(name, ctor, std::forward<Args>(args)...);
}
template<typename Class, typename... CArgs, typename... Args>
table_core& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) {
usertype<Class> utype(ctor, std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template<typename Fx>
void for_each( Fx&& fx ) const {
typedef meta::is_callable<Fx( std::pair<sol::object, sol::object> )> is_paired;
for_each(is_paired(), std::forward<Fx>(fx));
}
size_t size( ) const {
auto pp = stack::push_pop( *this );
return lua_rawlen(lua_state(), -1);
}
template<typename T>
proxy<table_core&, T> operator[]( T&& key ) & {
return proxy<table_core&, T>( *this, std::forward<T>( key ) );
}
template<typename T>
proxy<const table_core&, T> operator[]( T&& key ) const & {
return proxy<const table_core&, T>( *this, std::forward<T>( key ) );
}
template<typename T>
proxy<table_core, T> operator[]( T&& key ) && {
return proxy<table_core, T>( *this, std::forward<T>( key ) );
}
template<typename... Args, typename R, typename Key>
table_core& set_function( Key&& key, R fun_ptr( Args... ) ) {
set_resolved_function( std::forward<Key>( key ), fun_ptr );
return *this;
}
template<typename Sig, typename Key>
table_core& set_function( Key&& key, Sig* fun_ptr ) {
set_resolved_function( std::forward<Key>( key ), fun_ptr );
return *this;
}
template<typename... Args, typename R, typename C, typename T, typename Key>
table_core& set_function( Key&& key, R( C::*mem_ptr )( Args... ), T&& obj ) {
set_resolved_function( std::forward<Key>( key ), mem_ptr, std::forward<T>( obj ) );
return *this;
}
template<typename Sig, typename C, typename T, typename Key>
table_core& set_function( Key&& key, Sig C::* mem_ptr, T&& obj ) {
set_resolved_function( std::forward<Key>( key ), mem_ptr, std::forward<T>( obj ) );
return *this;
}
template<typename... Args, typename R, typename C, typename Key>
table_core& set_function( Key&& key, R( C::*mem_ptr )( Args... ) ) {
set_resolved_function( std::forward<Key>( key ), mem_ptr );
return *this;
}
template<typename Sig, typename C, typename Key>
table_core& set_function( Key&& key, Sig C::* mem_ptr ) {
set_resolved_function( std::forward<Key>( key ), mem_ptr );
return *this;
}
template<typename... Sig, typename Fx, typename Key>
table_core& set_function( Key&& key, Fx&& fx ) {
set_fx( types<Sig...>( ), std::forward<Key>( key ), std::forward<Fx>( fx ) );
return *this;
}
private:
template<typename R, typename... Args, typename Fx, typename Key, typename = std::result_of_t<Fx( Args... )>>
void set_fx( types<R( Args... )>, Key&& key, Fx&& fx ) {
set_resolved_function<R( Args... )>( std::forward<Key>( key ), std::forward<Fx>( fx ) );
}
template<typename Fx, typename Key, meta::EnableIf<meta::is_specialization_of<meta::Unqualified<Fx>, overload_set>> = 0>
void set_fx( types<>, Key&& key, Fx&& fx ) {
set(std::forward<Key>(key), std::forward<Fx>(fx));
}
template<typename Fx, typename Key, meta::DisableIf<meta::is_specialization_of<meta::Unqualified<Fx>, overload_set>> = 0>
void set_fx( types<>, Key&& key, Fx&& fx ) {
typedef meta::Unwrapped<meta::Unqualified<Fx>> fx_t;
typedef decltype( &fx_t::operator() ) Sig;
set_fx( types<meta::function_signature_t<Sig>>( ), std::forward<Key>( key ), std::forward<Fx>( fx ) );
}
template<typename... Sig, typename... Args, typename Key>
void set_resolved_function( Key&& key, Args&&... args ) {
set(std::forward<Key>(key), function_pack<function_sig<Sig...>>(std::forward<Args>(args)...));
}
public:
static inline table create(lua_State* L, int narr = 0, int nrec = 0) {
lua_createtable(L, narr, nrec);
table result(L);
lua_pop(L, 1);
return result;
}
template <typename Key, typename Value, typename... Args>
static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
lua_createtable(L, narr, nrec);
table result(L);
result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
lua_pop(L, 1);
return result;
}
template <typename... Args>
static inline table create_with(lua_State* L, Args&&... args) {
static const int narr = static_cast<int>(meta::count_if_2_pack<std::is_integral, Args...>::value);
return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...);
}
table create(int narr = 0, int nrec = 0) {
return create(lua_state(), narr, nrec);
}
template <typename Key, typename Value, typename... Args>
table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
return create(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
}
template <typename Name>
table create(Name&& name, int narr = 0, int nrec = 0) {
table x = create(lua_state(), narr, nrec);
this->set(std::forward<Name>(name), x);
return x;
}
template <typename Name, typename Key, typename Value, typename... Args>
table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
table x = create(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
this->set(std::forward<Name>(name), x);
return x;
}
template <typename... Args>
table create_with(Args&&... args) {
return create_with(lua_state(), std::forward<Args>(args)...);
}
};
} // sol
#endif // SOL_TABLE_CORE_HPP