// The MIT License (MIT) // Copyright (c) 2013 Danny Y., Rapptz // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_STACK_HPP #define SOL_STACK_HPP #include "reference.hpp" #include "tuple.hpp" #include "traits.hpp" #include #include #include namespace sol { namespace stack { namespace detail { template inline T get_unsigned(lua_State* L, std::true_type, int index = -1) { return lua_tounsigned(L, index); } template inline T get_unsigned(lua_State* L, std::false_type, int index = -1) { return static_cast(lua_tointeger(L, index)); } template inline T get_arithmetic(lua_State* L, std::false_type, int index = -1) { // T is a floating point return static_cast(lua_tonumber(L, index)); } template inline T get_arithmetic(lua_State* L, std::true_type, int index = -1) { // T is an integral return get_unsigned(L, std::is_unsigned{}, index); } template inline T get_nil(lua_State* L, std::true_type, int index = -1) { if (lua_isnil(L, index) == 0) throw sol::sol_error("not nil"); return nil_t{}; } template inline T get_nil(lua_State* L, std::false_type, int index = -1) { // T is a class type return T(L, index); } template inline T get_helper(lua_State* L, std::true_type, int index = -1) { return get_nil(L, std::is_same(), index); } template inline T get_helper(lua_State* L, std::false_type, int index = -1) { // T is a fundamental type return get_arithmetic(L, std::is_integral{}, index); } template inline void push_unsigned(lua_State* L, T x, std::true_type) { lua_pushunsigned(L, x); } template inline void push_unsigned(lua_State* L, T x, std::false_type) { lua_pushinteger(L, x); } template inline void push_arithmetic(lua_State* L, T x, std::true_type) { // T is an integral type push_unsigned(L, x, std::is_unsigned{}); } template inline void push_arithmetic(lua_State* L, T x, std::false_type) { // T is an floating point type lua_pushnumber(L, x); } } // detail template inline T get(lua_State* L, int index = -1) { return detail::get_helper(L, std::is_class{}, index); } template<> inline bool get(lua_State* L, int index) { return lua_toboolean(L, index) != 0; } template<> inline std::string get(lua_State* L, int index) { std::string::size_type len; auto str = lua_tolstring(L, index, &len); return { str, len }; } template<> inline const char* get(lua_State* L, int index) { return lua_tostring(L, index); } template inline T pop(lua_State* L) { auto r = get(L); lua_pop(L, 1); return r; } template inline EnableIf> push(lua_State* L, T arithmetic) { detail::push_arithmetic(L, arithmetic, std::is_integral{}); } inline void push(lua_State*, reference& ref) { ref.push(); } inline void push(lua_State* L, bool boolean) { lua_pushboolean(L, boolean); } inline void push(lua_State* L, const nil_t&) { lua_pushnil(L); } inline void push(lua_State* L, lua_CFunction func) { lua_pushcfunction(L, func); } inline void push(lua_State* L, lua_CFunction func, int n) { lua_pushcclosure(L, func, n); } inline void push(lua_State* L, void* userdata) { lua_pushlightuserdata(L, userdata); } template inline void push(lua_State* L, const char (&str)[N]) { lua_pushlstring(L, str, N - 1); } inline void push(lua_State* L, const char* str) { lua_pushlstring(L, str, std::char_traits::length(str)); } inline void push(lua_State* L, const std::string& str) { lua_pushlstring(L, str.c_str(), str.size()); } template inline void push_user(lua_State* L, T& userdata, const char* metatablekey) { T* pdatum = static_cast(lua_newuserdata(L, sizeof(T))); T& datum = *pdatum; datum = userdata; if (metatablekey != nullptr) { lua_getfield(L, LUA_REGISTRYINDEX, metatablekey); lua_setmetatable(L, -2); } } template inline void push(lua_State* L, const std::array& data) { for (auto&& i : data) { push(L, i); } } template inline int push_user(lua_State* L, T& item) { typedef typename std::decay::type TValue; const static std::size_t itemsize = sizeof(TValue); const static std::size_t voidsize = sizeof(void*); const static std::size_t voidsizem1 = voidsize - 1; const static std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize; typedef std::array data_t; data_t data{{}}; std::memcpy(std::addressof(data[0]), std::addressof(item), itemsize); push(L, data); return data_t_count; } namespace detail { template inline void push_tuple(lua_State* L, indices, T&& tuplen) { using swallow = char[ 1 + sizeof...(I) ]; swallow {'\0', (sol::stack::push(L, std::get(tuplen)), '\0')... }; } template auto ltr_pop(lua_State*, F&& f, types<>, Vs&&... vs) -> decltype(f(std::forward(vs)...)) { return f(std::forward(vs)...); } template auto ltr_pop(lua_State* L, F&& f, types, Vs&&... vs) -> decltype(ltr_pop(L, std::forward(f), types<>(), std::forward(vs)..., pop(L))) { return ltr_pop(L, std::forward(f), types<>(), std::forward(vs)..., pop(L)); } template auto ltr_pop(lua_State* L, F&& f, types, Vs&&... vs) -> decltype(f(std::forward(vs)..., std::declval(), std::declval()...)) { return ltr_pop(L, std::forward(f), types(), std::forward(vs)..., pop(L)); } template auto rtl_pop(lua_State*, F&& f, types<>, Vs&&... vs) -> decltype(f(std::forward(vs)...)) { return f(std::forward(vs)...); } template auto rtl_pop(lua_State* L, F&& f, types, Vs&&... vs) -> decltype(rtl_pop(L, std::forward(f), types<>(), pop(L), std::forward(vs)...)) { return rtl_pop(L, std::forward(f), types<>(), pop(L), std::forward(vs)...); } template auto rtl_pop(lua_State* L, F&& f, types, types, Vs&&... vs) -> decltype(f(std::forward(std::declval())...)) { return rtl_pop(L, std::forward(f), types(), pop(L), std::forward(vs)...); } } // detail template inline void push(lua_State* L, const std::tuple& tuplen) { detail::push_tuple(L, build_indices(), tuplen); } template inline void push(lua_State* L, std::tuple&& tuplen) { detail::push_tuple(L, build_indices(), std::move(tuplen)); } template inline void push_reverse(lua_State* L, T&& item) { push(L, std::forward(item)); } template inline void push_reverse(lua_State* L, const std::tuple& tuplen) { detail::push_tuple(L, build_reverse_indices(), tuplen); } template inline void push_reverse(lua_State* L, std::tuple&& tuplen) { detail::push_tuple(L, build_reverse_indices(), std::move(tuplen)); } template inline auto pop_call(lua_State* L, TFx&& fx, types) -> decltype(detail::ltr_pop(L, std::forward(fx), types())) { return detail::ltr_pop(L, std::forward(fx), types()); } template inline auto pop_reverse_call(lua_State* L, TFx&& fx, types) -> decltype(detail::rtl_pop(L, std::forward(fx), types(), reversed())) { return detail::rtl_pop(L, std::forward(fx), types(), reversed()); } void push_args(lua_State*) { } template void push_args(lua_State* L, Arg&& arg, Args&&... args) { using swallow = char[]; stack::push(L, std::forward(arg)); void(swallow{'\0', (stack::push(L, std::forward(args)), '\0')... }); } } // stack } // sol #endif // SOL_STACK_HPP