// The MIT License (MIT) // Copyright (c) 2013-2016 Rapptz, ThePhD and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_FUNCTION_HPP #define SOL_FUNCTION_HPP #include "reference.hpp" #include "stack.hpp" #include "resolve.hpp" #include "function_result.hpp" #include "function_types.hpp" #include #include #include namespace sol { template struct function_packer { std::tuple set; template function_packer(Args&&... args) : set(std::forward(args)...) {} }; template function_packer function_pack( Args&&... args ) { return function_packer(std::forward(args)...); } class function : public reference { private: void luacall( std::ptrdiff_t argcount, std::ptrdiff_t resultcount ) const { lua_callk( lua_state( ), static_cast( argcount ), static_cast( resultcount ), 0, nullptr ); } template auto invoke( types, std::index_sequence, std::ptrdiff_t n ) const { luacall( n, sizeof...( Ret ) ); int stacksize = lua_gettop( lua_state( ) ); int firstreturn = std::max(1, stacksize - static_cast(sizeof...(Ret)) + 1); auto r = stack::get>( lua_state( ), firstreturn ); lua_pop(lua_state(), static_cast(sizeof...(Ret))); return r; } template Ret invoke(types, std::index_sequence, std::ptrdiff_t n ) const { luacall( n, 1 ); return stack::pop( lua_state( ) ); } template void invoke(types, std::index_sequence, std::ptrdiff_t n) const { luacall( n, 0 ); } function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n ) const { int stacksize = lua_gettop( lua_state( ) ); int firstreturn = std::max( 1, stacksize - static_cast( n ) ); luacall(n, LUA_MULTRET); int poststacksize = lua_gettop( lua_state( ) ); int returncount = poststacksize - (firstreturn - 1); return function_result( lua_state( ), firstreturn, returncount ); } public: using reference::reference; template function_result operator()( Args&&... args ) const { return call<>( std::forward( args )... ); } template decltype(auto) operator()( types, Args&&... args ) const { return call( std::forward( args )... ); } template decltype(auto) call( Args&&... args ) const { push( ); int pushcount = stack::multi_push( lua_state( ), std::forward( args )... ); return invoke( types( ), std::index_sequence_for(), pushcount ); } }; namespace stack { template struct pusher> { template> static void set_memfx(types t, lua_State* L, Fx&& fx) { typedef std::decay_t>> raw_fx_t; typedef R(* fx_ptr_t)(Args...); typedef std::is_convertible is_convertible; set_isconvertible_fx(is_convertible(), t, L, std::forward(fx)); } template static void set_memfx(types<>, lua_State* L, Fx&& fx) { typedef meta::Unwrapped> fx_t; set(L, &fx_t::operator(), std::forward(fx)); } template static void set(lua_State* L, R fxptr(Args...)){ set_fx(std::false_type(), L, fxptr); } template static void set(lua_State* L, Sig* fxptr){ set_fx(std::false_type(), L, fxptr); } template static void set(lua_State* L, R (C::*memfxptr)(Args...), T&& obj) { typedef meta::Bool, std::reference_wrapper>::value || std::is_pointer::value> is_reference; set_reference_fx(is_reference(), L, memfxptr, std::forward(obj)); } template static void set(lua_State* L, Sig C::* memfxptr, T&& obj) { typedef meta::Bool, std::reference_wrapper>::value || std::is_pointer::value> is_reference; set_reference_fx(is_reference(), L, memfxptr, std::forward(obj)); } template static void set(lua_State* L, Fx&& fx) { set_memfx(types(), L, std::forward(fx)); } template static void set_isconvertible_fx(std::true_type, types, lua_State* L, Fx&& fx) { typedef R(* fx_ptr_t)(Args...); fx_ptr_t fxptr = detail::unwrap(std::forward(fx)); set(L, fxptr); } template static void set_isconvertible_fx(std::false_type, types, lua_State* L, Fx&& fx) { typedef meta::Unwrapped> fx_t; std::unique_ptr sptr = std::make_unique>(std::forward(fx)); set_fx(L, std::move(sptr)); } template static void set_reference_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) { set_fx(std::true_type(), L, std::forward(fx), std::forward(obj)); } template static void set_reference_fx(std::false_type, lua_State* L, Fx&& fx, T&& obj) { typedef std::remove_pointer_t> clean_fx; std::unique_ptr sptr = std::make_unique>>(std::forward(obj), std::forward(fx)); return set_fx(L, std::move(sptr)); } template static void set_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) { // Layout: // idx 1...n: verbatim data of member function pointer // idx n + 1: is the object's void pointer // We don't need to store the size, because the other side is templated // with the same member function pointer type typedef std::decay_t dFx; typedef meta::Unqualified uFx; dFx memfxptr(std::forward(fx)); auto userptr = detail::ptr(obj); void* userobjdata = static_cast(userptr); lua_CFunction freefunc = &function_detail::upvalue_member_function, uFx>::call; int upvalues = stack::stack_detail::push_as_upvalues(L, memfxptr); upvalues += stack::push(L, userobjdata); stack::push(L, freefunc, upvalues); } template static void set_fx(std::false_type, lua_State* L, Fx&& fx) { std::decay_t target(std::forward(fx)); lua_CFunction freefunc = &function_detail::upvalue_free_function::call; int upvalues = stack::stack_detail::push_as_upvalues(L, target); stack::push(L, freefunc, upvalues); } static void set_fx(lua_State* L, std::unique_ptr luafunc) { function_detail::base_function* target = luafunc.release(); void* targetdata = reinterpret_cast(target); lua_CFunction freefunc = function_detail::call; stack::push(L, userdata_value(targetdata)); function_detail::free_function_cleanup(L); lua_setmetatable(L, -2); stack::push(L, freefunc, 1); } template static int push(lua_State* L, Args&&... args) { // Set will always place one thing (function) on the stack set(L, std::forward(args)...); return 1; } }; template struct pusher> { template static int push_func(std::index_sequence, lua_State* L, FP&& fp) { return stack::push(L, detail::forward_get(fp.set)...); } template static int push(lua_State* L, FP&& fp) { return push_func(std::index_sequence_for(), L, std::forward(fp)); } }; template struct pusher> { static int push(lua_State* L, std::function fx) { return pusher>{}.push(L, std::move(fx)); } }; template struct pusher> { static int push(lua_State* L, overload_set&& set) { pusher>{}.set_fx(L, std::make_unique>(std::move(set.set))); return 1; } static int push(lua_State* L, const overload_set& set) { pusher>{}.set_fx(L, std::make_unique>(set.set)); return 1; } }; template struct getter> { typedef meta::function_traits fx_t; typedef typename fx_t::args_type args_types; typedef meta::tuple_types return_types; template static std::function get_std_func(types, types, lua_State* L, int index = -1) { sol::function f(L, index); auto fx = [f, L, index](Args&&... args) -> meta::return_type_t { return f.call(std::forward(args)...); }; return std::move(fx); } template static std::function get_std_func(types, types, lua_State* L, int index = -1) { sol::function f(L, index); auto fx = [f, L, index](FxArgs&&... args) -> void { f(std::forward(args)...); }; return std::move(fx); } template static std::function get_std_func(types<>, types t, lua_State* L, int index = -1) { return get_std_func(types(), t, L, index); } static std::function get(lua_State* L, int index) { return get_std_func(return_types(), args_types(), L, index); } }; } // stack } // sol #endif // SOL_FUNCTION_HPP