// The MIT License (MIT) // Copyright (c) 2013 Danny Y., Rapptz // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_FUNCTION_HPP #define SOL_FUNCTION_HPP #include "reference.hpp" #include "tuple.hpp" #include "stack.hpp" #include "function_types.hpp" #include "usertype_traits.hpp" #include "resolve.hpp" #include #include #include namespace sol { class function : public reference { private: void luacall(std::size_t argcount, std::size_t resultcount) const { lua_call(state(), static_cast(argcount), static_cast(resultcount)); } template std::tuple invoke(indices, types, std::size_t n) const { luacall(n, sizeof...(Ret)); const int nreturns = static_cast(sizeof...(Ret)); const int stacksize = lua_gettop(state()); const int firstreturn = std::max(0, stacksize - nreturns) + 1; auto r = std::make_tuple(stack::get(state(), firstreturn + I)...); lua_pop(state(), nreturns); return r; } template Ret invoke(indices, types, std::size_t n) const { luacall(n, 1); return stack::pop(state()); } template void invoke(indices, types, std::size_t n) const { luacall(n, 0); } void invoke(indices<>, types<>, std::size_t n) const { auto tr = types(); invoke(tr, tr, n); } public: function() = default; function(lua_State* L, int index = -1): reference(L, index) { type_assert(L, index, type::function); } function(const function&) = default; function& operator=(const function&) = default; template void operator()(Args&&... args) const { call<>(std::forward(args)...); } template typename return_type::type operator()(types, Args&&... args) const { return call(std::forward(args)...); } template typename return_type::type call(Args&&... args) const { push(); int pushcount = stack::push_args(state(), std::forward(args)...); auto tr = types(); return invoke(tr, tr, pushcount); } }; namespace stack { template struct pusher> { template::type> static void set_memfx(types t, lua_State* L, Fx&& fx) { typedef Decay> raw_fx_t; typedef R(* fx_ptr_t)(Args...); typedef std::is_convertible is_convertible; set_isconvertible_fx(is_convertible(), t, L, std::forward(fx)); } template static void set_memfx(types<>, lua_State* L, Fx&& fx) { typedef Unqualified> fx_t; typedef decltype(&fx_t::operator()) Sig; set_memfx(types>(), L, std::forward(fx)); } template static void set(lua_State* L, R fxptr(Args...)){ set_fx(std::false_type(), L, fxptr); } template static void set(lua_State* L, Sig* fxptr){ set_fx(std::false_type(), L, fxptr); } template static void set(lua_State* L, R (C::*memfxptr)(Args...), T&& obj) { typedef Bool::value || std::is_pointer::value> is_reference; set_reference_fx(is_reference(), L, memfxptr, std::forward(obj)); } template static void set(lua_State* L, Sig C::* memfxptr, T&& obj) { typedef Bool::value || std::is_pointer::value> is_reference; set_reference_fx(is_reference(), L, memfxptr, std::forward(obj)); } template static void set(lua_State* L, Fx&& fx) { set_memfx(types(), L, std::forward(fx)); } template static void set_isconvertible_fx(std::true_type, types, lua_State* L, Fx&& fx) { typedef R(* fx_ptr_t)(Args...); fx_ptr_t fxptr = unwrapper(std::forward(fx)); set(L, fxptr); } template static void set_isconvertible_fx(std::false_type, types, lua_State* L, Fx&& fx) { typedef Decay> fx_t; std::unique_ptr sptr(new functor_function(std::forward(fx))); set_fx(L, std::move(sptr)); } template static void set_reference_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) { set_fx(std::true_type(), L, std::forward(fx), std::forward(obj)); } template static void set_reference_fx(std::false_type, lua_State* L, Fx&& fx, T&& obj) { typedef typename std::remove_pointer>::type clean_fx; std::unique_ptr sptr(new member_function(std::forward(obj), std::forward(fx))); return set_fx(L, std::move(sptr)); } template static void set_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) { // Layout: // idx 1...n: verbatim data of member function pointer // idx n + 1: is the object's void pointer // We don't need to store the size, because the other side is templated // with the same member function pointer type Decay memfxptr(std::forward(fx)); auto userptr = sol::detail::get_ptr(obj); void* userobjdata = static_cast(userptr); lua_CFunction freefunc = &static_member_function, Fx>::call; int upvalues = stack::detail::push_as_upvalues(L, memfxptr); upvalues += stack::push(L, userobjdata); stack::push(L, freefunc, upvalues); } template static void set_fx(std::false_type, lua_State* L, Fx&& fx) { Decay target(std::forward(fx)); lua_CFunction freefunc = &static_function::call; int upvalues = stack::detail::push_as_upvalues(L, target); stack::push(L, freefunc, upvalues); } template static void set_fx(lua_State* L, std::unique_ptr luafunc) { auto&& metakey = usertype_traits>::metatable; const char* metatablename = std::addressof(metakey[0]); base_function* target = luafunc.release(); void* userdata = reinterpret_cast(target); lua_CFunction freefunc = &base_function::call; if(luaL_newmetatable(L, metatablename) == 1) { lua_pushstring(L, "__gc"); stack::push(L, &base_function::gc); lua_settable(L, -3); lua_pop(L, 1); } stack::detail::push_userdata(L, metatablename, userdata); stack::push(L, freefunc, 1); } template static int push(lua_State* L, Args&&... args) { // Set will always place one thing (function) on the stack set(L, std::forward(args)...); return 1; } }; template struct pusher> { static int push(lua_State* L, std::function fx) { return pusher{}.push(L, std::move(fx)); } }; template struct getter> { typedef function_traits fx_t; typedef typename fx_t::args_type args_t; typedef typename tuple_types::type ret_t; template static std::function get_std_func(types, types, lua_State* L, int index = -1) { typedef typename function_traits::return_type return_t; sol::function f(L, index); auto fx = [f, L, index](FxArgs&&... args) -> return_t { return f(types(), std::forward(args)...); }; return std::move(fx); } template static std::function get_std_func(types, types, lua_State* L, int index = -1) { sol::function f(L, index); auto fx = [f, L, index](FxArgs&&... args) -> void { f(std::forward(args)...); }; return std::move(fx); } template static std::function get_std_func(types t, types<>, lua_State* L, int index = -1) { return get_std_func(std::move(t), types(), L, index); } static std::function get(lua_State* L, int index) { return get_std_func(args_t(), ret_t(), L, index); } }; } // stack } // sol #endif // SOL_FUNCTION_HPP