// The MIT License (MIT) // Copyright (c) 2013 Danny Y., Rapptz // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_USERDATA_HPP #define SOL_USERDATA_HPP #include "state.hpp" #include "function_types.hpp" #include "userdata_traits.hpp" #include "default_construct.hpp" #include #include #include namespace sol { namespace detail { template inline std::unique_ptr make_unique(Args&&... args) { return std::unique_ptr(new T(std::forward(args)...)); } } // detail const std::array meta_variable_names = { "__index", "__newindex" }; const std::array meta_function_names = { "__index", "__newindex", "__mode", "__call", "__metatable", "__tostring", "__len", "__unm", "__add", "__sub", "__mul", "__div", "__mod", "__pow", "__concat", "__eq", "__lt", "__le", "__gc", }; /* Too easy? enum class meta_function { index, new_index, mode, call, metatable, to_string, length, unary_minus, addition, subtraction, multiplication, division, modulus, power_of, involution = power_of, concatenation, equal_to, less_than, less_than_or_equal_to, };*/ template class userdata { private: typedef std::unordered_map, bool>> function_map_t; function_map_t indexmetafunctions, newindexmetafunctions; std::vector functionnames; std::vector> metafunctions; std::vector metafunctiontable; std::vector ptrmetafunctiontable; lua_CFunction cleanup; std::string luaname; template struct constructor { template static void do_constructor(lua_State* L, T* obj, call_syntax syntax, int, types) { default_construct fx{}; stack::get_call(L, 1 + static_cast(syntax), fx, types(), obj); } static void match_constructor(lua_State*, T*, call_syntax, int) { throw error("No matching constructor for the arguments provided"); } template static void match_constructor(lua_State* L, T* obj, call_syntax syntax, int argcount, types t, Args&&... args) { if (argcount == sizeof...(CArgs)) { do_constructor(L, obj, syntax, argcount, t); return; } match_constructor(L, obj, syntax, argcount, std::forward(args)...); } static int construct(lua_State* L) { auto&& meta = userdata_traits::metatable; call_syntax syntax = stack::get_call_syntax(L, meta); int argcount = lua_gettop(L); void* udata = lua_newuserdata(L, sizeof(T)); T* obj = static_cast(udata); match_constructor(L, obj, syntax, argcount - static_cast(syntax), typename identity::type()...); if (luaL_newmetatable(L, std::addressof(meta[0])) == 1) { lua_pop(L, 1); std::string err = "Unable to get userdata metatable for "; err += meta; throw error(err); } lua_setmetatable(L, -2); return 1; } }; struct destructor { static int destruct(lua_State* L) { userdata_t udata = stack::get(L, 1); T* obj = static_cast(udata.value); std::allocator alloc{}; alloc.destroy(obj); return 0; } }; template void build_cleanup () { cleanup = &base_function::userdata::gc; } template void build_function_tables(function_map_t*& index, function_map_t*& newindex) { int extracount = 0; if (!indexmetafunctions.empty()) { if (index == nullptr) { auto idxptr = detail::make_unique>("__index", nullptr); index = &(idxptr->functions); functionnames.emplace_back("__index"); metafunctions.emplace_back(std::move(idxptr)); std::string& name = functionnames.back(); metafunctiontable.push_back( { name.c_str(), &base_function::userdata::call } ); ptrmetafunctiontable.push_back( { name.c_str(), &base_function::userdata::ref_call } ); ++extracount; } auto& idx = *index; for (auto&& namedfunc : indexmetafunctions ) { idx.emplace(std::move(namedfunc.first), std::move(namedfunc.second)); } } if (!newindexmetafunctions.empty()) { if (newindex == nullptr) { auto idxptr = detail::make_unique>("__newindex", nullptr); newindex = &(idxptr->functions); functionnames.emplace_back("__newindex"); metafunctions.emplace_back(std::move(idxptr)); std::string& name = functionnames.back(); if (extracount > 0) { metafunctiontable.push_back( { name.c_str(), &base_function::userdata::call } ); ptrmetafunctiontable.push_back( { name.c_str(), &base_function::userdata::ref_call } ); } else { metafunctiontable.push_back( { name.c_str(), &base_function::userdata::call } ); ptrmetafunctiontable.push_back( { name.c_str(), &base_function::userdata::ref_call } ); } ++extracount; } auto& idx = *newindex; for (auto&& namedfunc : newindexmetafunctions ) { idx.emplace(std::move(namedfunc.first), std::move(namedfunc.second)); } } switch (extracount) { case 2: build_cleanup(); break; case 1: build_cleanup(); break; case 0: default: build_cleanup(); break; } } template bool build_function(std::true_type, function_map_t*&, function_map_t*&, std::string funcname, Ret TBase::* func) { static_assert(std::is_base_of::value, "Any registered function must be part of the class"); typedef typename std::decay::type function_type; indexmetafunctions.emplace(funcname, std::make_pair(detail::make_unique>(func), false)); newindexmetafunctions.emplace(funcname, std::make_pair(detail::make_unique>(func), false)); return false; } template bool build_function(std::false_type, function_map_t*& index, function_map_t*& newindex, std::string funcname, Ret TBase::* func) { static_assert(std::is_base_of::value, "Any registered function must be part of the class"); typedef typename std::decay::type function_type; auto metamethod = std::find(meta_function_names.begin(), meta_function_names.end(), funcname); if (metamethod != meta_function_names.end()) { functionnames.push_back(std::move(funcname)); std::string& name = functionnames.back(); auto indexmetamethod = std::find(meta_variable_names.begin(), meta_variable_names.end(), name); std::unique_ptr ptr(nullptr); if (indexmetamethod != meta_variable_names.end()) { auto idxptr = detail::make_unique>(name, func); switch( std::distance(indexmetamethod, meta_variable_names.end()) ) { case 0: index = &(idxptr->functions); break; case 1: newindex = &(idxptr->functions); break; default: break; } ptr = std::move(idxptr); } else { ptr = detail::make_unique>(func); } metafunctions.emplace_back(std::move(ptr)); metafunctiontable.push_back( { name.c_str(), &base_function::userdata::call } ); ptrmetafunctiontable.push_back( { name.c_str(), &base_function::userdata::ref_call } ); return true; } indexmetafunctions.emplace(funcname, std::make_pair(detail::make_unique>(func), true )); newindexmetafunctions.emplace(funcname, std::make_pair(detail::make_unique>(func), true)); return false; } template void build_function_tables(function_map_t*& index, function_map_t*& newindex, std::string funcname, Ret TBase::* func, Args&&... args) { typedef typename std::is_member_object_pointer::type is_variable; static const std::size_t V = static_cast( !is_variable::value ); if (build_function(is_variable(), index, newindex, std::move(funcname), std::move(func))) { build_function_tables(index, newindex, std::forward(args)...); } else { build_function_tables(index, newindex, std::forward(args)...); } } /* Apparently there needs to be magic template void build_function_tables(function_map_t*& index, function_map_t*& newindex, meta_function metafunc, Ret TBase::* func, Args&&... args) { std::size_t idx = static_cast(metafunc); const std::string& funcname = meta_function_names[idx]; build_function_tables(index, newindex, funcname, std::move(func), std::forward(args)...); }*/ public: template userdata(Args&&... args): userdata(userdata_traits::name, default_constructor, std::forward(args)...) {} template userdata(constructors c, Args&&... args): userdata(userdata_traits::name, std::move(c), std::forward(args)...) {} template userdata(std::string name, constructors, Args&&... args): luaname(std::move(name)) { functionnames.reserve(sizeof...(args) + 2); metafunctiontable.reserve(sizeof...(args)); ptrmetafunctiontable.reserve(sizeof...(args)); function_map_t* index = nullptr; function_map_t* newindex = nullptr; build_function_tables<0>(index, newindex, std::forward(args)...); indexmetafunctions.clear(); newindexmetafunctions.clear(); functionnames.push_back("new"); metafunctiontable.push_back({ functionnames.back().c_str(), &constructor::construct }); functionnames.push_back("__gc"); metafunctiontable.push_back({ functionnames.back().c_str(), &destructor::destruct }); // ptr_functions does not participate in garbage collection/new, // as all pointered types are considered // to be references. This makes returns of // `std::vector&` and `std::vector*` work metafunctiontable.push_back( { nullptr, nullptr } ); ptrmetafunctiontable.push_back( { nullptr, nullptr } ); } template userdata(const char* name, constructors c, Args&&... args) : userdata(std::string(name), std::move(c), std::forward(args)...) {} const std::string& name () const { return luaname; } void push (lua_State* L) { // push pointer tables first, // but leave the regular T table on last // so it can be linked to a type for usage with `.new(...)` or `:new(...)` push_metatable(L, userdata_traits::metatable, metafunctions, ptrmetafunctiontable); lua_pop(L, 1); push_metatable(L, userdata_traits::metatable, metafunctions, metafunctiontable); set_global_deleter(L); } private: template static void push_metatable(lua_State* L, Meta&& metakey, MetaFuncs&& metafuncs, MetaFuncTable&& metafunctable) { luaL_newmetatable(L, std::addressof(metakey[0])); if (metafunctable.size() > 1) { // regular functions accessed through __index semantics int up = push_upvalues(L, metafuncs); luaL_setfuncs(L, metafunctable.data(), up); } } void set_global_deleter (lua_State* L) { // Automatic deleter table -- stays alive until lua VM dies // even if the user calls collectgarbage() lua_createtable(L, 0, 0); lua_createtable(L, 0, 1); int up = push_upvalues(L, metafunctions); lua_pushcclosure(L, cleanup, up); lua_setfield(L, -2, "__gc"); lua_setmetatable(L, -2); // gctable name by default has ♻ part of it lua_setglobal(L, std::addressof(userdata_traits::gctable[0])); } template static int push_upvalues (lua_State* L, TCont&& cont) { int n = 0; for (auto& c : cont) { if (release) stack::push(L, c.release()); else stack::push(L, c.get()); ++n; } return n; } }; namespace stack { template struct pusher> { static void push (lua_State* L, userdata& user) { user.push(L); } }; } // stack } // sol #endif // SOL_USERDATA_HPP