// sol3 // The MIT License (MIT) // Copyright (c) 2013-2020 Rapptz, ThePhD and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_STACK_PUSH_HPP #define SOL_STACK_PUSH_HPP #include #include #include #include #include #include #include #include #include #include #include #include #if SOL_IS_ON(SOL_STD_VARIANT_I_) #include #endif // Can use variant namespace sol { namespace stack { namespace stack_detail { template inline bool integer_value_fits(const T& value) { if constexpr (sizeof(T) < sizeof(lua_Integer) || (std::is_signed_v && sizeof(T) == sizeof(lua_Integer))) { (void)value; return true; } else { auto u_min = static_cast((std::numeric_limits::min)()); auto u_max = static_cast((std::numeric_limits::max)()); auto t_min = static_cast((std::numeric_limits::min)()); auto t_max = static_cast((std::numeric_limits::max)()); return (u_min <= t_min || value >= static_cast(u_min)) && (u_max >= t_max || value <= static_cast(u_max)); } } template int msvc_is_ass_with_if_constexpr_push_enum(std::true_type, lua_State* L, const T& value) { if constexpr (meta::any_same_v, char /*, char8_t*/, char16_t, char32_t>) { if constexpr (std::is_signed_v) { return stack::push(L, static_cast(value)); } else { return stack::push(L, static_cast(value)); } } else { return stack::push(L, static_cast>(value)); } } template int msvc_is_ass_with_if_constexpr_push_enum(std::false_type, lua_State*, const T&) { return 0; } } // namespace stack_detail inline int push_environment_of(lua_State* L, int index = -1) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_environment); #endif // make sure stack doesn't overflow #if SOL_LUA_VESION_I_ < 502 // Use lua_getfenv lua_getfenv(L, index); #else // Use upvalues as explained in Lua 5.2 and beyond's manual if (lua_getupvalue(L, index, 1) == nullptr) { push(L, lua_nil); return 1; } #endif return 1; } template int push_environment_of(const T& target) { target.push(); return push_environment_of(target.lua_state(), -1) + 1; } template struct unqualified_pusher> { template static int push_fx(lua_State* L, F&& f, Args&&... args) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); #endif // make sure stack doesn't overflow // Basically, we store all user-data like this: // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new // data in the first sizeof(T*) bytes, and then however many bytes it takes to // do the actual object. Things that are std::ref or plain T* are stored as // just the sizeof(T*), and nothing else. T* obj = detail::usertype_allocate(L); f(); std::allocator alloc {}; std::allocator_traits>::construct(alloc, obj, std::forward(args)...); return 1; } template static int push_keyed(lua_State* L, K&& k, Args&&... args) { stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on); return push_fx(L, fx, std::forward(args)...); } template static int push(lua_State* L, Arg&& arg, Args&&... args) { if constexpr (std::is_same_v, detail::with_function_tag>) { (void)arg; return push_fx(L, std::forward(args)...); } else { return push_keyed(L, usertype_traits::metatable(), std::forward(arg), std::forward(args)...); } } static int push(lua_State* L) { return push_keyed(L, usertype_traits::metatable()); } }; template struct unqualified_pusher> { typedef meta::unqualified_t U; template static int push_fx(lua_State* L, F&& f, T* obj) { if (obj == nullptr) return stack::push(L, lua_nil); #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); #endif // make sure stack doesn't overflow T** pref = detail::usertype_allocate_pointer(L); f(); *pref = obj; return 1; } template static int push_keyed(lua_State* L, K&& k, T* obj) { stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on); return push_fx(L, fx, obj); } template static int push(lua_State* L, Arg&& arg, Args&&... args) { if constexpr (std::is_same_v, detail::with_function_tag>) { (void)arg; return push_fx(L, std::forward(args)...); } else { return push_keyed(L, usertype_traits::metatable(), std::forward(arg), std::forward(args)...); } } }; template <> struct unqualified_pusher { template static int push(lua_State* L, T&& obj) { return stack::push(L, detail::ptr(obj)); } }; namespace stack_detail { template struct uu_pusher { using u_traits = unique_usertype_traits; using P = typename u_traits::type; using Real = typename u_traits::actual_type; template static int push(lua_State* L, Arg&& arg, Args&&... args) { if constexpr (std::is_base_of_v>) { if (u_traits::is_null(arg)) { return stack::push(L, lua_nil); } return push_deep(L, std::forward(arg), std::forward(args)...); } else { return push_deep(L, std::forward(arg), std::forward(args)...); } } template static int push_deep(lua_State* L, Args&&... args) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); #endif // make sure stack doesn't overflow P** pref = nullptr; detail::unique_destructor* fx = nullptr; detail::unique_tag* id = nullptr; Real* mem = detail::usertype_unique_allocate(L, pref, fx, id); if (luaL_newmetatable(L, &usertype_traits>>::metatable()[0]) == 1) { detail::lua_reg_table l {}; int index = 0; detail::indexed_insert insert_fx(l, index); detail::insert_default_registrations

(insert_fx, detail::property_always_true); l[index] = { to_string(meta_function::garbage_collect).c_str(), detail::make_destructor() }; luaL_setfuncs(L, l, 0); } lua_setmetatable(L, -2); *fx = detail::usertype_unique_alloc_destroy; *id = &detail::inheritance

::template type_unique_cast; detail::default_construct::construct(mem, std::forward(args)...); *pref = unique_usertype_traits::get(*mem); return 1; } }; } // namespace stack_detail template struct unqualified_pusher> { template static int push(lua_State* L, Args&&... args) { stack_detail::uu_pusher p; (void)p; return p.push(L, std::forward(args)...); } }; template struct unqualified_pusher { template static int push(lua_State* L, Args&&... args) { using Tu = meta::unqualified_t; if constexpr (is_lua_reference_v) { using int_arr = int[]; int_arr p { (std::forward(args).push(L))... }; return p[0]; } else if constexpr (std::is_same_v) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushboolean(L, std::forward(args)...); return 1; } else if constexpr (std::is_integral_v || std::is_same_v) { const Tu& value(std::forward(args)...); #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_integral); #endif // make sure stack doesn't overflow #if SOL_LUA_VESION_I_ >= 503 if (stack_detail::integer_value_fits(value)) { lua_pushinteger(L, static_cast(value)); return 1; } #endif // Lua 5.3 and above #if SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_) if (static_cast(llround(static_cast(value))) != value) { #if SOL_IS_OFF(SOL_EXCEPTIONS_I_) // Is this really worth it? assert(false && "integer value will be misrepresented in lua"); lua_pushinteger(L, static_cast(value)); return 1; #else throw error(detail::direct_error, "integer value will be misrepresented in lua"); #endif // No Exceptions } #endif // Safe Numerics and Number Precision Check lua_pushnumber(L, static_cast(value)); return 1; } else if constexpr (std::is_floating_point_v || std::is_same_v) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_floating); #endif // make sure stack doesn't overflow lua_pushnumber(L, std::forward(args)...); return 1; } else if constexpr (std::is_same_v) { luaL_Stream* source { std::forward(args)... }; luaL_Stream* stream = static_cast(detail::alloc_newuserdata(L, sizeof(luaL_Stream))); stream->f = source->f; #if SOL_IS_ON(SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_) stream->closef = source->closef; #endif // LuaJIT and Lua 5.1 and below do not have return 1; } else if constexpr (std::is_same_v) { luaL_Stream& source(std::forward(args)...); luaL_Stream* stream = static_cast(detail::alloc_newuserdata(L, sizeof(luaL_Stream))); stream->f = source.f; #if SOL_IS_ON(SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_) stream->closef = source.closef; #endif // LuaJIT and Lua 5.1 and below do not have return 1; } else if constexpr (std::is_enum_v) { return stack_detail::msvc_is_ass_with_if_constexpr_push_enum(std::true_type(), L, std::forward(args)...); } else if constexpr (std::is_pointer_v) { return stack::push>>(L, std::forward(args)...); } else if constexpr (is_unique_usertype_v) { return stack::push>(L, std::forward(args)...); } else { return stack::push>(L, std::forward(args)...); } } }; template struct unqualified_pusher> { static int push(lua_State* L, const std::reference_wrapper& t) { return stack::push(L, std::addressof(detail::deref(t.get()))); } }; template struct unqualified_pusher> { using has_kvp = meta::has_key_value_pair>>; static int push(lua_State* L, const T& tablecont) { return push(has_kvp(), std::false_type(), L, tablecont); } static int push(lua_State* L, const T& tablecont, nested_tag_t) { return push(has_kvp(), std::true_type(), L, tablecont); } static int push(std::true_type, lua_State* L, const T& tablecont) { return push(has_kvp(), std::true_type(), L, tablecont); } static int push(std::false_type, lua_State* L, const T& tablecont) { return push(has_kvp(), std::false_type(), L, tablecont); } template static int push(std::true_type, std::integral_constant, lua_State* L, const T& tablecont) { auto& cont = detail::deref(detail::unwrap(tablecont)); lua_createtable(L, static_cast(cont.size()), 0); int tableindex = lua_gettop(L); for (const auto& pair : cont) { if (is_nested) { set_field(L, pair.first, as_nested_ref(pair.second), tableindex); } else { set_field(L, pair.first, pair.second, tableindex); } } return 1; } template static int push(std::false_type, std::integral_constant, lua_State* L, const T& tablecont) { auto& cont = detail::deref(detail::unwrap(tablecont)); lua_createtable(L, stack_detail::get_size_hint(cont), 0); int tableindex = lua_gettop(L); std::size_t index = 1; for (const auto& i : cont) { #if SOL_LUA_VESION_I_ >= 503 int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i); for (int pi = 0; pi < p; ++pi) { lua_seti(L, tableindex, static_cast(index++)); } #else #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushinteger(L, static_cast(index)); int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i); if (p == 1) { ++index; lua_settable(L, tableindex); } else { int firstindex = tableindex + 1 + 1; for (int pi = 0; pi < p; ++pi) { stack::push(L, index); #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushvalue(L, firstindex); lua_settable(L, tableindex); ++index; ++firstindex; } lua_pop(L, 1 + p); } #endif // Lua Version 5.3 and others } // TODO: figure out a better way to do this...? // set_field(L, -1, cont.size()); return 1; } }; template struct unqualified_pusher> { static int push(lua_State* L, const as_table_t& value_) { using inner_t = std::remove_pointer_t>; if constexpr (is_container_v) { return stack::push>(L, value_.value()); } else { return stack::push(L, value_.value()); } } static int push(lua_State* L, const T& value_) { using inner_t = std::remove_pointer_t>; if constexpr (is_container_v) { return stack::push>(L, value_); } else { return stack::push(L, value_); } } }; template struct unqualified_pusher> { static int push(lua_State* L, const T& nested_value) noexcept { using Tu = meta::unwrap_unqualified_t; using inner_t = std::remove_pointer_t; if constexpr (is_container_v) { return stack::push>(L, nested_value, nested_tag); } else { return stack::push(L, nested_value); } } static int push(lua_State* L, const nested& nested_wrapper_) noexcept { using Tu = meta::unwrap_unqualified_t; using inner_t = std::remove_pointer_t; if constexpr (is_container_v) { return stack::push>(L, nested_wrapper_.value(), nested_tag); } else { return stack::push(L, nested_wrapper_.value()); } } }; template struct unqualified_pusher> { static int push(lua_State* L, const std::initializer_list& il) noexcept { unqualified_pusher>> p {}; // silence annoying VC++ warning (void)p; return p.push(L, il); } }; template <> struct unqualified_pusher { static int push(lua_State* L, lua_nil_t) noexcept { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushnil(L); return 1; } }; template <> struct unqualified_pusher { static int push(lua_State*, stack_count st) noexcept { return st.count; } }; template <> struct unqualified_pusher { static int push(lua_State* L, metatable_key_t) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlstring(L, to_string(meta_function::metatable).c_str(), 4); return 1; } }; template <> struct unqualified_pusher> { static int push(lua_State* L, lua_CFunction func, int n = 0) noexcept { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushcclosure(L, func, n); return 1; } }; template <> struct unqualified_pusher { static int push(lua_State* L, lua_CFunction func, int n = 0) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushcclosure(L, func, n); return 1; } }; #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_) template <> struct unqualified_pusher> { static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushcclosure(L, func, n); return 1; } }; template <> struct unqualified_pusher { static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushcclosure(L, func, n); return 1; } }; #endif // noexcept function type template <> struct unqualified_pusher { static int push(lua_State* L, c_closure cc) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushcclosure(L, cc.c_function, cc.upvalues); return 1; } }; template struct unqualified_pusher> { template static int push(std::index_sequence, lua_State* L, T&& c) { using f_tuple = decltype(std::forward(c).upvalues); int pushcount = multi_push(L, std::get(std::forward(std::forward(c).upvalues))...); return stack::push(L, c_closure(c.c_function, pushcount)); } template static int push(lua_State* L, T&& c) { return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward(c)); } }; template <> struct unqualified_pusher { static int push(lua_State* L, void* userdata) noexcept { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlightuserdata(L, userdata); return 1; } }; template <> struct unqualified_pusher { static int push(lua_State* L, const void* userdata) noexcept { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlightuserdata(L, const_cast(userdata)); return 1; } }; template <> struct unqualified_pusher { static int push(lua_State* L, lightuserdata_value userdata) noexcept { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlightuserdata(L, userdata); return 1; } }; template struct unqualified_pusher> { static int push(lua_State* L, light l) noexcept { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlightuserdata(L, static_cast(l.value)); return 1; } }; template struct unqualified_pusher> { template static int push_with(lua_State* L, Key&& name, Args&&... args) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); #endif // make sure stack doesn't overflow // A dumb pusher T* data = detail::user_allocate(L); if (with_meta) { // Make sure we have a plain GC set for this data #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow if (luaL_newmetatable(L, name) != 0) { lua_CFunction cdel = detail::user_alloc_destruct; lua_pushcclosure(L, cdel, 0); lua_setfield(L, -2, "__gc"); } lua_setmetatable(L, -2); } std::allocator alloc {}; std::allocator_traits>::construct(alloc, data, std::forward(args)...); return 1; } template static int push(lua_State* L, Arg&& arg, Args&&... args) { if constexpr (std::is_same_v, metatable_key_t>) { const auto name = &arg[0]; return push_with(L, name, std::forward(args)...); } else if constexpr (std::is_same_v, no_metatable_t>) { (void)arg; const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, std::forward(args)...); } else { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, std::forward(arg), std::forward(args)...); } } static int push(lua_State* L, const user& u) { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, u.value); } static int push(lua_State* L, user&& u) { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, std::move(u.value())); } static int push(lua_State* L, no_metatable_t, const user& u) { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, u.value()); } static int push(lua_State* L, no_metatable_t, user&& u) { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, std::move(u.value())); } }; template <> struct unqualified_pusher { static int push(lua_State* L, userdata_value data) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); #endif // make sure stack doesn't overflow void** ud = detail::usertype_allocate_pointer(L); *ud = data.value(); return 1; } }; template <> struct unqualified_pusher { static int push_sized(lua_State* L, const char* str, std::size_t len) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow lua_pushlstring(L, str, len); return 1; } static int push(lua_State* L, const char* str) { if (str == nullptr) return stack::push(L, lua_nil); return push_sized(L, str, std::char_traits::length(str)); } static int push(lua_State* L, const char* strb, const char* stre) { return push_sized(L, strb, static_cast(stre - strb)); } static int push(lua_State* L, const char* str, std::size_t len) { return push_sized(L, str, len); } }; template <> struct unqualified_pusher { static int push_sized(lua_State* L, const char* str, std::size_t len) { unqualified_pusher p {}; (void)p; return p.push_sized(L, str, len); } static int push(lua_State* L, const char* str) { unqualified_pusher p {}; (void)p; return p.push(L, str); } static int push(lua_State* L, const char* strb, const char* stre) { unqualified_pusher p {}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const char* str, std::size_t len) { unqualified_pusher p {}; (void)p; return p.push(L, str, len); } }; template struct unqualified_pusher { static int push(lua_State* L, const char (&str)[N]) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow lua_pushlstring(L, str, std::char_traits::length(str)); return 1; } static int push(lua_State* L, const char (&str)[N], std::size_t sz) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow lua_pushlstring(L, str, sz); return 1; } }; template <> struct unqualified_pusher { static int push(lua_State* L, char c) { const char str[2] = { c, '\0' }; return stack::push(L, static_cast(str), 1u); } }; template struct unqualified_pusher> { static int push(lua_State* L, const std::basic_string& str) { if constexpr (!std::is_same_v) { return stack::push(L, str.data(), str.size()); } else { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow lua_pushlstring(L, str.c_str(), str.size()); return 1; } } static int push(lua_State* L, const std::basic_string& str, std::size_t sz) { if constexpr (!std::is_same_v) { return stack::push(L, str.data(), sz); } else { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow lua_pushlstring(L, str.c_str(), sz); return 1; } } }; template struct unqualified_pusher> { static int push(lua_State* L, const basic_string_view& sv) { return stack::push(L, sv.data(), sv.length()); } static int push(lua_State* L, const basic_string_view& sv, std::size_t n) { return stack::push(L, sv.data(), n); } }; template <> struct unqualified_pusher { static int push(lua_State* L, meta_function m) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_meta_function_name); #endif // make sure stack doesn't overflow const std::string& str = to_string(m); lua_pushlstring(L, str.c_str(), str.size()); return 1; } }; template <> struct unqualified_pusher { static int push(lua_State* L, absolute_index ai) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushvalue(L, ai); return 1; } }; template <> struct unqualified_pusher { static int push(lua_State* L, raw_index ri) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushvalue(L, ri); return 1; } }; template <> struct unqualified_pusher { static int push(lua_State* L, ref_index ri) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_rawgeti(L, LUA_REGISTRYINDEX, ri); return 1; } }; template <> struct unqualified_pusher { static int push(lua_State* L, const wchar_t* wstr) { return push(L, wstr, std::char_traits::length(wstr)); } static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) { return push(L, wstr, wstr + sz); } static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { if constexpr (sizeof(wchar_t) == 2) { const char16_t* sb = reinterpret_cast(strb); const char16_t* se = reinterpret_cast(stre); return stack::push(L, sb, se); } else { const char32_t* sb = reinterpret_cast(strb); const char32_t* se = reinterpret_cast(stre); return stack::push(L, sb, se); } } }; template <> struct unqualified_pusher { static int push(lua_State* L, const wchar_t* str) { unqualified_pusher p {}; (void)p; return p.push(L, str); } static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { unqualified_pusher p {}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const wchar_t* str, std::size_t len) { unqualified_pusher p {}; (void)p; return p.push(L, str, len); } }; template <> struct unqualified_pusher { static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) { char* target = start; char32_t cp = 0; for (const char16_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf16_to_code_point(strtarget, stre); if (dr.error != unicode::error_code::ok) { cp = unicode::unicode_detail::replacement; } else { cp = dr.codepoint; } auto er = unicode::code_point_to_utf8(cp); const char* utf8data = er.code_units.data(); std::memcpy(target, utf8data, er.code_units_size); target += er.code_units_size; strtarget = dr.next; } return stack::push(L, start, target); } static int push(lua_State* L, const char16_t* u16str) { return push(L, u16str, std::char_traits::length(u16str)); } static int push(lua_State* L, const char16_t* u16str, std::size_t sz) { return push(L, u16str, u16str + sz); } static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { char sbo[SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_]; // if our max string space is small enough, use SBO // right off the bat std::size_t max_possible_code_units = static_cast(static_cast(stre - strb) * static_cast(4)); if (max_possible_code_units <= SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) { return convert_into(L, sbo, max_possible_code_units, strb, stre); } // otherwise, we must manually count/check size std::size_t needed_size = 0; for (const char16_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf16_to_code_point(strtarget, stre); auto er = unicode::code_point_to_utf8(dr.codepoint); needed_size += er.code_units_size; strtarget = dr.next; } if (needed_size < SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) { return convert_into(L, sbo, needed_size, strb, stre); } std::string u8str("", 0); u8str.resize(needed_size); char* target = const_cast(u8str.data()); return convert_into(L, target, needed_size, strb, stre); } }; template <> struct unqualified_pusher { static int push(lua_State* L, const char16_t* str) { unqualified_pusher p {}; (void)p; return p.push(L, str); } static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { unqualified_pusher p {}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const char16_t* str, std::size_t len) { unqualified_pusher p {}; (void)p; return p.push(L, str, len); } }; template <> struct unqualified_pusher { static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) { char* target = start; char32_t cp = 0; for (const char32_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf32_to_code_point(strtarget, stre); if (dr.error != unicode::error_code::ok) { cp = unicode::unicode_detail::replacement; } else { cp = dr.codepoint; } auto er = unicode::code_point_to_utf8(cp); const char* data = er.code_units.data(); std::memcpy(target, data, er.code_units_size); target += er.code_units_size; strtarget = dr.next; } return stack::push(L, start, target); } static int push(lua_State* L, const char32_t* u32str) { return push(L, u32str, u32str + std::char_traits::length(u32str)); } static int push(lua_State* L, const char32_t* u32str, std::size_t sz) { return push(L, u32str, u32str + sz); } static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { char sbo[SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_]; // if our max string space is small enough, use SBO // right off the bat std::size_t max_possible_code_units = static_cast(static_cast(stre - strb) * static_cast(4)); if (max_possible_code_units <= SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) { return convert_into(L, sbo, max_possible_code_units, strb, stre); } // otherwise, we must manually count/check size std::size_t needed_size = 0; for (const char32_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf32_to_code_point(strtarget, stre); auto er = unicode::code_point_to_utf8(dr.codepoint); needed_size += er.code_units_size; strtarget = dr.next; } if (needed_size < SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) { return convert_into(L, sbo, needed_size, strb, stre); } std::string u8str("", 0); u8str.resize(needed_size); char* target = const_cast(u8str.data()); return convert_into(L, target, needed_size, strb, stre); } }; template <> struct unqualified_pusher { static int push(lua_State* L, const char32_t* str) { unqualified_pusher p {}; (void)p; return p.push(L, str); } static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { unqualified_pusher p {}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const char32_t* str, std::size_t len) { unqualified_pusher p {}; (void)p; return p.push(L, str, len); } }; template struct unqualified_pusher { static int push(lua_State* L, const wchar_t (&str)[N]) { return push(L, str, std::char_traits::length(str)); } static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) { const wchar_t* str_ptr = static_cast(str); return stack::push(L, str_ptr, str_ptr + sz); } }; template struct unqualified_pusher { static int push(lua_State* L, const char16_t (&str)[N]) { return push(L, str, std::char_traits::length(str)); } static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) { const char16_t* str_ptr = static_cast(str); return stack::push(L, str_ptr, str_ptr + sz); } }; template struct unqualified_pusher { static int push(lua_State* L, const char32_t (&str)[N]) { return push(L, str, std::char_traits::length(str)); } static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) { const char32_t* str_ptr = static_cast(str); return stack::push(L, str_ptr, str_ptr + sz); } }; template <> struct unqualified_pusher { static int push(lua_State* L, wchar_t c) { const wchar_t str[2] = { c, '\0' }; return stack::push(L, static_cast(str), 1u); } }; template <> struct unqualified_pusher { static int push(lua_State* L, char16_t c) { const char16_t str[2] = { c, '\0' }; return stack::push(L, static_cast(str), 1u); } }; template <> struct unqualified_pusher { static int push(lua_State* L, char32_t c) { const char32_t str[2] = { c, '\0' }; return stack::push(L, static_cast(str), 1u); } }; template struct unqualified_pusher> { template static int push(std::index_sequence, lua_State* L, T&& t) { #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_) luaL_checkstack(L, static_cast(sizeof...(I)), detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow int pushcount = 0; (void)detail::swallow { 0, (pushcount += stack::push(L, std::get(std::forward(t))), 0)... }; return pushcount; } template static int push(lua_State* L, T&& t) { return push(std::index_sequence_for(), L, std::forward(t)); } }; template struct unqualified_pusher> { template static int push(lua_State* L, T&& t) { int pushcount = stack::push(L, std::get<0>(std::forward(t))); pushcount += stack::push(L, std::get<1>(std::forward(t))); return pushcount; } }; template struct unqualified_pusher>> { using ValueType = typename meta::unqualified_t::value_type; template static int push(lua_State* L, Optional&& op) { using QualifiedValueType = meta::conditional_t, ValueType&, ValueType&&>; if (!op) { return stack::push(L, nullopt); } return stack::push(L, static_cast(op.value())); } }; template struct unqualified_pusher> { static int push(lua_State* L, const forward_as_value_t& value_) { return stack::push(L, value_.value()); } static int push(lua_State* L, forward_as_value_t&& value_) { return stack::push(L, std::move(value_).value()); } }; template <> struct unqualified_pusher { static int push(lua_State* L, nullopt_t) noexcept { return stack::push(L, lua_nil); } }; template <> struct unqualified_pusher { static int push(lua_State* L, std::nullptr_t) noexcept { return stack::push(L, lua_nil); } }; template <> struct unqualified_pusher { static int push(lua_State*, const this_state&) noexcept { return 0; } }; template <> struct unqualified_pusher { static int push(lua_State*, const this_main_state&) noexcept { return 0; } }; template <> struct unqualified_pusher { static int push(lua_State* L, const new_table& nt) { lua_createtable(L, nt.sequence_hint, nt.map_hint); return 1; } }; template struct unqualified_pusher> { template static int push(lua_State* L, T&& bc, const char* bytecode_name) { const auto first = bc.data(); const auto bcsize = bc.size(); // pushes either the function, or an error // if it errors, shit goes south, and people can test that upstream (void)luaL_loadbuffer( L, reinterpret_cast(first), static_cast(bcsize * (sizeof(*first) / sizeof(const char))), bytecode_name); return 1; } template static int push(lua_State* L, T&& bc) { return push(L, std::forward(bc), "bytecode"); } }; #if SOL_IS_ON(SOL_STD_VARIANT_I_) namespace stack_detail { struct push_function { lua_State* L; push_function(lua_State* L_) noexcept : L(L_) { } template int operator()(T&& value) const { return stack::push(L, std::forward(value)); } }; } // namespace stack_detail template struct unqualified_pusher> { static int push(lua_State* L, const std::variant& v) { return std::visit(stack_detail::push_function(L), v); } static int push(lua_State* L, std::variant&& v) { return std::visit(stack_detail::push_function(L), std::move(v)); } }; #endif // Variant because Clang is terrible }} // namespace sol::stack #endif // SOL_STACK_PUSH_HPP