// sol3 // The MIT License (MIT) // Copyright (c) 2013-2020 Rapptz, ThePhD and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_INHERITANCE_HPP #define SOL_INHERITANCE_HPP #include #include #include namespace sol { template struct base_list { }; template using bases = base_list; typedef bases<> base_classes_tag; const auto base_classes = base_classes_tag(); template struct is_to_stringable> : std::false_type { }; namespace detail { inline decltype(auto) base_class_check_key() { static const auto& key = "class_check"; return key; } inline decltype(auto) base_class_cast_key() { static const auto& key = "class_cast"; return key; } inline decltype(auto) base_class_index_propogation_key() { static const auto& key = u8"\xF0\x9F\x8C\xB2.index"; return key; } inline decltype(auto) base_class_new_index_propogation_key() { static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index"; return key; } template struct inheritance { typedef typename base::type bases_t; static bool type_check_bases(types<>, const string_view&) { return false; } template static bool type_check_bases(types, const string_view& ti) { return ti == usertype_traits::qualified_name() || type_check_bases(types(), ti); } static bool type_check(const string_view& ti) { return ti == usertype_traits::qualified_name() || type_check_bases(bases_t(), ti); } template static bool type_check_with(const string_view& ti) { return ti == usertype_traits::qualified_name() || type_check_bases(types(), ti); } static void* type_cast_bases(types<>, T*, const string_view&) { return nullptr; } template static void* type_cast_bases(types, T* data, const string_view& ti) { // Make sure to convert to T first, and then dynamic cast to the proper type return ti != usertype_traits::qualified_name() ? type_cast_bases(types(), data, ti) : static_cast(static_cast(data)); } static void* type_cast(void* voiddata, const string_view& ti) { T* data = static_cast(voiddata); return static_cast(ti != usertype_traits::qualified_name() ? type_cast_bases(bases_t(), data, ti) : data); } template static void* type_cast_with(void* voiddata, const string_view& ti) { T* data = static_cast(voiddata); return static_cast(ti != usertype_traits::qualified_name() ? type_cast_bases(types(), data, ti) : data); } template static bool type_unique_cast_bases(types<>, void*, void*, const string_view&) { return 0; } template static int type_unique_cast_bases(types, void* source_data, void* target_data, const string_view& ti) { using uu_traits = unique_usertype_traits; using base_ptr = typename uu_traits::template rebind_actual_type; string_view base_ti = usertype_traits::qualified_name(); if (base_ti == ti) { if (target_data != nullptr) { U* source = static_cast(source_data); base_ptr* target = static_cast(target_data); // perform proper derived -> base conversion *target = *source; } return 2; } return type_unique_cast_bases(types(), source_data, target_data, ti); } template static int type_unique_cast(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) { if constexpr (is_actual_type_rebindable_for_v) { using rebound_actual_type = unique_usertype_rebind_actual_t; using maybe_bases_or_empty = meta::conditional_t, types<>, bases_t>; string_view this_rebind_ti = usertype_traits::qualified_name(); if (rebind_ti != this_rebind_ti) { // this is not even of the same unique type return 0; } string_view this_ti = usertype_traits::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases(maybe_bases_or_empty(), source_data, target_data, ti); } else { (void)rebind_ti; string_view this_ti = usertype_traits::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases(types<>(), source_data, target_data, ti); } } template static int type_unique_cast_with(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) { using uc_bases_t = types; if constexpr (is_actual_type_rebindable_for_v) { using rebound_actual_type = unique_usertype_rebind_actual_t; using cond_bases_t = meta::conditional_t, types<>, uc_bases_t>; string_view this_rebind_ti = usertype_traits::qualified_name(); if (rebind_ti != this_rebind_ti) { // this is not even of the same unique type return 0; } string_view this_ti = usertype_traits::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases(cond_bases_t(), source_data, target_data, ti); } else { (void)rebind_ti; string_view this_ti = usertype_traits::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases(types<>(), source_data, target_data, ti); } } }; using inheritance_check_function = decltype(&inheritance::type_check); using inheritance_cast_function = decltype(&inheritance::type_cast); using inheritance_unique_cast_function = decltype(&inheritance::type_unique_cast); } // namespace detail } // namespace sol #endif // SOL_INHERITANCE_HPP