
THE PLAN FOR TOMORROW

Compile-Time Extension Points for C++ Libraries and Applications

ThePhD - @thephantomderp – LinkedIn - https://thephd.github.io
Columbia University Student, May 10th, 2019
C++Now2019, Aspen, Colorado

https://twitter.com/thephantomderp/
https://www.linkedin.com/in/thephd
https://thephd.github.io/

EXTENSION GOALS: ADDING
FUNCTIONALITY…

 beyond what was initially considered by application / library authors
 Callback functions with void* userdata in C libraries

 to perform some semantically-expected task for types outside author’s purview
 std::swap

 to endow a class with a specific, compatible interface
 virtual protected functions in iostreams

2

WELL-KNOWN EXTENSION
METHODS

A brief overview of compile-time and runtime hybrid extension technology

3

WELL-KNOWN: VIRTUAL METHODS

 No surprises here: create base class and stuff it with virtual methods

struct animal {
virtual std::string sound () const = 0;

};

struct dog : public animal {
virtual std::string sound () const override {

return “woof”;
}

};

4

WELL-KNOWN: VIRTUAL METHODS USAGE

 Used extensively up to ~2008, less so now in place to static polymorphism
 Many game engines: Ogre, Irrlicht, Doom, etc…

 Qt: QObject and the entire class tree

 Clang: ASTMatchers and extension points

 C++ standard library: iostream customization points

 One too many C++ university classes

5

BENEFITS

 Can work with super class (base class) at compile-time
 calls the right method at runtime

 no need to bookkeep function pointers and similar

 Heavily optimized by compiler writers to de-virtualize simple cases
 E.g.: current-gen non-user-specialized iostreams, C++ XAML, and more

6

DRAWBACKS

 ABI-brittle
 adding a function to class might append to virtual table, but may insert in middle of

derived class’s virtual table

 difficult to detect mismatches

 Runtime efficiency
 Does “X” need to be virtual? Must decision be delayed to runtime?

 Implementation-controlled Virtual Tables / Slicing Problem
 Base classes must be handled as pointers / references or risk slicing

7

CALLBACKS WITH USERDATA

 Function which takes a strongly-typed function pointer and a void* userdata
 Staple of C APIs everywhere, including some C standard library functions

 Highly flexible

 Used to let (application) developer do things beyond what was envisioned
 e.g., serialize data into to a std::vector instead of a FILE*

typedef int (*lua_Writer)(lua_State*, const void*, size_t, void*);

int lua_dump(lua_State* L, lua_Writer writer, void* userdata, int strip_symbols);

8

WELL-KNOWN: CALLBACKS WITH
USERDATA USAGE

 Literally every C library, ever…
 Lua, libclang,

 libpng, libjpeg

 jansson, libev, freetype

 Win32: everywhere

 C Standard Library: qsort

9

EASY TO WRAP IN C++

 Typical C call, wrapped in C++

template <typename Callback>
int dump_handler(lua_State* L, const void* data, size_t data_size, void* userdata) {

Callback& callback = *static_cast<Callback*>(userdata);
return callback(L, data, data_size);

}

template <typename Callback>
void dump_with(lua_State* L, Callback*& callback, bool strip_symbols = true) {

lua_Writer writer = &dump_handler<std*:remove_reference_t<Callback*>;
void* userdata = static_cast<void*>(std*:addressof(callback));
lua_dump(L, writer, userdata, static_cast<int>(strip_symbols));

}

10

EASY TO WRAP IN C++: NO TEMPLATES

 Fix the interface to save on template duplication for every callable…

using dump_function = std::function<lua_State*, const void*, size_t>;

int dump_handler(lua_State* L, const void* data, size_t data_size, void* userdata) {
dump_function& callback = *static_cast<dump_function*>(userdata);
return callback(L, data, data_size);

}

void dump_with(lua_State* L, dump_function callback, bool strip_symbols = true) {
lua_Writer writer = &dump_handler;
void* userdata = static_cast<void*>(std::addressof(callback));
lua_dump(L, writer, userdata, strip_symbols);

}

11

EASY TO WRAP IN C++: NO TEMPLATES

 std::function is expensive
 Higher efficiency, low cost for (maybe) C++20: std::function_ref

using dump_function = std*:function_ref<lua_State*, const void*, size_t>;

int dump_handler(lua_State* L, const void* data, size_t data_size, void* userdata) {
dump_function& callback = *static_cast<dump_function*>(userdata);
return callback(L, data, data_size);

}

void dump_with(lua_State* L, dump_function callback, bool strip_symbols = true) {
lua_Writer writer = &dump_handler;
void* userdata = static_cast<void*>(std*:addressof(callback));
lua_dump(L, writer, userdata, strip_symbols);

}

12

EASY…?

 Inline and synchronous execution:
 No need for storage

 No need to manage lifetime

 Non-inline execution:
 Callling it later (events in Qt, libev, etc.)? Need storage.

 Multithreading? Need storage.

 Storage means lifetime…

13

BENEFITS

 Space and time efficient
 especially if callback never needs to be stored

 function pointers are cheap

 ABI-hardy
 difficult to break ABI unless the actual callback interface changes

 user can place extra data into void* for their needs at no cost to library

14

DRAWBACKS

 Exception/early exit issues
 if stored, is the callback called when an exception is tossed/failure is reported?

 In-lining optimizations for compiled code becomes restricted
 qsort(…) vs. std::sort(…)

 link time optimizations helps here

 Lifetime issues, when
 storing the callback to call “at a later date”

 multithreading concerns

15

COMPILE-TIME EXTENSION

Picking and choosing work to execute using compile time choices

16

EXTENSION METHODOLOGIES 📜

 Compiler-Assisted
 (Partial) Class Template Specializations

 “Koenig”/Argument-Dependent Lookup (ADL)

 Static friend functions

 Template functions + Overloading

 Author Mandated
 Traits/Policy/Agent templates

17

CLASS TEMPLATES + SPECIALIZATION

 Uses a class template

 User then (partially) specializes a class for this template

 Case studies: sol2, std::hash
 Base template, user specialized templates

 Using this class:

struct two_things {
int a;
bool b;

};

18

SOL2 AND STD::HASH

case studies in class template specializations

19

SOL::STACK::GETTER<T, C>

// sol.hpp, sol2

namespace sol { namespace stack {

template <typename T, typename C = void>
struct getter {

static T get(lua_State*, int, record&) {
/* default implementation here */

}
};

}} // namespace sol::stack

20

FULL SPECIALIZATION

// user.cpp

namespace sol { namespace stack {

template <>
struct getter<two_things> {

static two_things get(lua_State*, int, record&) {
/* user code here */

}
};

}} // namespace sol::stack

21

PARTIAL SPECIALIZATION

namespace sol { namespace stack {

template <typename T>
struct getter<T, std::enable_if_t<std::is_arithmetic_v<T>>> {

static T get(lua_State*, int, record&) {
/* implementation for all numerics */

}
};

} // namespace sol::stack

22

DRAWBACK: MUTUAL EXCLUSION

 Fail to separate base implementation versus user implementation
 All user customization points must occupy the same finite code space

 All full and partial specializations must not collide (mutual exclusion principle)

 Bad design in sol2 led to a few annoying collisions/fighting with user
specializations

💥 ✔️✔️

23

DRAWBACK: SPECIALIZATION COLLISIONS

namespace sol { namespace stack {

template <typename T>

struct getter<T, std*:enable_if_t<std*:is_integral_v<T**> {

*/ ^ ERROR: ambiguous specialization

static T get(lua_State*, int, record&) {

** implementation for integers */

}

};

} */ namespace sol*:stack

24

DRAWBACK: SPECIALIZATION COLLISIONS

namespace sol { namespace stack {

template *>

struct getter<std*:string> {

*/ ^ ERROR: multiple matches (sol2 has one already)

static std*:string get(lua_State*, int, record&) {

** implementation for std*:string */

}

};

} */ namespace sol*:stack

25

DRAWBACK: SPECIALIZATION COLLISIONS 💥

template <typename T>
struct custom_point<T,

std*:enable_if_t<
has_begin_end_v<T>

>
>
{

**… */
};

template <typename T>
struct custom_point<

my_vector<T>
>
{

/*… */
};

lib.hpp
user.hpp

E
R
R
O
R

26

DRAWBACK: VISIBILITY AND DEFAULTS 👀

 Is the class template specialization…
 visible in all possible translation units where it may be used?

 body dependent on macros that are not defined for the entire build (and its
dependencies?)

 Silent ODR violation that compiles, links and runs on all known compilers.
 Problematic with all compile-time extension points where default is not a noisy error

📦 Specialization must be tightly packaged with class when used!

 https://thephd.github.io/oh-dear-odr-trap

27

https://thephd.github.io/oh-dear-odr-trap

VISIBILITY AND DEFAULTS FIX?

 Undefined base template instantiation
 Errors users when nothing matches with (cryptic) “there is no defined class here”

 Impossible when you have a default implementation!

template <typename T>
struct my_customization_point; // undefined base

28

FIX: SLIGHTLY BETTER

 Define base template, but static assert to give better error than compiler
 Still impossible when you have a default implementation!

template <typename T>
struct my_customization_point {

static_assert(always_false<T>*:value,
“no customization point was picked up; ”
“please define one or check your code!”);

};

29

DRAWBACK: EXTRA TEMPLATE ARGS

 Extra template argument is needed on every extension point for SFINAE traits to
be applied

 SFINAE is messy
 decltype() and is_detected SFINAE slightly less ugly than std::enable_if_t

 introduces mutual exclusion principle problems

template <typename T>
struct custom_point<T, /* SFINAE here */> {

/* … */
};

30

QUICK C++20 FIX: CONCEPTS

 Concepts allow for simpler partial specialization and remove SFINAE parameter

template <ContainerLike T> */ concept-constrained
struct custom_point<T> {

** … */
};

31

DRAWBACK: “ARCANE” KNOWLEDGE 🧙

 “The code isn’t working”
 navigating the syntax and rules of template instantiations means glazed over looks and

general confusion

 when providing support, usually teach user about partial template specialization (or just
give them an example)

 Typical C++ users just want to write simple code
 Classes (with or without static functions): ✔️

 Functions (exported, inline, etc.): ✔️

 Templates (rules of ODR, visibility of specialization at time of use, etc.): ❌

32

DRAWBACK: HEADER BLOAT 🎈

 Header contamination becomes a real problem to avoid ODR issues
 entirety of sol2 comes along for the ride

 produces longer build times
 avoided with careful forward declaration of every required template and class

 unfortunately, the standard itself does not provide forward-declaring headers

 “modules will solve it?” – unfortunately, little tangible evidence I can personally provide

33

STD::HASH<T>

 Employs same struct specialization technique, but
 is substantially simpler

 has only one template argument

 Well-used, so this simple case has become idiomatic
 lack of pre-C++20 SFINAE makes it easier to teach

👨🏽🏫

34

STD::HASH<T> EXAMPLE

namespace std {

template*>
struct hash<two_things> {

size_t operator()(const two_things& tt) const noexcept {
auto h1(std*:hash<int>{}(tt.a));
auto h2(std*:hash<bool>{}(tt.b));
return my_hash_mix(h1, h2); */ boost*:hash_combine

}
};

} */ namespace std

35

BENEFITS AND DRAWBACKS

 Good: avoids arcane knowledge requirements by
 being extraordinarily simple (write a function call operator)

 not having a SFINAE parameter (avoids mutual exclusion)

 Bad: takes core specializations away from user
 Pre-defined for enum types, integral types, etc.

 No opt-out or overriding of those defaults

 Same visibility / header contamination issues
 <functional> comes along for the ride 🐪, no forward declarations!

36

C++20 CONCEPTS: DRAWBACK?! 🤯

 Previously non-constrainable generic templates like std::hash are now…
constrainable?!

37

namespace std {

template <Conceptified T>
struct hash<T> {

size_t operator()(const T&) const noexcept {

** what have we done…? */

}
};

} */ namespace std

FREQUENT LIBRARY VENDOR COMPLAINT

 “They are opening up namespace std / my namespace 💢!”
 paper to solve this presented in Rapperswil, Switzerland, 2018; p0665

 allows a user to specialize outside classes in the namespace where the class is defined

 Library vendors are hyper-sensitive to users opening up namespace std
 people have done all sorts of interesting things in their code bases

 required all large stdlib implementations to employ *_ugly _Identifiers for realsies

38

https://wg21.link/p0665

(TEMPLATE) FUNCTIONS

Friendship and Overloading and ADL, oh my!

39

(TEMPLATE) FUNCTION OVERLOADING

 Step into the namespace of the function and add a similar name
 does not depend on Name Lookup to “find” the function in associated namespaces

 Usually explicitly blessed by library author as “possible”
 old usage: viable way to customize std*:swap

 Case study
 Boost.Serialization

40

ADDING OVERLOAD INTO
BOOST.SERIALIZATION:

namespace boost { namespace serialization {

template <class Archive>
void serialize(Archive& ar, two_things& tt, unsigned int version) {

ar & tt.a;
ar & tt.b;

}

}} */ namespace boost*:serialization

41

OVERLOADING: BENEFITS AND
DRAWBACKS

 Direct additions to namespace separate extension point from target
 benefit: if optional and not required, user can move customization function to

independent header / implementation files

 drawback: if required and not optional, then separation may not be desired and causes
boilerplate/errors (“I forgot to include the special header for serialization”)

 Same complaint from library vendors
 opening up other namespaces 💢!

 potential for name collisions and similar

42

INCREASING ENCAPSULATION: FRIEND

struct two_things {
private:

friend class boost*:serialization*:access;

template <class Archive>
void serialize(Archive& ar, unsigned int version) {

ar & a;
ar & b;

}

public:

int a;
bool b;

};

43

FRIEND: BENEFITS AND DRAWBACKS

 Tight coupling!
 benefit: if required, desirable to make it inseparable

 drawback: compilation times for demanding Boost.serialization come along with the
main header

 Makes library vendors happy
 Titus Winters and the abseil team are smiling down at us (https://abseil.io/tips/99)

44

https://abseil.io/tips/99

ARGUMENT-DEPENDENT LOOKUP 👾

 Complicated set of rules

 Rely on namespaces of arguments to add additional symbols to unqualified calls
 primary intentional use: “generic” (templated) code to work with arbitrary types

 primary unintentional use: operators to “just find the right call” for
a == b

 Case studies:
 std::swap (the wrong way)

 std::ranges / range-v3 (the right way)

45

ARGUMENT-DEPENDENT LOOKUP: SWAP

 swap(a, b) // invokes ADL because call name is unqualified
 looks in the namespace of a and b, as well as the current scope’s namespace

 likely a bug in generic algorithm if written outside std/a or b are not std

 std::swap(a, b) // does not invoke ADL because call name is qualified
 looks only in namespace std

 likely a bug if used in a generic algorithm

 Proper way:
using std*:swap;
swap(a, b);

46

“STD SWAP TWO-STEP”: VERBOSITY IS
FAILURE

“The problem with the Two-Step is that it forces users to type more to do the right
thing. FAIL. Most damning, it requires users to either blindly memorize and
regurgitate the Two-Step pattern, or worse: understand two-phase name lookup in
templates.”

– Eric Niebler, October 2014, http://ericniebler.com/2014/10/21/customization-
point-design-in-c11-and-beyond/

47

http://ericniebler.com/2014/10/21/customization-point-design-in-c11-and-beyond/

ARGUMENT DEPENDENT LOOKUP:
RANGE-V3

 Create a callable function object which does the two-step with an internal detail
namespace’s swap
 Invokes ADL but prevents qualified call to ns*:swap(a, b) being a bug

 ADL is done “for you”: function object takes care of it

48

ADL DONE RIGHT™

namespace std { namespace detail {

template <Swappable A, Swappable B> */ important!

void swap (A& a, B& b) { ** default implementation */ }

struct swap_func {

template <Swappable A, Swappable B>

void operator()(A& a, B& b) const noexcept {

swap(a, b); */ default swap already in scope

};
};

}} */ namespace std*:detail
49

ADL DONE RIGHT™

 Create a constexpr object of the proper name sitting in the namespace

namespace std {

/ C+17: inline variables clue compiler in to avoid ODR
inline constexpr const auto swap = detail*:swap_func{};

} */ namespace std

50

ADL DONE RIGHT™ (C++14 AND BELOW)

 Create a constexpr object of the proper name sitting in the namespace
 C++17: inline constexpr to avoid ODR issues, rather than *_static_const trick

namespace std {

*/ older standards:
template <typename T>
struct *_static_const { static constexpr T value{}; }

template <typename T>
constexpr *_static_const<T>*:value;

constexpr const auto& swap = *_static_const<detail*:swap_func>*:value;

} */ namespace std
51

ADL DONE RIGHT™: VERY SIMPLE

struct two_things {

int a;

bool b;

// just this

friend void swap (two_things& left, two_things& right);

};

52

WAIT, IS THAT A FRIEND FUNCTION?

 Friend functions contain a few encapsulation benefits and help avoid name
collisions

 friend functions are the same as free functions, but:
 hidden from qualified (my_namespace*:func_name) calls due to being inside the class

 Findable (only) by calls which invoke ADL

53

FRIEND FUNCTIONS CASE STUDY: ABSEIL

 Abseil uses this extensively for its customization points
 in particular, AbslHashValue

struct Circle {

template <typename H>
friend H AbslHashValue(H h, const Circle& c) {

return H*:combine(std*:move(h), c.center_, c.radius_);
}

private:
std*:pair<int, int> center_;
int radius_;

};

54

BENEFITS: ADL DONE RIGHT™

 No Two-Step;
 no subtle missed bugs in generic code

 no inconsistency in “always qualify your calls”

 Customization point writer gets there “first”

 impose initial base-level concepts on the type

 Allows user to define swap in namespace next to class / as friend function
 just a function: easy to write and read

55

DRAWBACK: OVERLOADING CATCH-ALLS

 Base implementation provided by author must SFINAE away or it will catch all
calls and hard-error everything
 must use decltypeSFINAE, concept, trailing return type with decltype or
std*:enable_if_t

 Users may not properly constrain their overloads and write catch-alls
 If users write a “generic” catch-all and do not properly constrain, the extension point is

ruined for everyone

56

DRAWBACK: HIGH COLLISIONS

 Does your function take perfect forwarding references?
 prepare to cry: overloads in the same space may consume more calls than intended

 worse: they might even unintentionally work but do the non-performant / wrong thing!

namespace std {

template <class Pointer, class Smart, class**. Args>
auto out_ptr(Smart& s, Args*&**. args) noexcept;

} */ namespace std

57

DRAWBACK: HIGH COLLISIONS

 Basically working with a black hole
 Avoid ADL for variadic forwarding functions: not a good time

namespace std {

template <class Pointer, class Smart, class**. Args>
auto out_ptr(Smart& s, Args*&**. args) noexcept;

} */ namespace std

58

MUST CONSTRAIN
BASE IMPLEMENTATION!

namespace std { namespace detail {

template <typename A, typename B>

void swap (A& a, B& b) -> decltype(a.swap(b)) { /* … */ }

template <Swappable A, Swappable B>

void swap (A& a, B& b) { /* … */ }

// and more…

}} // namespace std::detail
59

BUT EVERYONE WILL
PROPERLY CONSTRAIN!

And other lies I told myself after I read Eric’s blog post…

60

NO.

 They will not constrain it.

 They will not use
“only concrete types”.

 The world is not full
of only experts.

61

ADL DONE… RIGHT™?

 “The Best Anyone Could Have Done With The Tools At Hand.”

 range-v3 niebloids (begin, end, iter_move, dereference, etc.) contain no opt-out
mechanism
 does not prevent the ADL problem for unintentionally bad actors

 makes it even more apparent when it does happen

 cannot call “just the basic {begin/end/swap}” because it exists in an implementation-
defined detail namespace now

62

ADL AND OVERLOADING: BIGGER
PROBLEMS

 Functions can catch unintended calls
 even if they are not templated

 consider void* pointer conversions, derived -> base conversions, and more

 Results in a huge problems for ADL and overloading
 unintended “catches” of base types and other things a user would find surprising

 Case study: sol3

63

ADL EXTENSION POINTS

 Associated extension points (not named the same!)
 sol*:stack*:get a value maps to sol_lua_get

 sol*:stack*:check a type maps to sol_lua_check

 sol*:stack*:push maps to sol_lua_push

int sol_lua_push(sol::types<two_things>, lua_State* L,
const two_things& things);

two_things sol_lua_get(sol::types<two_things>, lua_State* L,
int index, sol::stack::record& tracking)

template <typename Handler>
bool sol_lua_check(sol::types<two_things>, lua_State* L,

int index, Handler&& handler, sol::stack::record& tracking)

64

“DID YOU CUSTOMIZE THIS”:
TYPE TRAIT IMPLEMENTATION

template <typename**. Args>

using adl_sol_lua_push_test_t = decltype(sol_lua_push(

static_cast<lua_State*>(nullptr), std*:declval<Args>()**.

));

template <typename**. Args>

inline constexpr bool is_adl_sol_lua_push_v =

is_detected_v<adl_sol_lua_push_test_t, Args**.>;

65

SOL3: ADL EXTENSION POINT FUNCTION
CALL

template <typename T, typename... Args>

int push(lua_State* L, T&& t, Args&&... args) {

if constexpr (is_adl_sol_lua_push_v<T, Args...>) {

return sol_lua_push(...);

}

else {

/* hit default if constexpr internals */

}

}

66

SOL3: AN EXAMPLE OF OLD PROBLEMS

 Why type tags?
 To solve conversion problems; for example, pointer conversion rules

int sol_lua_push(lua_State* L, void* vp);

struct unrelated {};

int main (int, char*[]) {
sol*:state lua{};
unrelated obj{};
unrelated* some_pointer = &obj;
*/ calls the above, not the default!
sol*:stack*:push(lua, some_pointer);
return 0;

}

67

DRAWBACKS: ADL AND OVERLOADS

 Must guard against conversions
 can develop smarter and more complicated traits

 prefer a type tag if the space of the ADL is unconstrained

 Have templated functions that take multiple perfect-forwarding arguments?
 just do not bother here; overload resolution will drive users crazy

68

TRAITS TYPES

Injecting compile-time extensions into the type system

69

TRAITS/POLICIES/AGENTS:
TEMPLATED CLASSES

 Deployed for classes which need customizability
 std*:basic_string<CharType, TraitsType>
 std*:basic_ostream<CharType, TraitsType>
 std*:vector<T, Allocator>
 std*:map<Key, Value, Predicate, Allocator>
 glm*:mat<Rows, Colums, Type, Precision>
 nlohmann*:basic_json<

MapType, ArrayType, StringType, BoolType,
SignedIntegerType, UnsignedIntegerType, FloatingType,
Allocator, Serializer

>;

70

TRAITS: BAD REPUTATION

 Interfaces for char_traits, allocators, and more from the standard
 early designs using new features in the standard

 not thoroughly vetted

 imbued in things it had
no business being in (IO and friends)

71

TRAITS: LATER ITERATIONS SUCCESSFUL

 std*:map and std*:unordered_map made better use of traits
 Predicate and Hash follow guidelines of std::hash

 Single-responsibility principle for Predicate and Hash

 nlohmann*:json is a templated type with sensible defaults
 just change template parameter details if you do not like them!

72

NLOHMANN::JSON

 Does extensibility for its to_json / from_json calls by default as adl_serializer
 Default serializer is actually really bad: default-constructs object, passes in ref to that

object to fill in

 But… nothing stops you from doing the following:

using json_but_with_good_serializer
= nlohmann*:basic_json<…, good_serializer>;

using json_but_with_optimized_map =
nlohmann*:basic_json<spp*:sparse_hash_map, …>;

73

BENEFITS

 Easier to customize for user’s needs
 “I just need this one behavior in this localized area”

 Follows Chandler’s C++ Principle
 Pretty good performance by default, but then can flip the car hood up and start customizing

things

74

DRAWBACKS

 Change the template, change the type
 cannot interoperate with sibling types by default (unless explicitly programmed in)

 Brittle ABI
 change default template parameters -> change name mangling

 change template name -> any using/typedefs change name mangling

 “Too much customizability”
 Need to resist temptation to repeat mistake of std::char_traits

75

SO… WHICH DO WE USE?

76

🤷♀️ IT DEPENDS 🤷♀️

 Each scenario has benefits and drawbacks
 A bit of guidance for the scenarios

77

STRUCT SPECIALIZATION: BEST FOR
PRECISE MATCHING

 Class SFINAE is some of the most expensive SFINAE one can perform
 second only to non-concept function SFINAE in template arguments

 SFINAE done on the return type of a function is faster

 if constexpr is fastest

 Template matching is very precise and does not do even basic conversions
 less flexible than overload conversions

 must define template for base class, first derived, second derived, etc. even if they are
all do the same thing

 Guidance: use for precise matching, internal details, no conversions

78

ADL: BETTER FOR STATELESS
CONSISTENCY

 “pick up and play” feeling
 works from anywhere, obeys the same rules (however complicated)

 better for the library developer space

 sol3 picked ADL extension points for many reasons
 user had to be able to be consistent across translation units

 harder to have fixed ABI with trait-based state classes

 sol::state / sol::state_view can work with underlying VM from anywhere

 better for handling type-deficient Lua and C coding environment (interop)

📞 ⚡

79

ADL: STATELESS AND OLD CODE

 Guidance: use niebloids (range-v3) style...
 when you know user does not need access to base implementation

 when you are confident user will not do things to step on base implementation’s toes

 when you want to make sure someone can pass the functions to higher order functions

 Guidance: use sol3 separate-named-function style…
 when getting to the default behavior in a well-defined way matters

 when users are likely to define a large set of customizations

 when users will be working with types they do not own often

📞 ⚡

80

TRAITS: BETTER FOR MULTITHREADED
ENVIRONMENTS

 For when user has more control over the system and does not have to work in
existing code
 each class can have highly customized behavior specific to needs

 avoids needing to share a single global universe of overload resolution / ADL space with
others

 great for application space

 great for environments that are already type-rich / generic (C++)

 Can deploy one trait class in one area, another in a separate area
 avoids ODR at the cost of having more types

 highly-tailored needs

81

FUTURE TALKS?

 Fully Runtime Extension Points for C++ Applications
 Unassisted Runtime DLL Loading

 LoadLibrary + GetProcAddress / dlopen + dlsym

 Hooking

 mhook / LD_PRELOAD

 Hot Reloading

 Debug Gap Placements to compile new code into

 Visual C++ debug compilation

 “Versioning” for the purposes of loading/calling code
 ABI restrictions and friends

82

FUTURE TALKS?

 “The Future of Customization Points in C++23: Customization Point Functions”
 Matt Calabrese’s p1292: https://wg21.link/p1292

 He didn’t sign up to do this talk, but he is introducing a paper which makes
customization points easy to write, read and reason about

 I think it would be a cool talk.
 Hint hint.

 Wink wink.

 Nudge nudge.

83

https://wg21.link/p1292

FUTURE TALKS?

 “The Future of Customization Points in C++23: Customization Point Functions”
 Matt Calabrese’s p1292: https://wg21.link/p1292

 He didn’t sign up to do this talk, but he is introducing a paper which makes
customization points easy to write, read and reason about

 I think it would be a cool talk.
 Hint hint.

 Wink wink.

 Nudge nudge.

Hey Matt do the talk.

84

https://wg21.link/p1292

THANK YOU !

 Eric Feselier, Titus Winters
 Challenged me to research generic

extension mechanisms for std::out_ptr (p1132)

 Isabella Muerte
 “Tell them an ADL customization point is insane”

(she was right; overloading concerns were insane)

 Lounge<C++>, include<C++>

85

https://thephd.github.io/vendor/future_cxx/papers/d1132.html

QUESTIONS?

86

@thephantomderp
https://twitter.com/thephantomderp

Patreon - thephd
https://www.patreon.com/thephd

The Pasture
https://thephd.github.io

LinkedIn - thephd
https://www.linkedin.com/in/thephd

https://thephd.github.io/
https://www.patreon.com/thephd
https://thephd.github.io/
https://www.linkedin.com/in/thephd

