// The MIT License (MIT) // Copyright (c) 2013-2016 Rapptz, ThePhD and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // This file was generated with a script. // Generated 2016-08-30 22:16:25.077226 UTC // This header was generated with sol v2.12.2 (revision 5093f61) // https://github.com/ThePhD/sol2 #ifndef SOL_SINGLE_INCLUDE_HPP #define SOL_SINGLE_INCLUDE_HPP // beginning of sol/state.hpp // beginning of sol/state_view.hpp // beginning of sol/error.hpp #include #include namespace sol { namespace detail { struct direct_error_tag {}; const auto direct_error = direct_error_tag{}; } // detail class error : public std::runtime_error { private: // Because VC++ is a fuccboi std::string w; public: error(const std::string& str) : error(detail::direct_error, "lua: error: " + str) {} error(detail::direct_error_tag, const std::string& str) : std::runtime_error(""), w(str) {} error(detail::direct_error_tag, std::string&& str) : std::runtime_error(""), w(std::move(str)) {} error(const error& e) = default; error(error&& e) = default; error& operator=(const error& e) = default; error& operator=(error&& e) = default; virtual const char* what() const noexcept override { return w.c_str(); } }; } // sol // end of sol/error.hpp // beginning of sol/table.hpp // beginning of sol/table_core.hpp // beginning of sol/proxy.hpp // beginning of sol/traits.hpp // beginning of sol/tuple.hpp #include #include namespace sol { namespace detail { using swallow = std::initializer_list; } // detail template struct types { typedef std::make_index_sequence indices; static constexpr std::size_t size() { return sizeof...(Args); } }; namespace meta { namespace detail { template struct tuple_types_ { typedef types type; }; template struct tuple_types_> { typedef types type; }; } // detail template using unqualified = std::remove_cv>; template using unqualified_t = typename unqualified::type; template using tuple_types = typename detail::tuple_types_::type; template struct pop_front_type; template using pop_front_type_t = typename pop_front_type::type; template struct pop_front_type> { typedef void front_type; typedef types type; }; template struct pop_front_type> { typedef Arg front_type; typedef types type; }; template using tuple_element = std::tuple_element>; template using tuple_element_t = std::tuple_element_t>; template using unqualified_tuple_element = unqualified>; template using unqualified_tuple_element_t = unqualified_t>; } // meta } // sol // end of sol/tuple.hpp // beginning of sol/bind_traits.hpp namespace sol { namespace meta { namespace meta_detail { template struct check_deducible_signature { struct nat {}; template static auto test(int) -> decltype(&G::operator(), void()); template static auto test(...)->nat; using type = std::is_void(0))>; }; } // meta_detail template struct has_deducible_signature : meta_detail::check_deducible_signature::type { }; namespace meta_detail { template struct void_tuple_element : meta::tuple_element {}; template struct void_tuple_element> { typedef void type; }; template using void_tuple_element_t = typename void_tuple_element::type; template struct basic_traits { private: typedef std::conditional_t::value, int, T>& first_type; public: static const bool is_member_function = std::is_void::value; static const bool has_c_var_arg = has_c_variadic; static const std::size_t arity = sizeof...(Args); static const std::size_t free_arity = sizeof...(Args)+static_cast(!std::is_void::value); typedef types args_list; typedef std::tuple args_tuple; typedef T object_type; typedef R return_type; typedef tuple_types returns_list; typedef R(function_type)(Args...); typedef std::conditional_t::value, args_list, types> free_args_list; typedef std::conditional_t::value, R(Args...), R(first_type, Args...)> free_function_type; typedef std::conditional_t::value, R(*)(Args...), R(*)(first_type, Args...)> free_function_pointer_type; typedef std::remove_pointer_t signature_type; template using arg_at = void_tuple_element_t; }; template::value> struct fx_traits : basic_traits {}; // Free Functions template struct fx_traits : basic_traits { typedef R(*function_pointer_type)(Args...); }; template struct fx_traits : basic_traits { typedef R(*function_pointer_type)(Args...); }; template struct fx_traits : basic_traits { typedef R(*function_pointer_type)(Args..., ...); }; template struct fx_traits : basic_traits { typedef R(*function_pointer_type)(Args..., ...); }; // Member Functions /* C-Style Variadics */ template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args...); }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args..., ...); }; /* Const Volatile */ template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args...) const; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args..., ...) const; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args...) const volatile; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args..., ...) const volatile; }; /* Member Function Qualifiers */ template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args...) &; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args..., ...) &; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args...) const &; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args..., ...) const &; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args...) const volatile &; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args..., ...) const volatile &; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args...) && ; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args..., ...) && ; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args...) const &&; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args..., ...) const &&; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args...) const volatile &&; }; template struct fx_traits : basic_traits { typedef R(T::* function_pointer_type)(Args..., ...) const volatile &&; }; template struct fx_traits : fx_traits::function_type, false> {}; template::value> struct callable_traits : fx_traits> { }; template struct callable_traits { typedef R Arg; typedef T object_type; using signature_type = R(T::*); static const bool is_member_function = false; static const std::size_t arity = 1; static const std::size_t free_arity = 2; typedef std::tuple args_tuple; typedef R return_type; typedef types args_list; typedef types free_args_list; typedef meta::tuple_types returns_list; typedef R(function_type)(T&, R); typedef R(*function_pointer_type)(T&, R); typedef R(*free_function_pointer_type)(T&, R); template using arg_at = void_tuple_element_t; }; } // meta_detail template struct bind_traits : meta_detail::callable_traits {}; template using function_args_t = typename bind_traits::args_list; template using function_signature_t = typename bind_traits::signature_type; template using function_return_t = typename bind_traits::return_type; } // meta } // sol // end of sol/bind_traits.hpp #include #include #include namespace sol { template using index_value = std::integral_constant; namespace meta { template struct identity { typedef T type; }; template using identity_t = typename identity::type; template struct is_tuple : std::false_type { }; template struct is_tuple> : std::true_type { }; template struct unwrapped { typedef T type; }; template struct unwrapped> { typedef T type; }; template using unwrapped_t = typename unwrapped::type; template struct unwrap_unqualified : unwrapped> {}; template using unwrap_unqualified_t = typename unwrap_unqualified::type; template struct remove_member_pointer; template struct remove_member_pointer { typedef R type; }; template struct remove_member_pointer { typedef R type; }; template using remove_member_pointer_t = remove_member_pointer; template class Templ, typename T> struct is_specialization_of : std::false_type { }; template class Templ> struct is_specialization_of> : std::true_type { }; template struct all_same : std::true_type { }; template struct all_same : std::integral_constant ::value && all_same::value> { }; template struct any_same : std::false_type { }; template struct any_same : std::integral_constant ::value || any_same::value> { }; template using invoke_t = typename T::type; template using boolean = std::integral_constant; template using neg = boolean; template using condition = std::conditional_t; template struct all : boolean {}; template struct all : condition, boolean> {}; template struct any : boolean {}; template struct any : condition, any> {}; enum class enable_t { _ }; constexpr const auto enabler = enable_t::_; template using disable_if_t = std::enable_if_t; template using enable = std::enable_if_t::value, enable_t>; template using disable = std::enable_if_t>::value, enable_t>; template using disable_any = std::enable_if_t>::value, enable_t>; template struct find_in_pack_v : boolean { }; template struct find_in_pack_v : any, find_in_pack_v> { }; namespace meta_detail { template struct index_in_pack : std::integral_constant { }; template struct index_in_pack : std::conditional_t::value, std::integral_constant, index_in_pack> { }; } template struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> { }; template struct index_in : meta_detail::index_in_pack<0, T, List> { }; template struct index_in> : meta_detail::index_in_pack<0, T, Args...> { }; template struct at_in_pack {}; template using at_in_pack_t = typename at_in_pack::type; template struct at_in_pack : std::conditional> {}; template struct at_in_pack<0, Arg, Args...> { typedef Arg type; }; namespace meta_detail { template class Pred, typename... Ts> struct count_for_pack : std::integral_constant {}; template class Pred, typename T, typename... Ts> struct count_for_pack : std::conditional_t < sizeof...(Ts) == 0 || Limit < 2, std::integral_constant(Limit != 0 && Pred::value)>, count_for_pack(Pred::value), Pred, Ts...> > { }; template class Pred, typename... Ts> struct count_2_for_pack : std::integral_constant {}; template class Pred, typename T, typename U, typename... Ts> struct count_2_for_pack : std::conditional_t(Pred::value)>, count_2_for_pack(Pred::value), Pred, Ts...> > { }; } // meta_detail template class Pred, typename... Ts> struct count_for_pack : meta_detail::count_for_pack { }; template class Pred, typename List> struct count_for; template class Pred, typename... Args> struct count_for> : count_for_pack {}; template class Pred, typename... Ts> struct count_for_to_pack : meta_detail::count_for_pack { }; template class Pred, typename... Ts> struct count_2_for_pack : meta_detail::count_2_for_pack<0, Pred, Ts...> { }; template struct return_type { typedef std::tuple type; }; template struct return_type { typedef T type; }; template<> struct return_type<> { typedef void type; }; template using return_type_t = typename return_type::type; namespace meta_detail { template struct always_true : std::true_type {}; struct is_invokable_tester { template always_true()(std::declval()...))> static test(int); template std::false_type static test(...); }; } // meta_detail template struct is_invokable; template struct is_invokable : decltype(meta_detail::is_invokable_tester::test(0)) {}; namespace meta_detail { template>::value> struct is_callable : std::is_function> {}; template struct is_callable { using yes = char; using no = struct { char s[2]; }; struct F { void operator()(); }; struct Derived : T, F {}; template struct Check; template static no test(Check*); template static yes test(...); static const bool value = sizeof(test(0)) == sizeof(yes); }; struct has_begin_end_impl { template, typename B = decltype(std::declval().begin()), typename E = decltype(std::declval().end())> static std::true_type test(int); template static std::false_type test(...); }; struct has_key_value_pair_impl { template, typename V = typename U::value_type, typename F = decltype(std::declval().first), typename S = decltype(std::declval().second)> static std::true_type test(int); template static std::false_type test(...); }; template () < std::declval())> std::true_type supports_op_less_test(const T&); std::false_type supports_op_less_test(...); template () == std::declval())> std::true_type supports_op_equal_test(const T&); std::false_type supports_op_equal_test(...); template () <= std::declval())> std::true_type supports_op_less_equal_test(const T&); std::false_type supports_op_less_equal_test(...); } // meta_detail template using supports_op_less = decltype(meta_detail::supports_op_less_test(std::declval())); template using supports_op_equal = decltype(meta_detail::supports_op_equal_test(std::declval())); template using supports_op_less_equal = decltype(meta_detail::supports_op_less_equal_test(std::declval())); template struct is_callable : boolean::value> {}; template struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test(0)) {}; template struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test(0)) {}; template using is_string_constructible = any, const char*>, std::is_same, char>, std::is_same, std::string>, std::is_same, std::initializer_list>>; template using is_c_str = any< std::is_same>, const char*>, std::is_same>, char*>, std::is_same, std::string> >; template struct is_move_only : all< neg>, neg>>, std::is_move_constructible> > {}; template using is_not_move_only = neg>; namespace meta_detail { template >> = meta::enabler> decltype(auto) force_tuple(T&& x) { return std::forward_as_tuple(std::forward(x)); } template >> = meta::enabler> decltype(auto) force_tuple(T&& x) { return std::forward(x); } } // meta_detail template decltype(auto) tuplefy(X&&... x) { return std::tuple_cat(meta_detail::force_tuple(std::forward(x))...); } } // meta namespace detail { template decltype(auto) forward_get(Tuple&& tuple) { return std::forward>(std::get(tuple)); } template auto forward_tuple_impl(std::index_sequence, Tuple&& tuple) -> decltype(std::tuple(tuple))...>(forward_get(tuple)...)) { return std::tuple(tuple))...>(std::move(std::get(tuple))...); } template auto forward_tuple(Tuple&& tuple) { auto x = forward_tuple_impl(std::make_index_sequence>::value>(), std::forward(tuple)); return x; } template auto unwrap(T&& item) -> decltype(std::forward(item)) { return std::forward(item); } template T& unwrap(std::reference_wrapper arg) { return arg.get(); } template auto deref(T&& item) -> decltype(std::forward(item)) { return std::forward(item); } template inline T& deref(T* item) { return *item; } template inline std::add_lvalue_reference_t deref(std::unique_ptr& item) { return *item; } template inline std::add_lvalue_reference_t deref(std::shared_ptr& item) { return *item; } template inline std::add_lvalue_reference_t deref(const std::unique_ptr& item) { return *item; } template inline std::add_lvalue_reference_t deref(const std::shared_ptr& item) { return *item; } template inline T* ptr(T& val) { return std::addressof(val); } template inline T* ptr(std::reference_wrapper val) { return std::addressof(val.get()); } template inline T* ptr(T* val) { return val; } } // detail } // sol // end of sol/traits.hpp // beginning of sol/object.hpp // beginning of sol/optional.hpp // beginning of sol/in_place.hpp namespace sol { namespace detail { struct in_place_of {}; template struct in_place_of_i {}; template struct in_place_of_t {}; } // detail struct in_place_tag { struct init {}; constexpr in_place_tag(init) {} in_place_tag() = delete; }; constexpr inline in_place_tag in_place(detail::in_place_of) { return in_place_tag(in_place_tag::init()); } template constexpr inline in_place_tag in_place(detail::in_place_of_t) { return in_place_tag(in_place_tag::init()); } template constexpr inline in_place_tag in_place(detail::in_place_of_i) { return in_place_tag(in_place_tag::init()); } using in_place_t = in_place_tag(&)(detail::in_place_of); template using in_place_type_t = in_place_tag(&)(detail::in_place_of_t); template using in_place_index_t = in_place_tag(&)(detail::in_place_of_i); } // sol // end of sol/in_place.hpp #if defined(SOL_USE_BOOST) #include #else // beginning of Optional/optional.hpp # ifndef ___SOL_OPTIONAL_HPP___ # define ___SOL_OPTIONAL_HPP___ # include # include # include # include # include # include # include # define TR2_OPTIONAL_REQUIRES(...) typename ::std::enable_if<__VA_ARGS__::value, bool>::type = false # if defined __GNUC__ // NOTE: GNUC is also defined for Clang # if (__GNUC__ == 4) && (__GNUC_MINOR__ >= 8) # define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___ # elif (__GNUC__ > 4) # define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___ # endif # # if (__GNUC__ == 4) && (__GNUC_MINOR__ >= 7) # define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___ # elif (__GNUC__ > 4) # define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___ # endif # # if (__GNUC__ == 4) && (__GNUC_MINOR__ == 8) && (__GNUC_PATCHLEVEL__ >= 1) # define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___ # elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 9) # define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___ # elif (__GNUC__ > 4) # define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___ # endif # endif # # if defined __clang_major__ # if (__clang_major__ == 3 && __clang_minor__ >= 5) # define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ # elif (__clang_major__ > 3) # define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ # endif # if defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ # define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_ # elif (__clang_major__ == 3 && __clang_minor__ == 4 && __clang_patchlevel__ >= 2) # define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_ # endif # endif # # if defined _MSC_VER # if (_MSC_VER >= 1900) # define TR2_OPTIONAL_MSVC_2015_AND_HIGHER___ # endif # endif # if defined __clang__ # if (__clang_major__ > 2) || (__clang_major__ == 2) && (__clang_minor__ >= 9) # define OPTIONAL_HAS_THIS_RVALUE_REFS 1 # else # define OPTIONAL_HAS_THIS_RVALUE_REFS 0 # endif # elif defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___ # define OPTIONAL_HAS_THIS_RVALUE_REFS 1 # elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___ # define OPTIONAL_HAS_THIS_RVALUE_REFS 1 # else # define OPTIONAL_HAS_THIS_RVALUE_REFS 0 # endif # if defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___ # define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 1 # define OPTIONAL_CONSTEXPR_INIT_LIST constexpr # else # define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 0 # define OPTIONAL_CONSTEXPR_INIT_LIST # endif # if defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ && (defined __cplusplus) && (__cplusplus != 201103L) # define OPTIONAL_HAS_MOVE_ACCESSORS 1 # else # define OPTIONAL_HAS_MOVE_ACCESSORS 0 # endif # // In C++11 constexpr implies const, so we need to make non-const members also non-constexpr # if (defined __cplusplus) && (__cplusplus == 201103L) # define OPTIONAL_MUTABLE_CONSTEXPR # else # define OPTIONAL_MUTABLE_CONSTEXPR constexpr # endif namespace sol{ # if defined TR2_OPTIONAL_GCC_4_8_AND_HIGHER___ // leave it: it is already there # elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_ // leave it: it is already there # elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___ // leave it: it is already there # elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS // leave it: the user doesn't want it # else template using is_trivially_destructible = ::std::has_trivial_destructor; # endif # if (defined TR2_OPTIONAL_GCC_4_7_AND_HIGHER___) // leave it; our metafunctions are already defined. # elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_ // leave it; our metafunctions are already defined. # elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___ // leave it: it is already there # elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS // leave it: the user doesn't want it # else template struct is_nothrow_move_constructible { constexpr static bool value = ::std::is_nothrow_constructible::value; }; template struct is_assignable { template constexpr static bool has_assign(...) { return false; } template () = ::std::declval(), true)) > // the comma operator is necessary for the cases where operator= returns void constexpr static bool has_assign(bool) { return true; } constexpr static bool value = has_assign(true); }; template struct is_nothrow_move_assignable { template struct has_nothrow_move_assign { constexpr static bool value = false; }; template struct has_nothrow_move_assign { constexpr static bool value = noexcept( ::std::declval() = ::std::declval() ); }; constexpr static bool value = has_nothrow_move_assign::value>::value; }; # endif template class optional; template class optional; template inline constexpr T&& constexpr_forward(typename ::std::remove_reference::type& t) noexcept { return static_cast(t); } template inline constexpr T&& constexpr_forward(typename ::std::remove_reference::type&& t) noexcept { static_assert(!::std::is_lvalue_reference::value, "!!"); return static_cast(t); } template inline constexpr typename ::std::remove_reference::type&& constexpr_move(T&& t) noexcept { return static_cast::type&&>(t); } #if defined NDEBUG # define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) (EXPR) #else # define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) ((CHECK) ? (EXPR) : ([]{assert(!#CHECK);}(), (EXPR))) #endif namespace detail_ { template struct has_overloaded_addressof { template constexpr static bool has_overload(...) { return false; } template ().operator&()) > constexpr static bool has_overload(bool) { return true; } constexpr static bool value = has_overload(true); }; template )> constexpr T* static_addressof(T& ref) { return &ref; } template )> T* static_addressof(T& ref) { return ::std::addressof(ref); } template constexpr U convert(U v) { return v; } } // namespace detail_ constexpr struct trivial_init_t {} trivial_init{}; struct nullopt_t { struct init{}; constexpr explicit nullopt_t(init){} }; constexpr nullopt_t nullopt{nullopt_t::init()}; class bad_optional_access : public ::std::logic_error { public: explicit bad_optional_access(const ::std::string& what_arg) : ::std::logic_error{what_arg} {} explicit bad_optional_access(const char* what_arg) : ::std::logic_error{what_arg} {} }; template union storage_t { unsigned char dummy_; T value_; constexpr storage_t( trivial_init_t ) noexcept : dummy_() {}; template constexpr storage_t( Args&&... args ) : value_(constexpr_forward(args)...) {} ~storage_t(){} }; template union constexpr_storage_t { unsigned char dummy_; T value_; constexpr constexpr_storage_t( trivial_init_t ) noexcept : dummy_() {}; template constexpr constexpr_storage_t( Args&&... args ) : value_(constexpr_forward(args)...) {} ~constexpr_storage_t() = default; }; template struct optional_base { bool init_; storage_t storage_; constexpr optional_base() noexcept : init_(false), storage_(trivial_init) {}; explicit constexpr optional_base(const T& v) : init_(true), storage_(v) {} explicit constexpr optional_base(T&& v) : init_(true), storage_(constexpr_move(v)) {} template explicit optional_base(in_place_t, Args&&... args) : init_(true), storage_(constexpr_forward(args)...) {} template >)> explicit optional_base(in_place_t, ::std::initializer_list il, Args&&... args) : init_(true), storage_(il, ::std::forward(args)...) {} ~optional_base() { if (init_) storage_.value_.T::~T(); } }; template struct constexpr_optional_base { bool init_; constexpr_storage_t storage_; constexpr constexpr_optional_base() noexcept : init_(false), storage_(trivial_init) {}; explicit constexpr constexpr_optional_base(const T& v) : init_(true), storage_(v) {} explicit constexpr constexpr_optional_base(T&& v) : init_(true), storage_(constexpr_move(v)) {} template explicit constexpr constexpr_optional_base(in_place_t, Args&&... args) : init_(true), storage_(constexpr_forward(args)...) {} template >)> OPTIONAL_CONSTEXPR_INIT_LIST explicit constexpr_optional_base(in_place_t, ::std::initializer_list il, Args&&... args) : init_(true), storage_(il, ::std::forward(args)...) {} ~constexpr_optional_base() = default; }; template using OptionalBase = typename ::std::conditional< ::std::is_trivially_destructible::value, constexpr_optional_base::type>, optional_base::type> >::type; template class optional : private OptionalBase { static_assert( !::std::is_same::type, nullopt_t>::value, "bad T" ); static_assert( !::std::is_same::type, in_place_t>::value, "bad T" ); constexpr bool initialized() const noexcept { return OptionalBase::init_; } typename ::std::remove_const::type* dataptr() { return ::std::addressof(OptionalBase::storage_.value_); } constexpr const T* dataptr() const { return detail_::static_addressof(OptionalBase::storage_.value_); } # if OPTIONAL_HAS_THIS_RVALUE_REFS == 1 constexpr const T& contained_val() const& { return OptionalBase::storage_.value_; } # if OPTIONAL_HAS_MOVE_ACCESSORS == 1 OPTIONAL_MUTABLE_CONSTEXPR T&& contained_val() && { return ::std::move(OptionalBase::storage_.value_); } OPTIONAL_MUTABLE_CONSTEXPR T& contained_val() & { return OptionalBase::storage_.value_; } # else T& contained_val() & { return OptionalBase::storage_.value_; } T&& contained_val() && { return ::std::move(OptionalBase::storage_.value_); } # endif # else constexpr const T& contained_val() const { return OptionalBase::storage_.value_; } T& contained_val() { return OptionalBase::storage_.value_; } # endif void clear() noexcept { if (initialized()) dataptr()->T::~T(); OptionalBase::init_ = false; } template void initialize(Args&&... args) noexcept(noexcept(T(::std::forward(args)...))) { assert(!OptionalBase::init_); ::new (static_cast(dataptr())) T(::std::forward(args)...); OptionalBase::init_ = true; } template void initialize(::std::initializer_list il, Args&&... args) noexcept(noexcept(T(il, ::std::forward(args)...))) { assert(!OptionalBase::init_); ::new (static_cast(dataptr())) T(il, ::std::forward(args)...); OptionalBase::init_ = true; } public: typedef T value_type; // 20.5.5.1, constructors constexpr optional() noexcept : OptionalBase() {}; constexpr optional(nullopt_t) noexcept : OptionalBase() {}; optional(const optional& rhs) : OptionalBase() { if (rhs.initialized()) { ::new (static_cast(dataptr())) T(*rhs); OptionalBase::init_ = true; } } optional(const optional& rhs) : optional() { if (rhs) { ::new (static_cast(dataptr())) T(*rhs); OptionalBase::init_ = true; } } optional(optional&& rhs) noexcept(::std::is_nothrow_move_constructible::value) : OptionalBase() { if (rhs.initialized()) { ::new (static_cast(dataptr())) T(::std::move(*rhs)); OptionalBase::init_ = true; } } constexpr optional(const T& v) : OptionalBase(v) {} constexpr optional(T&& v) : OptionalBase(constexpr_move(v)) {} template explicit constexpr optional(in_place_t, Args&&... args) : OptionalBase(in_place, constexpr_forward(args)...) {} template >)> OPTIONAL_CONSTEXPR_INIT_LIST explicit optional(in_place_t, ::std::initializer_list il, Args&&... args) : OptionalBase(in_place, il, constexpr_forward(args)...) {} // 20.5.4.2, Destructor ~optional() = default; // 20.5.4.3, assignment optional& operator=(nullopt_t) noexcept { clear(); return *this; } optional& operator=(const optional& rhs) { if (initialized() == true && rhs.initialized() == false) clear(); else if (initialized() == false && rhs.initialized() == true) initialize(*rhs); else if (initialized() == true && rhs.initialized() == true) contained_val() = *rhs; return *this; } optional& operator=(optional&& rhs) noexcept(::std::is_nothrow_move_assignable::value && ::std::is_nothrow_move_constructible::value) { if (initialized() == true && rhs.initialized() == false) clear(); else if (initialized() == false && rhs.initialized() == true) initialize(::std::move(*rhs)); else if (initialized() == true && rhs.initialized() == true) contained_val() = ::std::move(*rhs); return *this; } template auto operator=(U&& v) -> typename ::std::enable_if < ::std::is_same::type, T>::value, optional& >::type { if (initialized()) { contained_val() = ::std::forward(v); } else { initialize(::std::forward(v)); } return *this; } template void emplace(Args&&... args) { clear(); initialize(::std::forward(args)...); } template void emplace(::std::initializer_list il, Args&&... args) { clear(); initialize(il, ::std::forward(args)...); } // 20.5.4.4, Swap void swap(optional& rhs) noexcept(::std::is_nothrow_move_constructible::value && noexcept(swap(::std::declval(), ::std::declval()))) { if (initialized() == true && rhs.initialized() == false) { rhs.initialize(::std::move(**this)); clear(); } else if (initialized() == false && rhs.initialized() == true) { initialize(::std::move(*rhs)); rhs.clear(); } else if (initialized() == true && rhs.initialized() == true) { using ::std::swap; swap(**this, *rhs); } } // 20.5.4.5, Observers explicit constexpr operator bool() const noexcept { return initialized(); } constexpr T const* operator ->() const { return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), dataptr()); } # if OPTIONAL_HAS_MOVE_ACCESSORS == 1 OPTIONAL_MUTABLE_CONSTEXPR T* operator ->() { assert (initialized()); return dataptr(); } constexpr T const& operator *() const& { return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val()); } OPTIONAL_MUTABLE_CONSTEXPR T& operator *() & { assert (initialized()); return contained_val(); } OPTIONAL_MUTABLE_CONSTEXPR T&& operator *() && { assert (initialized()); return constexpr_move(contained_val()); } constexpr T const& value() const& { return initialized() ? contained_val() : (throw bad_optional_access("bad optional access"), contained_val()); } OPTIONAL_MUTABLE_CONSTEXPR T& value() & { return initialized() ? contained_val() : (throw bad_optional_access("bad optional access"), contained_val()); } OPTIONAL_MUTABLE_CONSTEXPR T&& value() && { if (!initialized()) throw bad_optional_access("bad optional access"); return ::std::move(contained_val()); } # else T* operator ->() { assert (initialized()); return dataptr(); } constexpr T const& operator *() const { return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val()); } T& operator *() { assert (initialized()); return contained_val(); } constexpr T const& value() const { return initialized() ? contained_val() : (throw bad_optional_access("bad optional access"), contained_val()); } T& value() { return initialized() ? contained_val() : (throw bad_optional_access("bad optional access"), contained_val()); } # endif # if OPTIONAL_HAS_THIS_RVALUE_REFS == 1 template constexpr T value_or(V&& v) const& { return *this ? **this : detail_::convert(constexpr_forward(v)); } # if OPTIONAL_HAS_MOVE_ACCESSORS == 1 template OPTIONAL_MUTABLE_CONSTEXPR T value_or(V&& v) && { return *this ? constexpr_move(const_cast&>(*this).contained_val()) : detail_::convert(constexpr_forward(v)); } # else template T value_or(V&& v) && { return *this ? constexpr_move(const_cast&>(*this).contained_val()) : detail_::convert(constexpr_forward(v)); } # endif # else template constexpr T value_or(V&& v) const { return *this ? **this : detail_::convert(constexpr_forward(v)); } # endif }; template class optional { static_assert( !::std::is_same::value, "bad T" ); static_assert( !::std::is_same::value, "bad T" ); T* ref; public: // 20.5.5.1, construction/destruction constexpr optional() noexcept : ref(nullptr) {} constexpr optional(nullopt_t) noexcept : ref(nullptr) {} constexpr optional(T& v) noexcept : ref(detail_::static_addressof(v)) {} optional(T&&) = delete; constexpr optional(const optional& rhs) noexcept : ref(rhs.ref) {} explicit constexpr optional(in_place_t, T& v) noexcept : ref(detail_::static_addressof(v)) {} explicit optional(in_place_t, T&&) = delete; ~optional() = default; // 20.5.5.2, mutation optional& operator=(nullopt_t) noexcept { ref = nullptr; return *this; } // optional& operator=(const optional& rhs) noexcept { // ref = rhs.ref; // return *this; // } // optional& operator=(optional&& rhs) noexcept { // ref = rhs.ref; // return *this; // } template auto operator=(U&& rhs) noexcept -> typename ::std::enable_if < ::std::is_same::type, optional>::value, optional& >::type { ref = rhs.ref; return *this; } template auto operator=(U&& rhs) noexcept -> typename ::std::enable_if < !::std::is_same::type, optional>::value, optional& >::type = delete; void emplace(T& v) noexcept { ref = detail_::static_addressof(v); } void emplace(T&&) = delete; void swap(optional& rhs) noexcept { ::std::swap(ref, rhs.ref); } // 20.5.5.3, observers constexpr T* operator->() const { return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, ref); } constexpr T& operator*() const { return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, *ref); } constexpr T& value() const { return ref ? *ref : (throw bad_optional_access("bad optional access"), *ref); } explicit constexpr operator bool() const noexcept { return ref != nullptr; } template constexpr typename ::std::decay::type value_or(V&& v) const { return *this ? **this : detail_::convert::type>(constexpr_forward(v)); } }; template class optional { static_assert( sizeof(T) == 0, "optional rvalue references disallowed" ); }; template constexpr bool operator==(const optional& x, const optional& y) { return bool(x) != bool(y) ? false : bool(x) == false ? true : *x == *y; } template constexpr bool operator!=(const optional& x, const optional& y) { return !(x == y); } template constexpr bool operator<(const optional& x, const optional& y) { return (!y) ? false : (!x) ? true : *x < *y; } template constexpr bool operator>(const optional& x, const optional& y) { return (y < x); } template constexpr bool operator<=(const optional& x, const optional& y) { return !(y < x); } template constexpr bool operator>=(const optional& x, const optional& y) { return !(x < y); } template constexpr bool operator==(const optional& x, nullopt_t) noexcept { return (!x); } template constexpr bool operator==(nullopt_t, const optional& x) noexcept { return (!x); } template constexpr bool operator!=(const optional& x, nullopt_t) noexcept { return bool(x); } template constexpr bool operator!=(nullopt_t, const optional& x) noexcept { return bool(x); } template constexpr bool operator<(const optional&, nullopt_t) noexcept { return false; } template constexpr bool operator<(nullopt_t, const optional& x) noexcept { return bool(x); } template constexpr bool operator<=(const optional& x, nullopt_t) noexcept { return (!x); } template constexpr bool operator<=(nullopt_t, const optional&) noexcept { return true; } template constexpr bool operator>(const optional& x, nullopt_t) noexcept { return bool(x); } template constexpr bool operator>(nullopt_t, const optional&) noexcept { return false; } template constexpr bool operator>=(const optional&, nullopt_t) noexcept { return true; } template constexpr bool operator>=(nullopt_t, const optional& x) noexcept { return (!x); } template constexpr bool operator==(const optional& x, const T& v) { return bool(x) ? *x == v : false; } template constexpr bool operator==(const T& v, const optional& x) { return bool(x) ? v == *x : false; } template constexpr bool operator!=(const optional& x, const T& v) { return bool(x) ? *x != v : true; } template constexpr bool operator!=(const T& v, const optional& x) { return bool(x) ? v != *x : true; } template constexpr bool operator<(const optional& x, const T& v) { return bool(x) ? *x < v : true; } template constexpr bool operator>(const T& v, const optional& x) { return bool(x) ? v > *x : true; } template constexpr bool operator>(const optional& x, const T& v) { return bool(x) ? *x > v : false; } template constexpr bool operator<(const T& v, const optional& x) { return bool(x) ? v < *x : false; } template constexpr bool operator>=(const optional& x, const T& v) { return bool(x) ? *x >= v : false; } template constexpr bool operator<=(const T& v, const optional& x) { return bool(x) ? v <= *x : false; } template constexpr bool operator<=(const optional& x, const T& v) { return bool(x) ? *x <= v : true; } template constexpr bool operator>=(const T& v, const optional& x) { return bool(x) ? v >= *x : true; } template constexpr bool operator==(const optional& x, const T& v) { return bool(x) ? *x == v : false; } template constexpr bool operator==(const T& v, const optional& x) { return bool(x) ? v == *x : false; } template constexpr bool operator!=(const optional& x, const T& v) { return bool(x) ? *x != v : true; } template constexpr bool operator!=(const T& v, const optional& x) { return bool(x) ? v != *x : true; } template constexpr bool operator<(const optional& x, const T& v) { return bool(x) ? *x < v : true; } template constexpr bool operator>(const T& v, const optional& x) { return bool(x) ? v > *x : true; } template constexpr bool operator>(const optional& x, const T& v) { return bool(x) ? *x > v : false; } template constexpr bool operator<(const T& v, const optional& x) { return bool(x) ? v < *x : false; } template constexpr bool operator>=(const optional& x, const T& v) { return bool(x) ? *x >= v : false; } template constexpr bool operator<=(const T& v, const optional& x) { return bool(x) ? v <= *x : false; } template constexpr bool operator<=(const optional& x, const T& v) { return bool(x) ? *x <= v : true; } template constexpr bool operator>=(const T& v, const optional& x) { return bool(x) ? v >= *x : true; } template constexpr bool operator==(const optional& x, const T& v) { return bool(x) ? *x == v : false; } template constexpr bool operator==(const T& v, const optional& x) { return bool(x) ? v == *x : false; } template constexpr bool operator!=(const optional& x, const T& v) { return bool(x) ? *x != v : true; } template constexpr bool operator!=(const T& v, const optional& x) { return bool(x) ? v != *x : true; } template constexpr bool operator<(const optional& x, const T& v) { return bool(x) ? *x < v : true; } template constexpr bool operator>(const T& v, const optional& x) { return bool(x) ? v > *x : true; } template constexpr bool operator>(const optional& x, const T& v) { return bool(x) ? *x > v : false; } template constexpr bool operator<(const T& v, const optional& x) { return bool(x) ? v < *x : false; } template constexpr bool operator>=(const optional& x, const T& v) { return bool(x) ? *x >= v : false; } template constexpr bool operator<=(const T& v, const optional& x) { return bool(x) ? v <= *x : false; } template constexpr bool operator<=(const optional& x, const T& v) { return bool(x) ? *x <= v : true; } template constexpr bool operator>=(const T& v, const optional& x) { return bool(x) ? v >= *x : true; } template void swap(optional& x, optional& y) noexcept(noexcept(x.swap(y))) { x.swap(y); } template constexpr optional::type> make_optional(T&& v) { return optional::type>(constexpr_forward(v)); } template constexpr optional make_optional(::std::reference_wrapper v) { return optional(v.get()); } } // namespace namespace std { template struct hash> { typedef typename hash::result_type result_type; typedef sol::optional argument_type; constexpr result_type operator()(argument_type const& arg) const { return arg ? ::std::hash{}(*arg) : result_type{}; } }; template struct hash> { typedef typename hash::result_type result_type; typedef sol::optional argument_type; constexpr result_type operator()(argument_type const& arg) const { return arg ? ::std::hash{}(*arg) : result_type{}; } }; } # undef TR2_OPTIONAL_REQUIRES # undef TR2_OPTIONAL_ASSERTED_EXPRESSION # endif //___SOL_OPTIONAL_HPP___ // end of Optional/optional.hpp #endif // Boost vs. Better optional namespace sol { #if defined(SOL_USE_BOOST) template using optional = boost::optional; using nullopt_t = boost::none_t; const nullopt_t nullopt = boost::none; #endif // Boost vs. Better optional } // sol // end of sol/optional.hpp // beginning of sol/reference.hpp // beginning of sol/types.hpp // beginning of sol/compatibility.hpp // beginning of sol/compatibility/version.hpp #include #if defined(_WIN32) || defined(_MSC_VER) || defined(__MINGW32__) #ifndef SOL_CODECVT_SUPPORT #define SOL_CODECVT_SUPPORT 1 #endif // sol codecvt support #elif defined(__GNUC__) #if __GNUC__ >= 5 #ifndef SOL_CODECVT_SUPPORT #define SOL_CODECVT_SUPPORT 1 #endif // codecvt support #endif // g++ 5.x.x #else #endif // Windows/VC++ vs. g++ vs Others #ifdef LUAJIT_VERSION #ifndef SOL_LUAJIT #define SOL_LUAJIT #endif // sol luajit #endif // luajit #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502 #define SOL_LUA_VERSION LUA_VERSION_NUM #elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501 #define SOL_LUA_VERSION LUA_VERSION_NUM #elif !defined(LUA_VERSION_NUM) #define SOL_LUA_VERSION 500 #else #define SOL_LUA_VERSION 502 #endif // Lua Version 502, 501 || luajit, 500 #ifdef _MSC_VER #ifdef _DEBUG #ifndef NDEBUG #ifndef SOL_CHECK_ARGUMENTS #endif // Check Arguments #ifndef SOL_SAFE_USERTYPE #define SOL_SAFE_USERTYPE #endif // Safe Usertypes #endif // NDEBUG #endif // Debug #ifndef _CPPUNWIND #ifndef SOL_NO_EXCEPTIONS #define SOL_NO_EXCEPTIONS 1 #endif #endif // Automatic Exceptions #ifndef _CPPRTTI #ifndef SOL_NO_RTTI #define SOL_NO_RTTI 1 #endif #endif // Automatic RTTI #elif defined(__GNUC__) || defined(__clang__) #ifndef NDEBUG #ifndef __OPTIMIZE__ #ifndef SOL_CHECK_ARGUMENTS #endif // Check Arguments #ifndef SOL_SAFE_USERTYPE #define SOL_SAFE_USERTYPE #endif // Safe Usertypes #endif // g++ optimizer flag #endif // Not Debug #ifndef __EXCEPTIONS #ifndef SOL_NO_EXCEPTIONS #define SOL_NO_EXCEPTIONS 1 #endif #endif // No Exceptions #ifndef __GXX_RTTI #ifndef SOL_NO_RTII #define SOL_NO_RTTI 1 #endif #endif // No RTTI #endif // vc++ || clang++/g++ #ifndef SOL_SAFE_USERTYPE #ifdef SOL_CHECK_ARGUMENTS #define SOL_SAFE_USERTYPE #endif // Turn on Safety for all #endif // Safe Usertypes // end of sol/compatibility/version.hpp #ifndef SOL_NO_COMPAT #ifdef __cplusplus extern "C" { #endif // beginning of sol/compatibility/5.1.0.h #ifndef SOL_5_1_0_H #define SOL_5_1_0_H #if SOL_LUA_VERSION == 501 /* Lua 5.1 */ #include #include #include /* LuaJIT doesn't define these unofficial macros ... */ #if !defined(LUAI_INT32) #include #if INT_MAX-20 < 32760 #define LUAI_INT32 long #define LUAI_UINT32 unsigned long #elif INT_MAX > 2147483640L #define LUAI_INT32 int #define LUAI_UINT32 unsigned int #else #error "could not detect suitable lua_Unsigned datatype" #endif #endif /* LuaJIT does not have the updated error codes for thread status/function returns */ #ifndef LUA_ERRGCMM #define LUA_ERRGCMM (LUA_ERRERR + 1) #endif // LUA_ERRGCMM /* LuaJIT does not support continuation contexts / return error codes? */ #ifndef LUA_KCONTEXT #define LUA_KCONTEXT std::ptrdiff_t typedef LUA_KCONTEXT lua_KContext; typedef int(*lua_KFunction) (lua_State *L, int status, lua_KContext ctx); #endif // LUA_KCONTEXT #define LUA_OPADD 0 #define LUA_OPSUB 1 #define LUA_OPMUL 2 #define LUA_OPDIV 3 #define LUA_OPMOD 4 #define LUA_OPPOW 5 #define LUA_OPUNM 6 #define LUA_OPEQ 0 #define LUA_OPLT 1 #define LUA_OPLE 2 typedef LUAI_UINT32 lua_Unsigned; typedef struct luaL_Buffer_52 { luaL_Buffer b; /* make incorrect code crash! */ char *ptr; size_t nelems; size_t capacity; lua_State *L2; } luaL_Buffer_52; #define luaL_Buffer luaL_Buffer_52 #define lua_tounsigned(L, i) lua_tounsignedx(L, i, NULL) #define lua_rawlen(L, i) lua_objlen(L, i) inline void lua_callk(lua_State *L, int nargs, int nresults, lua_KContext, lua_KFunction) { // should probably warn the user of Lua 5.1 that continuation isn't supported... lua_call(L, nargs, nresults); } inline int lua_pcallk(lua_State *L, int nargs, int nresults, int errfunc, lua_KContext, lua_KFunction) { // should probably warn the user of Lua 5.1 that continuation isn't supported... return lua_pcall(L, nargs, nresults, errfunc); } void lua_arith(lua_State *L, int op); int lua_compare(lua_State *L, int idx1, int idx2, int op); void lua_pushunsigned(lua_State *L, lua_Unsigned n); lua_Unsigned luaL_checkunsigned(lua_State *L, int i); lua_Unsigned lua_tounsignedx(lua_State *L, int i, int *isnum); lua_Unsigned luaL_optunsigned(lua_State *L, int i, lua_Unsigned def); lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum); void lua_len(lua_State *L, int i); int luaL_len(lua_State *L, int i); const char *luaL_tolstring(lua_State *L, int idx, size_t *len); void luaL_requiref(lua_State *L, char const* modname, lua_CFunction openf, int glb); #define luaL_buffinit luaL_buffinit_52 void luaL_buffinit(lua_State *L, luaL_Buffer_52 *B); #define luaL_prepbuffsize luaL_prepbuffsize_52 char *luaL_prepbuffsize(luaL_Buffer_52 *B, size_t s); #define luaL_addlstring luaL_addlstring_52 void luaL_addlstring(luaL_Buffer_52 *B, const char *s, size_t l); #define luaL_addvalue luaL_addvalue_52 void luaL_addvalue(luaL_Buffer_52 *B); #define luaL_pushresult luaL_pushresult_52 void luaL_pushresult(luaL_Buffer_52 *B); #undef luaL_buffinitsize #define luaL_buffinitsize(L, B, s) \ (luaL_buffinit(L, B), luaL_prepbuffsize(B, s)) #undef luaL_prepbuffer #define luaL_prepbuffer(B) \ luaL_prepbuffsize(B, LUAL_BUFFERSIZE) #undef luaL_addchar #define luaL_addchar(B, c) \ ((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize(B, 1)), \ ((B)->ptr[(B)->nelems++] = (c))) #undef luaL_addsize #define luaL_addsize(B, s) \ ((B)->nelems += (s)) #undef luaL_addstring #define luaL_addstring(B, s) \ luaL_addlstring(B, s, strlen(s)) #undef luaL_pushresultsize #define luaL_pushresultsize(B, s) \ (luaL_addsize(B, s), luaL_pushresult(B)) typedef struct kepler_lua_compat_get_string_view { const char *s; size_t size; } kepler_lua_compat_get_string_view; inline const char* kepler_lua_compat_get_string(lua_State* L, void* ud, size_t* size) { kepler_lua_compat_get_string_view* ls = (kepler_lua_compat_get_string_view*) ud; (void)L; if (ls->size == 0) return NULL; *size = ls->size; ls->size = 0; return ls->s; } inline int luaL_loadbufferx(lua_State* L, const char* buff, size_t size, const char* name, const char*) { kepler_lua_compat_get_string_view ls; ls.s = buff; ls.size = size; return lua_load(L, kepler_lua_compat_get_string, &ls, name/*, mode*/); } #endif /* Lua 5.1 */ #endif // SOL_5_1_0_H// end of sol/compatibility/5.1.0.h // beginning of sol/compatibility/5.0.0.h #ifndef SOL_5_0_0_H #define SOL_5_0_0_H #if SOL_LUA_VERSION < 501 /* Lua 5.0 */ #define LUA_QL(x) "'" x "'" #define LUA_QS LUA_QL("%s") #define luaL_Reg luaL_reg #define luaL_opt(L, f, n, d) \ (lua_isnoneornil(L, n) ? (d) : f(L, n)) #define luaL_addchar(B,c) \ ((void)((B)->p < ((B)->buffer+LUAL_BUFFERSIZE) || luaL_prepbuffer(B)), \ (*(B)->p++ = (char)(c))) #endif // Lua 5.0 #endif // SOL_5_0_0_H // end of sol/compatibility/5.0.0.h // beginning of sol/compatibility/5.x.x.h #ifndef SOL_5_X_X_H #define SOL_5_X_X_H #if SOL_LUA_VERSION < 502 #define LUA_RIDX_GLOBALS LUA_GLOBALSINDEX #define LUA_OK 0 #define lua_pushglobaltable(L) \ lua_pushvalue(L, LUA_GLOBALSINDEX) #define luaL_newlib(L, l) \ (lua_newtable((L)),luaL_setfuncs((L), (l), 0)) void luaL_checkversion(lua_State *L); int lua_absindex(lua_State *L, int i); void lua_copy(lua_State *L, int from, int to); void lua_rawgetp(lua_State *L, int i, const void *p); void lua_rawsetp(lua_State *L, int i, const void *p); void *luaL_testudata(lua_State *L, int i, const char *tname); lua_Number lua_tonumberx(lua_State *L, int i, int *isnum); void lua_getuservalue(lua_State *L, int i); void lua_setuservalue(lua_State *L, int i); void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup); void luaL_setmetatable(lua_State *L, const char *tname); int luaL_getsubtable(lua_State *L, int i, const char *name); void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level); int luaL_fileresult(lua_State *L, int stat, const char *fname); #endif // Lua 5.1 and below #endif // SOL_5_X_X_H // end of sol/compatibility/5.x.x.h // beginning of sol/compatibility/5.x.x.inl #ifndef SOL_5_X_X_INL #define SOL_5_X_X_INL #if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM == 501 #include #define PACKAGE_KEY "_sol.package" inline int lua_absindex(lua_State *L, int i) { if (i < 0 && i > LUA_REGISTRYINDEX) i += lua_gettop(L) + 1; return i; } inline void lua_copy(lua_State *L, int from, int to) { int abs_to = lua_absindex(L, to); luaL_checkstack(L, 1, "not enough stack slots"); lua_pushvalue(L, from); lua_replace(L, abs_to); } inline void lua_rawgetp(lua_State *L, int i, const void *p) { int abs_i = lua_absindex(L, i); lua_pushlightuserdata(L, (void*)p); lua_rawget(L, abs_i); } inline void lua_rawsetp(lua_State *L, int i, const void *p) { int abs_i = lua_absindex(L, i); luaL_checkstack(L, 1, "not enough stack slots"); lua_pushlightuserdata(L, (void*)p); lua_insert(L, -2); lua_rawset(L, abs_i); } inline void *luaL_testudata(lua_State *L, int i, const char *tname) { void *p = lua_touserdata(L, i); luaL_checkstack(L, 2, "not enough stack slots"); if (p == NULL || !lua_getmetatable(L, i)) return NULL; else { int res = 0; luaL_getmetatable(L, tname); res = lua_rawequal(L, -1, -2); lua_pop(L, 2); if (!res) p = NULL; } return p; } inline lua_Number lua_tonumberx(lua_State *L, int i, int *isnum) { lua_Number n = lua_tonumber(L, i); if (isnum != NULL) { *isnum = (n != 0 || lua_isnumber(L, i)); } return n; } inline static void push_package_table(lua_State *L) { lua_pushliteral(L, PACKAGE_KEY); lua_rawget(L, LUA_REGISTRYINDEX); if (!lua_istable(L, -1)) { lua_pop(L, 1); /* try to get package table from globals */ lua_pushliteral(L, "package"); lua_rawget(L, LUA_GLOBALSINDEX); if (lua_istable(L, -1)) { lua_pushliteral(L, PACKAGE_KEY); lua_pushvalue(L, -2); lua_rawset(L, LUA_REGISTRYINDEX); } } } inline void lua_getuservalue(lua_State *L, int i) { luaL_checktype(L, i, LUA_TUSERDATA); luaL_checkstack(L, 2, "not enough stack slots"); lua_getfenv(L, i); lua_pushvalue(L, LUA_GLOBALSINDEX); if (lua_rawequal(L, -1, -2)) { lua_pop(L, 1); lua_pushnil(L); lua_replace(L, -2); } else { lua_pop(L, 1); push_package_table(L); if (lua_rawequal(L, -1, -2)) { lua_pop(L, 1); lua_pushnil(L); lua_replace(L, -2); } else lua_pop(L, 1); } } inline void lua_setuservalue(lua_State *L, int i) { luaL_checktype(L, i, LUA_TUSERDATA); if (lua_isnil(L, -1)) { luaL_checkstack(L, 1, "not enough stack slots"); lua_pushvalue(L, LUA_GLOBALSINDEX); lua_replace(L, -2); } lua_setfenv(L, i); } /* ** Adapted from Lua 5.2.0 */ inline void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup) { luaL_checkstack(L, nup + 1, "too many upvalues"); for (; l->name != NULL; l++) { /* fill the table with given functions */ int i; lua_pushstring(L, l->name); for (i = 0; i < nup; i++) /* copy upvalues to the top */ lua_pushvalue(L, -(nup + 1)); lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */ lua_settable(L, -(nup + 3)); /* table must be below the upvalues, the name and the closure */ } lua_pop(L, nup); /* remove upvalues */ } inline void luaL_setmetatable(lua_State *L, const char *tname) { luaL_checkstack(L, 1, "not enough stack slots"); luaL_getmetatable(L, tname); lua_setmetatable(L, -2); } inline int luaL_getsubtable(lua_State *L, int i, const char *name) { int abs_i = lua_absindex(L, i); luaL_checkstack(L, 3, "not enough stack slots"); lua_pushstring(L, name); lua_gettable(L, abs_i); if (lua_istable(L, -1)) return 1; lua_pop(L, 1); lua_newtable(L); lua_pushstring(L, name); lua_pushvalue(L, -2); lua_settable(L, abs_i); return 0; } #ifndef SOL_LUAJIT inline static int countlevels(lua_State *L) { lua_Debug ar; int li = 1, le = 1; /* find an upper bound */ while (lua_getstack(L, le, &ar)) { li = le; le *= 2; } /* do a binary search */ while (li < le) { int m = (li + le) / 2; if (lua_getstack(L, m, &ar)) li = m + 1; else le = m; } return le - 1; } inline static int findfield(lua_State *L, int objidx, int level) { if (level == 0 || !lua_istable(L, -1)) return 0; /* not found */ lua_pushnil(L); /* start 'next' loop */ while (lua_next(L, -2)) { /* for each pair in table */ if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */ if (lua_rawequal(L, objidx, -1)) { /* found object? */ lua_pop(L, 1); /* remove value (but keep name) */ return 1; } else if (findfield(L, objidx, level - 1)) { /* try recursively */ lua_remove(L, -2); /* remove table (but keep name) */ lua_pushliteral(L, "."); lua_insert(L, -2); /* place '.' between the two names */ lua_concat(L, 3); return 1; } } lua_pop(L, 1); /* remove value */ } return 0; /* not found */ } inline static int pushglobalfuncname(lua_State *L, lua_Debug *ar) { int top = lua_gettop(L); lua_getinfo(L, "f", ar); /* push function */ lua_pushvalue(L, LUA_GLOBALSINDEX); if (findfield(L, top + 1, 2)) { lua_copy(L, -1, top + 1); /* move name to proper place */ lua_pop(L, 2); /* remove pushed values */ return 1; } else { lua_settop(L, top); /* remove function and global table */ return 0; } } inline static void pushfuncname(lua_State *L, lua_Debug *ar) { if (*ar->namewhat != '\0') /* is there a name? */ lua_pushfstring(L, "function " LUA_QS, ar->name); else if (*ar->what == 'm') /* main? */ lua_pushliteral(L, "main chunk"); else if (*ar->what == 'C') { if (pushglobalfuncname(L, ar)) { lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1)); lua_remove(L, -2); /* remove name */ } else lua_pushliteral(L, "?"); } else lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined); } #define LEVELS1 12 /* size of the first part of the stack */ #define LEVELS2 10 /* size of the second part of the stack */ inline void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level) { lua_Debug ar; int top = lua_gettop(L); int numlevels = countlevels(L1); int mark = (numlevels > LEVELS1 + LEVELS2) ? LEVELS1 : 0; if (msg) lua_pushfstring(L, "%s\n", msg); lua_pushliteral(L, "stack traceback:"); while (lua_getstack(L1, level++, &ar)) { if (level == mark) { /* too many levels? */ lua_pushliteral(L, "\n\t..."); /* add a '...' */ level = numlevels - LEVELS2; /* and skip to last ones */ } else { lua_getinfo(L1, "Slnt", &ar); lua_pushfstring(L, "\n\t%s:", ar.short_src); if (ar.currentline > 0) lua_pushfstring(L, "%d:", ar.currentline); lua_pushliteral(L, " in "); pushfuncname(L, &ar); lua_concat(L, lua_gettop(L) - top); } } lua_concat(L, lua_gettop(L) - top); } #endif inline const lua_Number *lua_version(lua_State *L) { static const lua_Number version = LUA_VERSION_NUM; if (L == NULL) return &version; // TODO: wonky hacks to get at the inside of the incomplete type lua_State? //else return L->l_G->version; else return &version; } inline static void luaL_checkversion_(lua_State *L, lua_Number ver) { const lua_Number* v = lua_version(L); if (v != lua_version(NULL)) luaL_error(L, "multiple Lua VMs detected"); else if (*v != ver) luaL_error(L, "version mismatch: app. needs %f, Lua core provides %f", ver, *v); /* check conversions number -> integer types */ lua_pushnumber(L, -(lua_Number)0x1234); if (lua_tointeger(L, -1) != -0x1234 || lua_tounsigned(L, -1) != (lua_Unsigned)-0x1234) luaL_error(L, "bad conversion number->int;" " must recompile Lua with proper settings"); lua_pop(L, 1); } inline void luaL_checkversion(lua_State* L) { luaL_checkversion_(L, LUA_VERSION_NUM); } #ifndef SOL_LUAJIT inline int luaL_fileresult(lua_State *L, int stat, const char *fname) { int en = errno; /* calls to Lua API may change this value */ if (stat) { lua_pushboolean(L, 1); return 1; } else { char buf[1024]; #ifdef __GLIBC__ strerror_r(en, buf, 1024); #else strerror_s(buf, 1024, en); #endif lua_pushnil(L); if (fname) lua_pushfstring(L, "%s: %s", fname, buf); else lua_pushstring(L, buf); lua_pushnumber(L, (lua_Number)en); return 3; } } #endif // luajit #endif // Lua 5.0 or Lua 5.1 #if SOL_LUA_VERSION == 501 typedef LUAI_INT32 LUA_INT32; /********************************************************************/ /* extract of 5.2's luaconf.h */ /* detects proper defines for faster unsigned<->number conversion */ /* see copyright notice at the end of this file */ /********************************************************************/ #if !defined(LUA_ANSI) && defined(_WIN32) && !defined(_WIN32_WCE) #define LUA_WIN /* enable goodies for regular Windows platforms */ #endif #if defined(LUA_NUMBER_DOUBLE) && !defined(LUA_ANSI) /* { */ /* Microsoft compiler on a Pentium (32 bit) ? */ #if defined(LUA_WIN) && defined(_MSC_VER) && defined(_M_IX86) /* { */ #define LUA_MSASMTRICK #define LUA_IEEEENDIAN 0 #define LUA_NANTRICK /* pentium 32 bits? */ #elif defined(__i386__) || defined(__i386) || defined(__X86__) /* }{ */ #define LUA_IEEE754TRICK #define LUA_IEEELL #define LUA_IEEEENDIAN 0 #define LUA_NANTRICK /* pentium 64 bits? */ #elif defined(__x86_64) /* }{ */ #define LUA_IEEE754TRICK #define LUA_IEEEENDIAN 0 #elif defined(__POWERPC__) || defined(__ppc__) /* }{ */ #define LUA_IEEE754TRICK #define LUA_IEEEENDIAN 1 #else /* }{ */ /* assume IEEE754 and a 32-bit integer type */ #define LUA_IEEE754TRICK #endif /* } */ #endif /* } */ /********************************************************************/ /* extract of 5.2's llimits.h */ /* gives us lua_number2unsigned and lua_unsigned2number */ /* see copyright notice just below this one here */ /********************************************************************/ /********************************************************************* * This file contains parts of Lua 5.2's source code: * * Copyright (C) 1994-2013 Lua.org, PUC-Rio. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *********************************************************************/ #if defined(MS_ASMTRICK) || defined(LUA_MSASMTRICK) /* { */ /* trick with Microsoft assembler for X86 */ #define lua_number2unsigned(i,n) \ {__int64 l; __asm {__asm fld n __asm fistp l} i = (unsigned int)l;} #elif defined(LUA_IEEE754TRICK) /* }{ */ /* the next trick should work on any machine using IEEE754 with a 32-bit int type */ union compat52_luai_Cast { double l_d; LUA_INT32 l_p[2]; }; #if !defined(LUA_IEEEENDIAN) /* { */ #define LUAI_EXTRAIEEE \ static const union compat52_luai_Cast ieeeendian = {-(33.0 + 6755399441055744.0)}; #define LUA_IEEEENDIANLOC (ieeeendian.l_p[1] == 33) #else #define LUA_IEEEENDIANLOC LUA_IEEEENDIAN #define LUAI_EXTRAIEEE /* empty */ #endif /* } */ #define lua_number2int32(i,n,t) \ { LUAI_EXTRAIEEE \ volatile union compat52_luai_Cast u; u.l_d = (n) + 6755399441055744.0; \ (i) = (t)u.l_p[LUA_IEEEENDIANLOC]; } #define lua_number2unsigned(i,n) lua_number2int32(i, n, lua_Unsigned) #endif /* } */ /* the following definitions always work, but may be slow */ #if !defined(lua_number2unsigned) /* { */ /* the following definition assures proper modulo behavior */ #if defined(LUA_NUMBER_DOUBLE) || defined(LUA_NUMBER_FLOAT) #include #define SUPUNSIGNED ((lua_Number)(~(lua_Unsigned)0) + 1) #define lua_number2unsigned(i,n) \ ((i)=(lua_Unsigned)((n) - floor((n)/SUPUNSIGNED)*SUPUNSIGNED)) #else #define lua_number2unsigned(i,n) ((i)=(lua_Unsigned)(n)) #endif #endif /* } */ #if !defined(lua_unsigned2number) /* on several machines, coercion from unsigned to double is slow, so it may be worth to avoid */ #define lua_unsigned2number(u) \ (((u) <= (lua_Unsigned)INT_MAX) ? (lua_Number)(int)(u) : (lua_Number)(u)) #endif /********************************************************************/ inline static void compat52_call_lua(lua_State *L, char const code[], size_t len, int nargs, int nret) { lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code); if (lua_type(L, -1) != LUA_TFUNCTION) { lua_pop(L, 1); if (luaL_loadbuffer(L, code, len, "=none")) lua_error(L); lua_pushvalue(L, -1); lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code); } lua_insert(L, -nargs - 1); lua_call(L, nargs, nret); } static const char compat52_arith_code[] = { "local op,a,b=...\n" "if op==0 then return a+b\n" "elseif op==1 then return a-b\n" "elseif op==2 then return a*b\n" "elseif op==3 then return a/b\n" "elseif op==4 then return a%b\n" "elseif op==5 then return a^b\n" "elseif op==6 then return -a\n" "end\n" }; inline void lua_arith(lua_State *L, int op) { if (op < LUA_OPADD || op > LUA_OPUNM) luaL_error(L, "invalid 'op' argument for lua_arith"); luaL_checkstack(L, 5, "not enough stack slots"); if (op == LUA_OPUNM) lua_pushvalue(L, -1); lua_pushnumber(L, op); lua_insert(L, -3); compat52_call_lua(L, compat52_arith_code, sizeof(compat52_arith_code) - 1, 3, 1); } static const char compat52_compare_code[] = { "local a,b=...\n" "return a<=b\n" }; inline int lua_compare(lua_State *L, int idx1, int idx2, int op) { int result = 0; switch (op) { case LUA_OPEQ: return lua_equal(L, idx1, idx2); case LUA_OPLT: return lua_lessthan(L, idx1, idx2); case LUA_OPLE: luaL_checkstack(L, 5, "not enough stack slots"); idx1 = lua_absindex(L, idx1); idx2 = lua_absindex(L, idx2); lua_pushvalue(L, idx1); lua_pushvalue(L, idx2); compat52_call_lua(L, compat52_compare_code, sizeof(compat52_compare_code) - 1, 2, 1); result = lua_toboolean(L, -1); lua_pop(L, 1); return result; default: luaL_error(L, "invalid 'op' argument for lua_compare"); } return 0; } inline void lua_pushunsigned(lua_State *L, lua_Unsigned n) { lua_pushnumber(L, lua_unsigned2number(n)); } inline lua_Unsigned luaL_checkunsigned(lua_State *L, int i) { lua_Unsigned result; lua_Number n = lua_tonumber(L, i); if (n == 0 && !lua_isnumber(L, i)) luaL_checktype(L, i, LUA_TNUMBER); lua_number2unsigned(result, n); return result; } inline lua_Unsigned lua_tounsignedx(lua_State *L, int i, int *isnum) { lua_Unsigned result; lua_Number n = lua_tonumberx(L, i, isnum); lua_number2unsigned(result, n); return result; } inline lua_Unsigned luaL_optunsigned(lua_State *L, int i, lua_Unsigned def) { return luaL_opt(L, luaL_checkunsigned, i, def); } inline lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum) { lua_Integer n = lua_tointeger(L, i); if (isnum != NULL) { *isnum = (n != 0 || lua_isnumber(L, i)); } return n; } inline void lua_len(lua_State *L, int i) { switch (lua_type(L, i)) { case LUA_TSTRING: /* fall through */ case LUA_TTABLE: if (!luaL_callmeta(L, i, "__len")) lua_pushnumber(L, (int)lua_objlen(L, i)); break; case LUA_TUSERDATA: if (luaL_callmeta(L, i, "__len")) break; /* maybe fall through */ default: luaL_error(L, "attempt to get length of a %s value", lua_typename(L, lua_type(L, i))); } } inline int luaL_len(lua_State *L, int i) { int res = 0, isnum = 0; luaL_checkstack(L, 1, "not enough stack slots"); lua_len(L, i); res = (int)lua_tointegerx(L, -1, &isnum); lua_pop(L, 1); if (!isnum) luaL_error(L, "object length is not a number"); return res; } inline const char *luaL_tolstring(lua_State *L, int idx, size_t *len) { if (!luaL_callmeta(L, idx, "__tostring")) { int t = lua_type(L, idx); switch (t) { case LUA_TNIL: lua_pushliteral(L, "nil"); break; case LUA_TSTRING: case LUA_TNUMBER: lua_pushvalue(L, idx); break; case LUA_TBOOLEAN: if (lua_toboolean(L, idx)) lua_pushliteral(L, "true"); else lua_pushliteral(L, "false"); break; default: lua_pushfstring(L, "%s: %p", lua_typename(L, t), lua_topointer(L, idx)); break; } } return lua_tolstring(L, -1, len); } inline void luaL_requiref(lua_State *L, char const* modname, lua_CFunction openf, int glb) { luaL_checkstack(L, 3, "not enough stack slots"); lua_pushcfunction(L, openf); lua_pushstring(L, modname); lua_call(L, 1, 1); lua_getglobal(L, "package"); if (lua_istable(L, -1) == 0) { lua_pop(L, 1); lua_createtable(L, 0, 16); lua_setglobal(L, "package"); lua_getglobal(L, "package"); } lua_getfield(L, -1, "loaded"); if (lua_istable(L, -1) == 0) { lua_pop(L, 1); lua_createtable(L, 0, 1); lua_setfield(L, -2, "loaded"); lua_getfield(L, -1, "loaded"); } lua_replace(L, -2); lua_pushvalue(L, -2); lua_setfield(L, -2, modname); lua_pop(L, 1); if (glb) { lua_pushvalue(L, -1); lua_setglobal(L, modname); } } inline void luaL_buffinit(lua_State *L, luaL_Buffer_52 *B) { /* make it crash if used via pointer to a 5.1-style luaL_Buffer */ B->b.p = NULL; B->b.L = NULL; B->b.lvl = 0; /* reuse the buffer from the 5.1-style luaL_Buffer though! */ B->ptr = B->b.buffer; B->capacity = LUAL_BUFFERSIZE; B->nelems = 0; B->L2 = L; } inline char *luaL_prepbuffsize(luaL_Buffer_52 *B, size_t s) { if (B->capacity - B->nelems < s) { /* needs to grow */ char* newptr = NULL; size_t newcap = B->capacity * 2; if (newcap - B->nelems < s) newcap = B->nelems + s; if (newcap < B->capacity) /* overflow */ luaL_error(B->L2, "buffer too large"); newptr = (char*)lua_newuserdata(B->L2, newcap); memcpy(newptr, B->ptr, B->nelems); if (B->ptr != B->b.buffer) lua_replace(B->L2, -2); /* remove old buffer */ B->ptr = newptr; B->capacity = newcap; } return B->ptr + B->nelems; } inline void luaL_addlstring(luaL_Buffer_52 *B, const char *s, size_t l) { memcpy(luaL_prepbuffsize(B, l), s, l); luaL_addsize(B, l); } inline void luaL_addvalue(luaL_Buffer_52 *B) { size_t len = 0; const char *s = lua_tolstring(B->L2, -1, &len); if (!s) luaL_error(B->L2, "cannot convert value to string"); if (B->ptr != B->b.buffer) lua_insert(B->L2, -2); /* userdata buffer must be at stack top */ luaL_addlstring(B, s, len); lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1); } inline void luaL_pushresult(luaL_Buffer_52 *B) { lua_pushlstring(B->L2, B->ptr, B->nelems); if (B->ptr != B->b.buffer) lua_replace(B->L2, -2); /* remove userdata buffer */ } #endif /* SOL_LUA_VERSION == 501 */ #endif // SOL_5_X_X_INL // end of sol/compatibility/5.x.x.inl #ifdef __cplusplus } #endif #endif // SOL_NO_COMPAT // end of sol/compatibility.hpp // beginning of sol/string_shim.hpp #pragma once namespace sol { namespace string_detail { struct string_shim { std::size_t s; const char* p; string_shim(const std::string& r) : string_shim(r.data(), r.size()) {} string_shim(const char* p) : string_shim(p, std::char_traits::length(p)) {} string_shim(const char* p, std::size_t s) : s(s), p(p) {} static int compare(const char* lhs_p, std::size_t lhs_sz, const char* rhs_p, std::size_t rhs_sz) { int result = std::char_traits::compare(lhs_p, rhs_p, lhs_sz < rhs_sz ? lhs_sz : rhs_sz); if (result != 0) return result; if (lhs_sz < rhs_sz) return -1; if (lhs_sz > rhs_sz) return 1; return 0; } const char* c_str() const { return p; } const char* data() const { return p; } std::size_t size() const { return s; } bool operator==(const string_shim& r) const { return compare(p, s, r.data(), r.size()) == 0; } bool operator==(const char* r) const { return compare(r, std::char_traits::length(r), p, s) == 0; } bool operator==(const std::string& r) const { return compare(r.data(), r.size(), p, s) == 0; } bool operator!=(const string_shim& r) const { return !(*this == r); } bool operator!=(const char* r) const { return !(*this == r); } bool operator!=(const std::string& r) const { return !(*this == r); } }; } }// end of sol/string_shim.hpp #include namespace sol { namespace detail { #ifdef SOL_NO_EXCEPTIONS template int static_trampoline(lua_State* L) { return f(L); } template int trampoline(lua_State* L, Fx&& f, Args&&... args) { return f(L, std::forward(args)...); } inline int c_trampoline(lua_State* L, lua_CFunction f) { return trampoline(L, f); } #else template int static_trampoline(lua_State* L) { try { return f(L); } catch (const char *s) { lua_pushstring(L, s); } catch (const std::exception& e) { lua_pushstring(L, e.what()); } catch (...) { lua_pushstring(L, "caught (...) exception"); } return lua_error(L); } template int trampoline(lua_State* L, Fx&& f, Args&&... args) { try { return f(L, std::forward(args)...); } catch (const char *s) { lua_pushstring(L, s); } catch (const std::exception& e) { lua_pushstring(L, e.what()); } catch (...) { lua_pushstring(L, "caught (...) exception"); } return lua_error(L); } inline int c_trampoline(lua_State* L, lua_CFunction f) { return trampoline(L, f); } #endif // Exceptions vs. No Exceptions template struct unique_usertype {}; template struct implicit_wrapper { T& item; implicit_wrapper(T* item) : item(*item) {} implicit_wrapper(T& item) : item(item) {} operator T& () { return item; } operator T* () { return std::addressof(item); } }; } // detail struct nil_t {}; const nil_t nil{}; inline bool operator==(nil_t, nil_t) { return true; } inline bool operator!=(nil_t, nil_t) { return false; } struct metatable_key_t {}; const metatable_key_t metatable_key = {}; struct no_metatable_t {}; const no_metatable_t no_metatable = {}; typedef std::remove_pointer_t lua_r_CFunction; template struct unique_usertype_traits { typedef T type; typedef T actual_type; static const bool value = false; template static bool is_null(U&&) { return false; } template static auto get(U&& value) { return std::addressof(detail::deref(value)); } }; template struct unique_usertype_traits> { typedef T type; typedef std::shared_ptr actual_type; static const bool value = true; static bool is_null(const actual_type& value) { return value == nullptr; } static type* get(const actual_type& p) { return p.get(); } }; template struct unique_usertype_traits> { typedef T type; typedef std::unique_ptr actual_type; static const bool value = true; static bool is_null(const actual_type& value) { return value == nullptr; } static type* get(const actual_type& p) { return p.get(); } }; template struct non_null {}; template struct function_sig {}; struct upvalue_index { int index; upvalue_index(int idx) : index(lua_upvalueindex(idx)) {} operator int() const { return index; } }; struct absolute_index { int index; absolute_index(lua_State* L, int idx) : index(lua_absindex(L, idx)) {} operator int() const { return index; } }; struct lightuserdata_value { void* value; lightuserdata_value(void* data) : value(data) {} operator void*() const { return value; } }; struct userdata_value { void* value; userdata_value(void* data) : value(data) {} operator void*() const { return value; } }; template struct light { L* value; light(L& x) : value(std::addressof(x)) {} light(L* x) : value(x) {} light(void* x) : value(static_cast(x)) {} operator L* () const { return value; } operator L& () const { return *value; } }; template auto make_light(T& l) { typedef meta::unwrapped_t>> L; return light(l); } template struct user { U value; user(U x) : value(std::move(x)) {} operator U* () { return std::addressof(value); } operator U& () { return value; } operator const U& () const { return value; } }; template auto make_user(T&& u) { typedef meta::unwrapped_t> U; return user(std::forward(u)); } template struct metatable_registry_key { T key; metatable_registry_key(T key) : key(std::forward(key)) {} }; template auto meta_registry_key(T&& key) { typedef meta::unqualified_t K; return metatable_registry_key(std::forward(key)); } template struct closure { lua_CFunction c_function; std::tuple upvalues; closure(lua_CFunction f, Upvalues... upvalues) : c_function(f), upvalues(std::forward(upvalues)...) {} }; template <> struct closure<> { lua_CFunction c_function; int upvalues; closure(lua_CFunction f, int upvalues = 0) : c_function(f), upvalues(upvalues) {} }; typedef closure<> c_closure; template closure make_closure(lua_CFunction f, Args&&... args) { return closure(f, std::forward(args)...); } template struct function_arguments { std::tuple params; template function_arguments(Args&&... args) : params(std::forward(args)...) {} }; template , typename... Args> function_arguments as_function(Args&&... args) { return function_arguments(std::forward(args)...); } template struct as_table_t { T source; template as_table_t(Args&&... args) : source(std::forward(args)...) {} operator std::add_lvalue_reference_t () { return source; } }; template as_table_t as_table(T&& container) { return as_table_t(std::forward(container)); } struct this_state { lua_State* L; operator lua_State* () const { return L; } lua_State* operator-> () const { return L; } }; enum class call_syntax { dot = 0, colon = 1 }; enum class call_status : int { ok = LUA_OK, yielded = LUA_YIELD, runtime = LUA_ERRRUN, memory = LUA_ERRMEM, handler = LUA_ERRERR, gc = LUA_ERRGCMM }; enum class thread_status : int { ok = LUA_OK, yielded = LUA_YIELD, runtime = LUA_ERRRUN, memory = LUA_ERRMEM, gc = LUA_ERRGCMM, handler = LUA_ERRERR, dead, }; enum class load_status : int { ok = LUA_OK, syntax = LUA_ERRSYNTAX, memory = LUA_ERRMEM, gc = LUA_ERRGCMM, file = LUA_ERRFILE, }; enum class type : int { none = LUA_TNONE, nil = LUA_TNIL, string = LUA_TSTRING, number = LUA_TNUMBER, thread = LUA_TTHREAD, boolean = LUA_TBOOLEAN, function = LUA_TFUNCTION, userdata = LUA_TUSERDATA, lightuserdata = LUA_TLIGHTUSERDATA, table = LUA_TTABLE, poly = none | nil | string | number | thread | table | boolean | function | userdata | lightuserdata }; enum class meta_function { construct, index, new_index, mode, call, metatable, to_string, length, unary_minus, addition, subtraction, multiplication, division, modulus, power_of, involution = power_of, concatenation, equal_to, less_than, less_than_or_equal_to, garbage_collect, call_function = call, }; typedef meta_function meta_method; const std::array meta_variable_names = { { "__index", "__newindex", } }; const std::array meta_function_names = { { "new", "__index", "__newindex", "__mode", "__call", "__metatable", "__tostring", "__len", "__unm", "__add", "__sub", "__mul", "__div", "__mod", "__pow", "__concat", "__eq", "__lt", "__le", "__gc", } }; inline const std::string& name_of(meta_function mf) { return meta_function_names[static_cast(mf)]; } inline type type_of(lua_State* L, int index) { return static_cast(lua_type(L, index)); } inline int type_panic(lua_State* L, int index, type expected, type actual) { return luaL_error(L, "stack index %d, expected %s, received %s", index, expected == type::poly ? "anything" : lua_typename(L, static_cast(expected)), expected == type::poly ? "anything" : lua_typename(L, static_cast(actual)) ); } // Specify this function as the handler for lua::check if you know there's nothing wrong inline int no_panic(lua_State*, int, type, type) noexcept { return 0; } inline void type_error(lua_State* L, int expected, int actual) { luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual)); } inline void type_error(lua_State* L, type expected, type actual) { type_error(L, static_cast(expected), static_cast(actual)); } inline void type_assert(lua_State* L, int index, type expected, type actual) { if (expected != type::poly && expected != actual) { type_panic(L, index, expected, actual); } } inline void type_assert(lua_State* L, int index, type expected) { type actual = type_of(L, index); type_assert(L, index, expected, actual); } inline std::string type_name(lua_State* L, type t) { return lua_typename(L, static_cast(t)); } class reference; class stack_reference; template struct proxy; template class usertype; template class basic_table_core; template using table_core = basic_table_core; template using stack_table_core = basic_table_core; typedef table_core table; typedef table_core global_table; typedef stack_table_core stack_table; typedef stack_table_core stack_global_table; template class basic_function; template class basic_protected_function; using function = basic_function; using protected_function = basic_protected_function; using stack_function = basic_function; using stack_protected_function = basic_protected_function; template class basic_object; template class basic_userdata; template class basic_lightuserdata; struct variadic_args; using object = basic_object; using stack_object = basic_object; using userdata = basic_userdata; using stack_userdata = basic_userdata; using lightuserdata = basic_lightuserdata; using stack_lightuserdata = basic_lightuserdata; class coroutine; class thread; struct variadic_args; struct this_state; namespace detail { template struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template struct lua_type_of : std::integral_constant {}; template struct lua_type_of : std::integral_constant {}; template struct lua_type_of : std::integral_constant {}; template struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant { }; template <> struct lua_type_of : std::integral_constant { }; template <> struct lua_type_of : std::integral_constant { }; template <> struct lua_type_of : std::integral_constant { }; template struct lua_type_of> : std::integral_constant { }; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of> : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template struct lua_type_of> : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template struct lua_type_of : std::integral_constant {}; template struct lua_type_of::value>> : std::integral_constant {}; template struct lua_type_of::value>> : std::integral_constant {}; template <> struct lua_type_of : std::integral_constant {}; template class V, typename... Args> struct accumulate : std::integral_constant {}; template class V, typename T, typename... Args> struct accumulate : accumulate::value, V, Args...> {}; } // detail template struct is_unique_usertype : std::integral_constant::value> {}; template struct lua_type_of : detail::lua_type_of {}; template struct lua_size : std::integral_constant { }; template struct lua_size> : std::integral_constant::value + lua_size::value> { }; template struct lua_size> : std::integral_constant::value> { }; template struct is_lua_primitive : std::integral_constant>::value || (lua_size::value > 1) || std::is_base_of>::value || std::is_base_of>::value || meta::is_specialization_of>::value || meta::is_specialization_of>::value > { }; template struct is_lua_reference : std::integral_constant>::value || std::is_base_of>::value || meta::is_specialization_of>::value > { }; template struct is_lua_primitive : std::true_type {}; template struct is_lua_primitive> : std::true_type { }; template struct is_lua_primitive> : std::true_type { }; template struct is_lua_primitive> : is_lua_primitive { }; template struct is_lua_primitive> : std::true_type {}; template <> struct is_lua_primitive : std::true_type {}; template <> struct is_lua_primitive : std::true_type {}; template struct is_lua_primitive> : is_lua_primitive {}; template struct is_proxy_primitive : is_lua_primitive { }; template struct is_transparent_argument : std::false_type {}; template <> struct is_transparent_argument : std::true_type {}; template <> struct is_transparent_argument : std::true_type {}; template struct lua_bind_traits : meta::bind_traits { private: typedef meta::bind_traits base_t; public: static const std::size_t true_arity = base_t::arity; static const std::size_t arity = base_t::arity - meta::count_for::value; static const std::size_t true_free_arity = base_t::free_arity; static const std::size_t free_arity = base_t::free_arity - meta::count_for::value; }; template struct is_table : std::false_type {}; template struct is_table> : std::true_type {}; template inline type type_of() { return lua_type_of>::value; } } // sol // end of sol/types.hpp // beginning of sol/stack_reference.hpp namespace sol { class stack_reference { private: lua_State* L = nullptr; int index = 0; protected: int registry_index() const noexcept { return LUA_NOREF; } public: stack_reference() noexcept = default; stack_reference(nil_t) noexcept : stack_reference() {}; stack_reference(lua_State* L, int i) noexcept : L(L), index(lua_absindex(L, i)) {} stack_reference(stack_reference&& o) noexcept = default; stack_reference& operator=(stack_reference&&) noexcept = default; stack_reference(const stack_reference&) noexcept = default; stack_reference& operator=(const stack_reference&) noexcept = default; int push() const noexcept { lua_pushvalue(L, index); return 1; } void pop(int n = 1) const noexcept { lua_pop(lua_state(), n); } int stack_index() const noexcept { return index; } type get_type() const noexcept { int result = lua_type(L, index); return static_cast(result); } lua_State* lua_state() const noexcept { return L; } bool valid() const noexcept { type t = get_type(); return t != type::nil && t != type::none; } }; inline bool operator== (const stack_reference& l, const stack_reference& r) { return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 0; } inline bool operator!= (const stack_reference& l, const stack_reference& r) { return !operator==(l, r); } } // sol // end of sol/stack_reference.hpp namespace sol { namespace stack { template struct push_popper_n { lua_State* L; int t; push_popper_n(lua_State* L, int x) : L(L), t(x) { } ~push_popper_n() { lua_pop(L, t); } }; template <> struct push_popper_n { push_popper_n(lua_State*, int) { } }; template struct push_popper { T t; push_popper(T x) : t(x) { t.push(); } ~push_popper() { t.pop(); } }; template struct push_popper { push_popper(T) {} ~push_popper() {} }; template push_popper push_pop(T&& x) { return push_popper(std::forward(x)); } template push_popper_n pop_n(lua_State* L, int x) { return push_popper_n(L, x); } } // stack namespace detail { struct global_tag { } const global_{}; } // detail class reference { private: lua_State* L = nullptr; // non-owning int ref = LUA_NOREF; int copy() const noexcept { if (ref == LUA_NOREF) return LUA_NOREF; push(); return luaL_ref(L, LUA_REGISTRYINDEX); } protected: reference(lua_State* L, detail::global_tag) noexcept : L(L) { lua_pushglobaltable(L); ref = luaL_ref(L, LUA_REGISTRYINDEX); } int stack_index() const noexcept { return -1; } public: reference() noexcept = default; reference(nil_t) noexcept : reference() {} reference(const stack_reference& r) noexcept : reference(r.lua_state(), r.stack_index()) {} reference(stack_reference&& r) noexcept : reference(r.lua_state(), r.stack_index()) {} reference(lua_State* L, int index = -1) noexcept : L(L) { lua_pushvalue(L, index); ref = luaL_ref(L, LUA_REGISTRYINDEX); } virtual ~reference() noexcept { luaL_unref(L, LUA_REGISTRYINDEX, ref); } reference(reference&& o) noexcept { L = o.L; ref = o.ref; o.L = nullptr; o.ref = LUA_NOREF; } reference& operator=(reference&& o) noexcept { L = o.L; ref = o.ref; o.L = nullptr; o.ref = LUA_NOREF; return *this; } reference(const reference& o) noexcept { L = o.L; ref = o.copy(); } reference& operator=(const reference& o) noexcept { L = o.L; ref = o.copy(); return *this; } int push() const noexcept { lua_rawgeti(L, LUA_REGISTRYINDEX, ref); return 1; } void pop(int n = 1) const noexcept { lua_pop(lua_state(), n); } int registry_index() const noexcept { return ref; } bool valid() const noexcept { return !(ref == LUA_NOREF || ref == LUA_REFNIL); } explicit operator bool() const noexcept { return valid(); } type get_type() const noexcept { auto pp = stack::push_pop(*this); int result = lua_type(L, -1); return static_cast(result); } lua_State* lua_state() const noexcept { return L; } }; inline bool operator== (const reference& l, const reference& r) { auto ppl = stack::push_pop(l); auto ppr = stack::push_pop(r); return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1; } inline bool operator!= (const reference& l, const reference& r) { return !operator==(l, r); } } // sol // end of sol/reference.hpp // beginning of sol/stack.hpp // beginning of sol/stack_core.hpp // beginning of sol/userdata.hpp namespace sol { template class basic_userdata : public base_t { public: basic_userdata() noexcept = default; basic_userdata(const basic_userdata&) = default; basic_userdata(basic_userdata&&) = default; basic_userdata& operator=(const basic_userdata&) = default; basic_userdata& operator=(basic_userdata&&) = default; basic_userdata(const stack_reference& r) : basic_userdata(r.lua_state(), r.stack_index()) {} basic_userdata(stack_reference&& r) : basic_userdata(r.lua_state(), r.stack_index()) {} basic_userdata(lua_State* L, int index = -1) : base_t(L, index) { #ifdef SOL_CHECK_ARGUMENTS type_assert(L, index, type::userdata); #endif // Safety } }; template class basic_lightuserdata : public base_t { public: basic_lightuserdata() noexcept = default; basic_lightuserdata(const basic_lightuserdata&) = default; basic_lightuserdata(basic_lightuserdata&&) = default; basic_lightuserdata& operator=(const basic_lightuserdata&) = default; basic_lightuserdata& operator=(basic_lightuserdata&&) = default; basic_lightuserdata(const stack_reference& r) : basic_lightuserdata(r.lua_state(), r.stack_index()) {} basic_lightuserdata(stack_reference&& r) : basic_lightuserdata(r.lua_state(), r.stack_index()) {} basic_lightuserdata(lua_State* L, int index = -1) : base_t(L, index) { #ifdef SOL_CHECK_ARGUMENTS type_assert(L, index, type::lightuserdata); #endif // Safety } }; } // sol // end of sol/userdata.hpp // beginning of sol/tie.hpp namespace sol { namespace detail { template struct is_speshul : std::false_type {}; } template struct tie_size : std::tuple_size {}; template struct is_tieable : std::integral_constant::value > 0)> {}; template struct tie_t : public std::tuple...> { private: typedef std::tuple...> base_t; template void set(std::false_type, T&& target) { std::get<0>(*this) = std::forward(target); } template void set(std::true_type, T&& target) { typedef tie_size> value_size; typedef tie_size> tie_size; typedef std::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size; typedef std::make_index_sequence indices; set_extra(detail::is_speshul>(), indices(), std::forward(target)); } template void set_extra(std::true_type, std::index_sequence, T&& target) { using std::get; (void)detail::swallow{ 0, (get(*this) = get(types(), target), 0)... , 0 }; } template void set_extra(std::false_type, std::index_sequence, T&& target) { using std::get; (void)detail::swallow{ 0, (get(*this) = get(target), 0)... , 0 }; } public: using base_t::base_t; template tie_t& operator= (T&& value) { typedef is_tieable> tieable; set(tieable(), std::forward(value)); return *this; } }; template struct tie_size<::sol::tie_t> : ::std::tuple_size<::std::tuple> { }; namespace adl_barrier_detail { template inline tie_t...> tie(Tn&&... argn) { return tie_t...>(std::forward(argn)...); } } using namespace adl_barrier_detail; } // sol // end of sol/tie.hpp #include namespace sol { namespace detail { struct as_reference_tag {}; template struct as_pointer_tag {}; template struct as_value_tag {}; using special_destruct_func = void(*)(void*); template inline void special_destruct(void* memory) { T** pointerpointer = static_cast(memory); special_destruct_func* dx = static_cast(static_cast(pointerpointer + 1)); Real* target = static_cast(static_cast(dx + 1)); target->~Real(); } template inline int unique_destruct(lua_State* L) { void* memory = lua_touserdata(L, 1); T** pointerpointer = static_cast(memory); special_destruct_func& dx = *static_cast(static_cast(pointerpointer + 1)); (dx)(memory); return 0; } template inline int user_alloc_destroy(lua_State* L) { void* rawdata = lua_touserdata(L, upvalue_index(1)); T* data = static_cast(rawdata); std::allocator alloc; alloc.destroy(data); return 0; } template inline int usertype_alloc_destroy(lua_State* L) { void* rawdata = lua_touserdata(L, 1); T** pdata = static_cast(rawdata); T* data = *pdata; std::allocator alloc{}; alloc.destroy(data); return 0; } template void reserve(T&, std::size_t) {} template void reserve(std::vector& arr, std::size_t hint) { arr.reserve(hint); } template void reserve(std::basic_string& arr, std::size_t hint) { arr.reserve(hint); } } // detail namespace stack { template struct field_getter; template struct probe_field_getter; template struct field_setter; template struct getter; template struct popper; template struct pusher; template::value, typename = void> struct checker; template struct check_getter; struct probe { bool success; int levels; probe(bool s, int l) : success(s), levels(l) {} operator bool() const { return success; }; }; struct record { int last; int used; record() : last(), used() {} void use(int count) { last = count; used += count; } }; namespace stack_detail { template struct strip { typedef T type; }; template struct strip> { typedef T& type; }; template struct strip> { typedef T& type; }; template struct strip> { typedef T type; }; template using strip_t = typename strip::type; const bool default_check_arguments = #ifdef SOL_CHECK_ARGUMENTS true; #else false; #endif template inline decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) { return getter>{}.get(L, index, tracking); } } // stack_detail inline bool maybe_indexable(lua_State* L, int index = -1) { type t = type_of(L, index); return t == type::userdata || t == type::table; } template inline int push(lua_State* L, T&& t, Args&&... args) { return pusher>{}.push(L, std::forward(t), std::forward(args)...); } // overload allows to use a pusher of a specific type, but pass in any kind of args template::value>> inline int push(lua_State* L, Arg&& arg, Args&&... args) { return pusher>{}.push(L, std::forward(arg), std::forward(args)...); } template inline int push_reference(lua_State* L, T&& t, Args&&... args) { typedef meta::all< std::is_lvalue_reference, meta::neg>, meta::neg>>, meta::neg>> > use_reference_tag; return pusher>>{}.push(L, std::forward(t), std::forward(args)...); } inline int multi_push(lua_State*) { // do nothing return 0; } template inline int multi_push(lua_State* L, T&& t, Args&&... args) { int pushcount = push(L, std::forward(t)); void(sol::detail::swallow{ (pushcount += sol::stack::push(L, std::forward(args)), 0)... }); return pushcount; } inline int multi_push_reference(lua_State*) { // do nothing return 0; } template inline int multi_push_reference(lua_State* L, T&& t, Args&&... args) { int pushcount = push_reference(L, std::forward(t)); void(sol::detail::swallow{ (pushcount += sol::stack::push_reference(L, std::forward(args)), 0)... }); return pushcount; } template bool check(lua_State* L, int index, Handler&& handler, record& tracking) { typedef meta::unqualified_t Tu; checker c; // VC++ has a bad warning here: shut it up (void)c; return c.check(L, index, std::forward(handler), tracking); } template bool check(lua_State* L, int index, Handler&& handler) { record tracking{}; return check(L, index, std::forward(handler), tracking); } template bool check(lua_State* L, int index = -lua_size>::value) { auto handler = no_panic; return check(L, index, handler); } template inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) { return check_getter>{}.get(L, index, std::forward(handler), tracking); } template inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler) { record tracking{}; return check_get(L, index, handler, tracking); } template inline decltype(auto) check_get(lua_State* L, int index = -lua_size>::value) { auto handler = no_panic; return check_get(L, index, handler); } namespace stack_detail { #ifdef SOL_CHECK_ARGUMENTS template inline auto tagged_get(types, lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get(L, index, tracking)) { auto op = check_get(L, index, type_panic, tracking); return *op; } #else template inline decltype(auto) tagged_get(types, lua_State* L, int index, record& tracking) { return stack_detail::unchecked_get(L, index, tracking); } #endif template inline decltype(auto) tagged_get(types>, lua_State* L, int index, record& tracking) { return stack_detail::unchecked_get>(L, index, tracking); } template struct check_types { template static bool check(types, lua_State* L, int firstargument, Handler&& handler, record& tracking) { if (!stack::check(L, firstargument + tracking.used, handler, tracking)) return false; return check(types(), L, firstargument, std::forward(handler), tracking); } template static bool check(types<>, lua_State*, int, Handler&&, record&) { return true; } }; template <> struct check_types { template static bool check(types, lua_State*, int, Handler&&, record&) { return true; } }; } // stack_detail template bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) { return stack_detail::check_types{}.check(types...>(), L, index, std::forward(handler), tracking); } template bool multi_check(lua_State* L, int index, Handler&& handler) { record tracking{}; return multi_check(L, index, std::forward(handler), tracking); } template bool multi_check(lua_State* L, int index) { auto handler = no_panic; return multi_check(L, index, handler); } template bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) { return multi_check(L, index, std::forward(handler), tracking); } template bool multi_check(lua_State* L, int index, Handler&& handler) { return multi_check(L, index, std::forward(handler)); } template bool multi_check(lua_State* L, int index) { return multi_check(L, index); } template inline decltype(auto) get(lua_State* L, int index, record& tracking) { return stack_detail::tagged_get(types(), L, index, tracking); } template inline decltype(auto) get(lua_State* L, int index = -lua_size>::value) { record tracking{}; return get(L, index, tracking); } template inline decltype(auto) pop(lua_State* L) { return popper>{}.pop(L); } template void get_field(lua_State* L, Key&& key) { field_getter, global, raw>{}.get(L, std::forward(key)); } template void get_field(lua_State* L, Key&& key, int tableindex) { field_getter, global, raw>{}.get(L, std::forward(key), tableindex); } template void raw_get_field(lua_State* L, Key&& key) { get_field(L, std::forward(key)); } template void raw_get_field(lua_State* L, Key&& key, int tableindex) { get_field(L, std::forward(key), tableindex); } template probe probe_get_field(lua_State* L, Key&& key) { return probe_field_getter, global, raw>{}.get(L, std::forward(key)); } template probe probe_get_field(lua_State* L, Key&& key, int tableindex) { return probe_field_getter, global, raw>{}.get(L, std::forward(key), tableindex); } template probe probe_raw_get_field(lua_State* L, Key&& key) { return probe_get_field(L, std::forward(key)); } template probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) { return probe_get_field(L, std::forward(key), tableindex); } template void set_field(lua_State* L, Key&& key, Value&& value) { field_setter, global, raw>{}.set(L, std::forward(key), std::forward(value)); } template void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) { field_setter, global, raw>{}.set(L, std::forward(key), std::forward(value), tableindex); } template void raw_set_field(lua_State* L, Key&& key, Value&& value) { set_field(L, std::forward(key), std::forward(value)); } template void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) { set_field(L, std::forward(key), std::forward(value), tableindex); } } // stack } // sol // end of sol/stack_core.hpp // beginning of sol/stack_check.hpp // beginning of sol/usertype_traits.hpp // beginning of sol/demangle.hpp #include namespace sol { namespace detail { #ifdef _MSC_VER template inline std::string ctti_get_type_name() { const static std::array removals = { { "public:", "private:", "protected:", "struct ", "class ", "`anonymous-namespace'", "`anonymous namespace'" } }; std::string name = __FUNCSIG__; std::size_t start = name.find("get_type_name"); if (start == std::string::npos) start = 0; else start += 13; if (start < name.size() - 1) start += 1; std::size_t end = name.find_last_of('>'); if (end == std::string::npos) end = name.size(); name = name.substr(start, end - start); if (name.find("struct", 0) == 0) name.replace(0, 6, "", 0); if (name.find("class", 0) == 0) name.replace(0, 5, "", 0); while (!name.empty() && std::isblank(name.front())) name.erase(name.begin()); while (!name.empty() && std::isblank(name.back())) name.pop_back(); for (std::size_t r = 0; r < removals.size(); ++r) { auto found = name.find(removals[r]); while (found != std::string::npos) { name.erase(found, removals[r].size()); found = name.find(removals[r]); } } return name; } #elif defined(__GNUC__) || defined(__clang__) template inline std::string ctti_get_type_name() { const static std::array removals = { { "{anonymous}", "(anonymous namespace)" } }; std::string name = __PRETTY_FUNCTION__; std::size_t start = name.find_first_of('['); start = name.find_first_of('=', start); std::size_t end = name.find_last_of(']'); if (end == std::string::npos) end = name.size(); if (start == std::string::npos) start = 0; if (start < name.size() - 1) start += 1; name = name.substr(start, end - start); start = name.rfind("seperator_mark"); if (start != std::string::npos) { name.erase(start - 2, name.length()); } while (!name.empty() && std::isblank(name.front())) name.erase(name.begin()); while (!name.empty() && std::isblank(name.back())) name.pop_back(); for (std::size_t r = 0; r < removals.size(); ++r) { auto found = name.find(removals[r]); while (found != std::string::npos) { name.erase(found, removals[r].size()); found = name.find(removals[r]); } } return name; } #else #error Compiler not supported for demangling #endif // compilers template inline std::string demangle_once() { std::string realname = ctti_get_type_name(); return realname; } template inline std::string short_demangle_once() { std::string realname = ctti_get_type_name(); // This isn't the most complete but it'll do for now...? static const std::array ops = { { "operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*" } }; int level = 0; std::ptrdiff_t idx = 0; for (idx = static_cast(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) { if (level == 0 && realname[idx] == ':') { break; } bool isleft = realname[idx] == '<'; bool isright = realname[idx] == '>'; if (!isleft && !isright) continue; bool earlybreak = false; for (const auto& op : ops) { std::size_t nisop = realname.rfind(op, idx); if (nisop == std::string::npos) continue; std::size_t nisopidx = idx - op.size() + 1; if (nisop == nisopidx) { idx = static_cast(nisopidx); earlybreak = true; } break; } if (earlybreak) { continue; } level += isleft ? -1 : 1; } if (idx > 0) { realname.erase(0, realname.length() < static_cast(idx) ? realname.length() : idx + 1); } return realname; } template inline std::string demangle() { static const std::string d = demangle_once(); return d; } template inline std::string short_demangle() { static const std::string d = short_demangle_once(); return d; } } // detail } // sol // end of sol/demangle.hpp namespace sol { template struct usertype_traits { static const std::string name; static const std::string qualified_name; static const std::string metatable; static const std::string user_gc_metatable; static const std::string gc_table; }; template const std::string usertype_traits::name = detail::short_demangle(); template const std::string usertype_traits::qualified_name = detail::demangle(); template const std::string usertype_traits::metatable = std::string("sol.").append(detail::demangle()); template const std::string usertype_traits::user_gc_metatable = std::string("sol.").append(detail::demangle()).append(".user\xE2\x99\xBB"); template const std::string usertype_traits::gc_table = std::string("sol.").append(detail::demangle().append(".\xE2\x99\xBB")); } // end of sol/usertype_traits.hpp // beginning of sol/inheritance.hpp #include namespace sol { template struct base_list { }; template using bases = base_list; typedef bases<> base_classes_tag; const auto base_classes = base_classes_tag(); namespace detail { template struct has_derived { static bool value; }; template bool has_derived::value = false; inline std::size_t unique_id() { static std::atomic x(0); return ++x; } template struct id_for { static const std::size_t value; }; template const std::size_t id_for::value = unique_id(); inline decltype(auto) base_class_check_key() { static const auto& key = u8"♡o。.(✿ฺ。 ✿ฺ)"; return key; } inline decltype(auto) base_class_cast_key() { static const auto& key = u8"(◕‿◕✿)"; return key; } inline decltype(auto) base_class_index_propogation_key() { static const auto& key = u8"\xF0\x9F\x8C\xB2.index"; return key; } inline decltype(auto) base_class_new_index_propogation_key() { static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index"; return key; } template struct inheritance { static bool type_check_bases(types<>, std::size_t) { return false; } template static bool type_check_bases(types, std::size_t ti) { return ti != id_for::value || type_check_bases(types(), ti); } static bool type_check(std::size_t ti) { return ti != id_for::value || type_check_bases(types(), ti); } static void* type_cast_bases(types<>, T*, std::size_t) { return nullptr; } template static void* type_cast_bases(types, T* data, std::size_t ti) { // Make sure to convert to T first, and then dynamic cast to the proper type return ti != id_for::value ? type_cast_bases(types(), data, ti) : static_cast(static_cast(data)); } static void* type_cast(void* voiddata, std::size_t ti) { T* data = static_cast(voiddata); return static_cast(ti != id_for::value ? type_cast_bases(types(), data, ti) : data); } }; using inheritance_check_function = decltype(&inheritance::type_check); using inheritance_cast_function = decltype(&inheritance::type_cast); } // detail } // sol // end of sol/inheritance.hpp #include namespace sol { namespace stack { namespace stack_detail { template inline bool check_metatable(lua_State* L, int index = -2) { const auto& metakey = usertype_traits::metatable; luaL_getmetatable(L, &metakey[0]); const type expectedmetatabletype = static_cast(lua_type(L, -1)); if (expectedmetatabletype != type::nil) { if (lua_rawequal(L, -1, index) == 1) { lua_pop(L, 2); return true; } } lua_pop(L, 1); return false; } template struct basic_check { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { tracking.use(1); bool success = check_func(L, index) == 1; if (!success) { // expected type, actual type handler(L, index, expected, type_of(L, index)); } return success; } }; } // stack_detail template struct checker { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { tracking.use(1); const type indextype = type_of(L, index); bool success = expected == indextype; if (!success) { // expected type, actual type handler(L, index, expected, indextype); } return success; } }; template struct checker { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { bool success = lua_isnil(L, index); if (success) { tracking.use(1); return success; } tracking.use(0); success = lua_isnone(L, index); if (!success) { // expected type, actual type handler(L, index, expected, type_of(L, index)); } return success; } }; template struct checker : checker {}; template struct checker { template static bool check(lua_State*, int, Handler&&, record& tracking) { tracking.use(0); return true; } }; template struct checker { template static bool check(lua_State*, int, Handler&&, record& tracking) { tracking.use(0); return true; } }; template struct checker { template static bool check(lua_State*, int, Handler&&, record& tracking) { tracking.use(0); return true; } }; template struct checker { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { tracking.use(1); bool success = !lua_isnone(L, index); if (!success) { // expected type, actual type handler(L, index, type::none, type_of(L, index)); } return success; } }; template struct checker { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { tracking.use(1); type t = type_of(L, index); bool success = t == type::userdata || t == type::lightuserdata; if (!success) { // expected type, actual type handler(L, index, type::lightuserdata, t); } return success; } }; template struct checker { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { tracking.use(1); type t = type_of(L, index); bool success = t == type::userdata; if (!success) { // expected type, actual type handler(L, index, type::userdata, t); } return success; } }; template struct checker, type::userdata, C> : checker, type::lightuserdata, C> {}; template struct checker, type::userdata, C> : checker::value, C> {}; template struct checker : stack_detail::basic_check {}; template struct checker, type::function, C> : checker {}; template struct checker : checker {}; template struct checker { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { tracking.use(1); type t = type_of(L, index); if (t == type::nil || t == type::none || t == type::function) { // allow for nil to be returned return true; } if (t != type::userdata && t != type::table) { handler(L, index, type::function, t); return false; } // Do advanced check for call-style userdata? static const auto& callkey = name_of(meta_function::call); lua_getmetatable(L, index); if (lua_isnoneornil(L, -1)) { lua_pop(L, 1); handler(L, index, type::function, t); return false; } lua_getfield(L, -1, &callkey[0]); if (lua_isnoneornil(L, -1)) { lua_pop(L, 2); handler(L, index, type::function, t); return false; } // has call, is definitely a function lua_pop(L, 2); return true; } }; template struct checker { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { tracking.use(1); type t = type_of(L, index); if (t == type::table) { return true; } if (t != type::userdata) { handler(L, index, type::function, t); return false; } return true; } }; template struct checker { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { const type indextype = type_of(L, index); // Allow nil to be transformed to nullptr if (indextype == type::nil) { tracking.use(1); return true; } return checker, type::userdata, C>{}.check(types>(), L, indextype, index, std::forward(handler), tracking); } }; template struct checker { template static bool check(types, lua_State* L, type indextype, int index, Handler&& handler, record& tracking) { tracking.use(1); if (indextype != type::userdata) { handler(L, index, type::userdata, indextype); return false; } if (meta::any, std::is_same, std::is_same, std::is_same>::value) return true; if (lua_getmetatable(L, index) == 0) { return true; } if (stack_detail::check_metatable(L)) return true; if (stack_detail::check_metatable(L)) return true; if (stack_detail::check_metatable>(L)) return true; bool success = false; if (detail::has_derived::value) { auto pn = stack::pop_n(L, 1); lua_getfield(L, -1, &detail::base_class_check_key()[0]); if (type_of(L, -1) != type::nil) { void* basecastdata = lua_touserdata(L, -1); detail::inheritance_check_function ic = (detail::inheritance_check_function)basecastdata; success = ic(detail::id_for::value); } } if (!success) { lua_pop(L, 1); handler(L, index, type::userdata, indextype); return false; } lua_pop(L, 1); return true; } template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { const type indextype = type_of(L, index); return check(types(), L, indextype, index, std::forward(handler), tracking); } }; template struct checker::value>> { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { return checker::type, type::userdata>{}.check(L, index, std::forward(handler), tracking); } }; template struct checker, type::userdata, C> { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { return checker{}.check(L, index, std::forward(handler), tracking); } }; template struct checker, type::poly, C> { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { return stack::multi_check(L, index, std::forward(handler), tracking); } }; template struct checker, type::poly, C> { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { return stack::multi_check(L, index, std::forward(handler), tracking); } }; template struct checker, type::poly, C> { template static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { type t = type_of(L, index); if (t == type::none) { tracking.use(0); return true; } return t == type::nil || stack::check(L, index, std::forward(handler), tracking); } }; } // stack } // sol // end of sol/stack_check.hpp // beginning of sol/stack_get.hpp // beginning of sol/overload.hpp namespace sol { template struct overload_set { std::tuple set; template >> = meta::enabler> overload_set (Arg&& arg, Args&&... args) : set(std::forward(arg), std::forward(args)...) {} overload_set(const overload_set&) = default; overload_set(overload_set&&) = default; overload_set& operator=(const overload_set&) = default; overload_set& operator=(overload_set&&) = default; }; template decltype(auto) overload(Args&&... args) { return overload_set...>(std::forward(args)...); } } // end of sol/overload.hpp #ifdef SOL_CODECVT_SUPPORT #include #include #endif namespace sol { namespace stack { template struct getter { static T& get(lua_State* L, int index, record& tracking) { return getter{}.get(L, index, tracking); } }; template struct getter::value>> { static T get(lua_State* L, int index, record& tracking) { tracking.use(1); return static_cast(lua_tonumber(L, index)); } }; template struct getter, std::is_signed>::value>> { static T get(lua_State* L, int index, record& tracking) { tracking.use(1); return static_cast(lua_tointeger(L, index)); } }; template struct getter, std::is_unsigned>::value>> { static T get(lua_State* L, int index, record& tracking) { tracking.use(1); return static_cast(lua_tointeger(L, index)); } }; template struct getter::value>> { static T get(lua_State* L, int index, record& tracking) { tracking.use(1); return static_cast(lua_tointegerx(L, index, nullptr)); } }; template struct getter, std::enable_if_t>::value>> { static T get(lua_State* L, int index, record& tracking) { typedef typename T::value_type V; tracking.use(1); index = lua_absindex(L, index); T arr; get_field(L, static_cast(-1), index); int isnum; std::size_t sizehint = static_cast(lua_tointegerx(L, -1, &isnum)); if (isnum != 0) { detail::reserve(arr, sizehint); } lua_pop(L, 1); #if SOL_LUA_VERSION >= 503 // This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3 for (lua_Integer i = 0; ; i += lua_size::value, lua_pop(L, lua_size::value)) { for (int vi = 0; vi < lua_size::value; ++vi) { type t = static_cast(lua_geti(L, index, i + vi)); if (t == type::nil) { if (i == 0) { continue; } else { lua_pop(L, (vi + 1)); return arr; } } } arr.push_back(stack::get(L, -lua_size::value)); } #else // Zzzz slower but necessary thanks to the lower version API and missing functions qq for (lua_Integer i = 0; ; i += lua_size::value, lua_pop(L, lua_size::value)) { for (int vi = 0; vi < lua_size::value; ++vi) { lua_pushinteger(L, i); lua_gettable(L, index); type t = type_of(L, -1); if (t == type::nil) { if (i == 0) { continue; } else { lua_pop(L, (vi + 1)); return arr; } } } arr.push_back(stack::get(L, -1)); } #endif return arr; } }; template struct getter, std::enable_if_t>::value>> { static T get(lua_State* L, int index, record& tracking) { typedef typename T::value_type P; typedef typename P::first_type K; typedef typename P::second_type V; tracking.use(1); T associative; index = lua_absindex(L, index); lua_pushnil(L); while (lua_next(L, index) != 0) { decltype(auto) key = stack::check_get(L, -2); if (!key) { lua_pop(L, 1); continue; } associative.emplace(std::forward(*key), stack::get(L, -1)); lua_pop(L, 1); } return associative; } }; template struct getter::value || std::is_base_of::value>> { static T get(lua_State* L, int index, record& tracking) { tracking.use(1); return T(L, index); } }; template<> struct getter { static userdata_value get(lua_State* L, int index, record& tracking) { tracking.use(1); return userdata_value(lua_touserdata(L, index)); } }; template<> struct getter { static lightuserdata_value get(lua_State* L, int index, record& tracking) { tracking.use(1); return lightuserdata_value(lua_touserdata(L, index)); } }; template struct getter> { static light get(lua_State* L, int index, record& tracking) { tracking.use(1); return light(static_cast(lua_touserdata(L, index))); } }; template struct getter> { static T& get(lua_State* L, int index, record& tracking) { tracking.use(1); return *static_cast(lua_touserdata(L, index)); } }; template struct getter> { static T* get(lua_State* L, int index, record& tracking) { tracking.use(1); return static_cast(lua_touserdata(L, index)); } }; template<> struct getter { static type get(lua_State *L, int index, record& tracking) { tracking.use(1); return static_cast(lua_type(L, index)); } }; template<> struct getter { static bool get(lua_State* L, int index, record& tracking) { tracking.use(1); return lua_toboolean(L, index) != 0; } }; template<> struct getter { static std::string get(lua_State* L, int index, record& tracking) { tracking.use(1); std::size_t len; auto str = lua_tolstring(L, index, &len); return std::string( str, len ); } }; template <> struct getter { string_detail::string_shim get(lua_State* L, int index, record& tracking) { tracking.use(1); size_t len; const char* p = lua_tolstring(L, index, &len); return string_detail::string_shim(p, len); } }; template<> struct getter { static const char* get(lua_State* L, int index, record& tracking) { tracking.use(1); return lua_tostring(L, index); } }; template<> struct getter { static char get(lua_State* L, int index, record& tracking) { tracking.use(1); size_t len; auto str = lua_tolstring(L, index, &len); return len > 0 ? str[0] : '\0'; } }; #ifdef SOL_CODECVT_SUPPORT template<> struct getter { static std::wstring get(lua_State* L, int index, record& tracking) { tracking.use(1); size_t len; auto str = lua_tolstring(L, index, &len); if (len < 1) return std::wstring(); if (sizeof(wchar_t) == 2) { std::wstring_convert> convert; std::wstring r = convert.from_bytes(str, str + len); #ifdef __MINGW32__ // Fuck you, MinGW, and fuck you libstdc++ for introducing this absolutely asinine bug // https://sourceforge.net/p/mingw-w64/bugs/538/ // http://chat.stackoverflow.com/transcript/message/32271369#32271369 for (auto& c : r) { uint8_t* b = reinterpret_cast(&c); std::swap(b[0], b[1]); } #endif return r; } std::wstring_convert> convert; std::wstring r = convert.from_bytes(str, str + len); return r; } }; template<> struct getter { static std::u16string get(lua_State* L, int index, record& tracking) { tracking.use(1); size_t len; auto str = lua_tolstring(L, index, &len); if (len < 1) return std::u16string(); #ifdef _MSC_VER std::wstring_convert, int16_t> convert; auto intd = convert.from_bytes(str, str + len); std::u16string r(intd.size(), '\0'); std::memcpy(&r[0], intd.data(), intd.size() * sizeof(char16_t)); #else std::wstring_convert, char16_t> convert; std::u16string r = convert.from_bytes(str, str + len); #endif // VC++ is a shit return r; } }; template<> struct getter { static std::u32string get(lua_State* L, int index, record& tracking) { tracking.use(1); size_t len; auto str = lua_tolstring(L, index, &len); if (len < 1) return std::u32string(); #ifdef _MSC_VER std::wstring_convert, int32_t> convert; auto intd = convert.from_bytes(str, str + len); std::u32string r(intd.size(), '\0'); std::memcpy(&r[0], intd.data(), r.size() * sizeof(char32_t)); #else std::wstring_convert, char32_t> convert; std::u32string r = convert.from_bytes(str, str + len); #endif // VC++ is a shit return r; } }; template<> struct getter { static wchar_t get(lua_State* L, int index, record& tracking) { auto str = getter{}.get(L, index, tracking); return str.size() > 0 ? str[0] : '\0'; } }; template<> struct getter { static char get(lua_State* L, int index, record& tracking) { auto str = getter{}.get(L, index, tracking); return str.size() > 0 ? str[0] : '\0'; } }; template<> struct getter { static char32_t get(lua_State* L, int index, record& tracking) { auto str = getter{}.get(L, index, tracking); return str.size() > 0 ? str[0] : '\0'; } }; #endif // codecvt header support template<> struct getter { static meta_function get(lua_State *L, int index, record& tracking) { tracking.use(1); const char* name = getter{}.get(L, index, tracking); for (std::size_t i = 0; i < meta_function_names.size(); ++i) if (meta_function_names[i] == name) return static_cast(i); return meta_function::construct; } }; template<> struct getter { static nil_t get(lua_State*, int, record& tracking) { tracking.use(1); return nil; } }; template<> struct getter { static std::nullptr_t get(lua_State*, int, record& tracking) { tracking.use(1); return nullptr; } }; template<> struct getter { static nullopt_t get(lua_State*, int, record& tracking) { tracking.use(1); return nullopt; } }; template<> struct getter { static this_state get(lua_State* L, int, record& tracking) { tracking.use(0); return this_state{ L }; } }; template<> struct getter { static lua_CFunction get(lua_State* L, int index, record& tracking) { tracking.use(1); return lua_tocfunction(L, index); } }; template<> struct getter { static c_closure get(lua_State* L, int index, record& tracking) { tracking.use(1); return c_closure(lua_tocfunction(L, index), -1); } }; template<> struct getter { static error get(lua_State* L, int index, record& tracking) { tracking.use(1); size_t sz = 0; const char* err = lua_tolstring(L, index, &sz); if (err == nullptr) { return error(detail::direct_error, ""); } return error(detail::direct_error, std::string(err, sz)); } }; template<> struct getter { static void* get(lua_State* L, int index, record& tracking) { tracking.use(1); return lua_touserdata(L, index); } }; template struct getter { static T* get_no_nil(lua_State* L, int index, record& tracking) { tracking.use(1); void** pudata = static_cast(lua_touserdata(L, index)); void* udata = *pudata; return get_no_nil_from(L, udata, index, tracking); } static T* get_no_nil_from(lua_State* L, void* udata, int index, record&) { if (detail::has_derived::value && luaL_getmetafield(L, index, &detail::base_class_cast_key()[0]) != 0) { void* basecastdata = lua_touserdata(L, -1); detail::inheritance_cast_function ic = (detail::inheritance_cast_function)basecastdata; // use the casting function to properly adjust the pointer for the desired T udata = ic(udata, detail::id_for::value); lua_pop(L, 1); } T* obj = static_cast(udata); return obj; } static T* get(lua_State* L, int index, record& tracking) { type t = type_of(L, index); if (t == type::nil) { tracking.use(1); return nullptr; } return get_no_nil(L, index, tracking); } }; template struct getter> { static T* get(lua_State* L, int index, record& tracking) { return getter::get_no_nil(L, index, tracking); } }; template struct getter { static T& get(lua_State* L, int index, record& tracking) { return *getter::get_no_nil(L, index, tracking); } }; template struct getter::value>> { typedef typename unique_usertype_traits::type P; typedef typename unique_usertype_traits::actual_type Real; static Real& get(lua_State* L, int index, record& tracking) { tracking.use(1); P** pref = static_cast(lua_touserdata(L, index)); detail::special_destruct_func* fx = static_cast(static_cast(pref + 1)); Real* mem = static_cast(static_cast(fx + 1)); return *mem; } }; template struct getter> { static T& get(lua_State* L, int index, record& tracking) { return getter{}.get(L, index, tracking); } }; template struct getter> { template static decltype(auto) apply(std::index_sequence, lua_State* L, int index, record& tracking) { return std::tuple(L, index))...>{stack::get(L, index + tracking.used, tracking)...}; } static decltype(auto) get(lua_State* L, int index, record& tracking) { return apply(std::make_index_sequence(), L, index, tracking); } }; template struct getter> { static decltype(auto) get(lua_State* L, int index, record& tracking) { return std::pair(L, index)), decltype(stack::get(L, index))>{stack::get(L, index, tracking), stack::get(L, index + tracking.used, tracking)}; } }; } // stack } // sol // end of sol/stack_get.hpp // beginning of sol/stack_check_get.hpp namespace sol { namespace stack { template struct check_getter { typedef decltype(stack_detail::unchecked_get(nullptr, 0, std::declval())) R; template static optional get(lua_State* L, int index, Handler&& handler, record& tracking) { if (!check(L, index, std::forward(handler))) { tracking.use(static_cast(!lua_isnone(L, index))); return nullopt; } return stack_detail::unchecked_get(L, index, tracking); } }; template struct check_getter> { template static decltype(auto) get(lua_State* L, int index, Handler&&, record& tracking) { return check_get(L, index, no_panic, tracking); } }; template struct check_getter::value && lua_type_of::value == type::number>> { template static optional get(lua_State* L, int index, Handler&& handler, record& tracking) { int isnum = 0; lua_Integer value = lua_tointegerx(L, index, &isnum); if (isnum == 0) { type t = type_of(L, index); tracking.use(static_cast(t != type::none)); handler(L, index, type::number, t); return nullopt; } tracking.use(1); return static_cast(value); } }; template struct check_getter::value && !meta::any_same::value>> { template static optional get(lua_State* L, int index, Handler&& handler, record& tracking) { int isnum = 0; lua_Integer value = lua_tointegerx(L, index, &isnum); if (isnum == 0) { type t = type_of(L, index); tracking.use(static_cast(t != type::none)); handler(L, index, type::number, t); return nullopt; } tracking.use(1); return static_cast(value); } }; template struct check_getter::value>> { template static optional get(lua_State* L, int index, Handler&& handler, record& tracking) { int isnum = 0; lua_Number value = lua_tonumberx(L, index, &isnum); if (isnum == 0) { type t = type_of(L, index); tracking.use(static_cast(t != type::none)); handler(L, index, type::number, t); return nullopt; } tracking.use(1); return static_cast(value); } }; template struct getter> { static decltype(auto) get(lua_State* L, int index, record& tracking) { return check_get(L, index, no_panic, tracking); } }; } // stack } // sol // end of sol/stack_check_get.hpp // beginning of sol/stack_push.hpp // beginning of sol/raii.hpp namespace sol { namespace detail { struct default_construct { template static void construct(T&& obj, Args&&... args) { std::allocator> alloc{}; alloc.construct(obj, std::forward(args)...); } template void operator()(T&& obj, Args&&... args) const { construct(std::forward(obj), std::forward(args)...); } }; struct default_destruct { template static void destroy(T&& obj) { std::allocator> alloc{}; alloc.destroy(obj); } template void operator()(T&& obj) const { destroy(std::forward(obj)); } }; struct deleter { template void operator()(T* p) const { delete p; } }; template inline std::unique_ptr make_unique_deleter(Args&&... args) { return std::unique_ptr(new T(std::forward(args)...)); } template struct tagged { List l; }; } // detail template struct constructor_list {}; template using constructors = constructor_list; const auto default_constructor = constructors>{}; struct no_construction {}; const auto no_constructor = no_construction{}; struct call_construction {}; const auto call_constructor = call_construction{}; template struct constructor_wrapper { std::tuple set; template constructor_wrapper(Args&&... args) : set(std::forward(args)...) {} }; template inline auto initializers(Functions&&... functions) { return constructor_wrapper...>(std::forward(functions)...); } template struct factory_wrapper { std::tuple set; template factory_wrapper(Args&&... args) : set(std::forward(args)...) {} }; template inline auto factories(Functions&&... functions) { return factory_wrapper...>(std::forward(functions)...); } template struct destructor_wrapper { Function fx; destructor_wrapper(Function f) : fx(std::move(f)) {} }; template <> struct destructor_wrapper {}; const destructor_wrapper default_destructor{}; template inline auto destructor(Fx&& fx) { return destructor_wrapper>(std::forward(fx)); } } // sol // end of sol/raii.hpp #ifdef SOL_CODECVT_SUPPORT #endif namespace sol { namespace stack { template struct pusher> { template static int push_fx(lua_State* L, F&& f, Args&&... args) { // Basically, we store all user-data like this: // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new // data in the first sizeof(T*) bytes, and then however many bytes it takes to // do the actual object. Things that are std::ref or plain T* are stored as // just the sizeof(T*), and nothing else. T** pointerpointer = static_cast(lua_newuserdata(L, sizeof(T*) + sizeof(T))); T*& referencereference = *pointerpointer; T* allocationtarget = reinterpret_cast(pointerpointer + 1); referencereference = allocationtarget; std::allocator alloc{}; alloc.construct(allocationtarget, std::forward(args)...); f(); return 1; } template static int push_keyed(lua_State* L, K&& k, Args&&... args) { return push_fx(L, [&L, &k]() { luaL_newmetatable(L, &k[0]); lua_setmetatable(L, -2); }, std::forward(args)...); } template static int push(lua_State* L, Args&&... args) { return push_keyed(L, usertype_traits::metatable, std::forward(args)...); } }; template struct pusher> { template static int push_fx(lua_State* L, F&& f, T* obj) { if (obj == nullptr) return stack::push(L, nil); T** pref = static_cast(lua_newuserdata(L, sizeof(T*))); *pref = obj; f(); return 1; } template static int push_keyed(lua_State* L, K&& k, T* obj) { return push_fx(L, [&L, &k]() { luaL_newmetatable(L, &k[0]); lua_setmetatable(L, -2); }, obj); } static int push(lua_State* L, T* obj) { return push_keyed(L, usertype_traits*>::metatable, obj); } }; template <> struct pusher { template static int push(lua_State* L, T&& obj) { return stack::push(L, detail::ptr(obj)); } }; template struct pusher { template static int push(lua_State* L, Args&&... args) { return pusher>{}.push(L, std::forward(args)...); } }; template struct pusher>, meta::neg>, std::is_base_of>>>>::value>> { template static int push(lua_State* L, Args&&... args) { return pusher>{}.push(L, std::forward(args)...); } }; template struct pusher::value>> { typedef typename unique_usertype_traits::type P; typedef typename unique_usertype_traits::actual_type Real; template >> = meta::enabler> static int push(lua_State* L, Arg&& arg) { if (unique_usertype_traits::is_null(arg)) return stack::push(L, nil); return push_deep(L, std::forward(arg)); } template static int push(lua_State* L, Arg0&& arg0, Arg0&& arg1, Args&&... args) { return push_deep(L, std::forward(arg0), std::forward(arg1), std::forward(args)...); } template static int push_deep(lua_State* L, Args&&... args) { P** pref = static_cast(lua_newuserdata(L, sizeof(P*) + sizeof(detail::special_destruct_func) + sizeof(Real))); detail::special_destruct_func* fx = static_cast(static_cast(pref + 1)); Real* mem = static_cast(static_cast(fx + 1)); *fx = detail::special_destruct; detail::default_construct::construct(mem, std::forward(args)...); *pref = unique_usertype_traits::get(*mem); if (luaL_newmetatable(L, &usertype_traits>::metatable[0]) == 1) { set_field(L, "__gc", detail::unique_destruct

); } lua_setmetatable(L, -2); return 1; } }; template struct pusher> { static int push(lua_State* L, const std::reference_wrapper& t) { return stack::push(L, std::addressof(detail::deref(t.get()))); } }; template struct pusher::value>> { static int push(lua_State* L, const T& value) { lua_pushnumber(L, value); return 1; } }; template struct pusher, std::is_signed>::value>> { static int push(lua_State* L, const T& value) { lua_pushinteger(L, static_cast(value)); return 1; } }; template struct pusher::value>> { static int push(lua_State* L, const T& value) { if (std::is_same::value) { return stack::push(L, static_cast(value)); } return stack::push(L, static_cast>(value)); } }; template struct pusher, std::is_unsigned>::value>> { static int push(lua_State* L, const T& value) { lua_pushinteger(L, static_cast(value)); return 1; } }; template struct pusher, std::enable_if_t>>::value>> { static int push(lua_State* L, const as_table_t& tablecont) { auto& cont = detail::deref(detail::unwrap(tablecont.source)); lua_createtable(L, static_cast(cont.size()), 0); int tableindex = lua_gettop(L); std::size_t index = 1; for (const auto& i : cont) { #if SOL_LUA_VERSION >= 503 int p = stack::push(L, i); for (int pi = 0; pi < p; ++pi) { lua_seti(L, tableindex, static_cast(index++)); } #else lua_pushinteger(L, static_cast(index)); int p = stack::push(L, i); if (p == 1) { ++index; lua_settable(L, tableindex); } else { int firstindex = tableindex + 1 + 1; for (int pi = 0; pi < p; ++pi) { stack::push(L, index); lua_pushvalue(L, firstindex); lua_settable(L, tableindex); ++index; ++firstindex; } lua_pop(L, 1 + p); } #endif } set_field(L, -1, cont.size()); return 1; } }; template struct pusher, std::enable_if_t>>::value>> { static int push(lua_State* L, const as_table_t& tablecont) { auto& cont = detail::deref(detail::unwrap(tablecont.source)); lua_createtable(L, static_cast(cont.size()), 0); int tableindex = lua_gettop(L); for (const auto& pair : cont) { set_field(L, pair.first, pair.second, tableindex); } return 1; } }; template struct pusher::value || std::is_base_of::value>> { static int push(lua_State*, const T& ref) { return ref.push(); } static int push(lua_State*, T&& ref) { return ref.push(); } }; template<> struct pusher { static int push(lua_State* L, bool b) { lua_pushboolean(L, b); return 1; } }; template<> struct pusher { static int push(lua_State* L, nil_t) { lua_pushnil(L); return 1; } }; template<> struct pusher { static int push(lua_State* L, metatable_key_t) { lua_pushlstring(L, "__mt", 4); return 1; } }; template<> struct pusher> { static int push(lua_State* L, lua_CFunction func, int n = 0) { lua_pushcclosure(L, func, n); return 1; } }; template<> struct pusher { static int push(lua_State* L, lua_CFunction func, int n = 0) { lua_pushcclosure(L, func, n); return 1; } }; template<> struct pusher { static int push(lua_State* L, c_closure cc) { lua_pushcclosure(L, cc.c_function, cc.upvalues); return 1; } }; template struct pusher> { template static int push(std::index_sequence, lua_State* L, T&& c) { int pushcount = multi_push(L, detail::forward_get(c.upvalues)...); return stack::push(L, c_closure(c.c_function, pushcount)); } template static int push(lua_State* L, T&& c) { return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward(c)); } }; template<> struct pusher { static int push(lua_State* L, void* userdata) { lua_pushlightuserdata(L, userdata); return 1; } }; template<> struct pusher { static int push(lua_State* L, lightuserdata_value userdata) { lua_pushlightuserdata(L, userdata); return 1; } }; template struct pusher> { static int push(lua_State* L, light l) { lua_pushlightuserdata(L, static_cast(l.value)); return 1; } }; template struct pusher> { template static int push_with(lua_State* L, Key&& name, Args&&... args) { // A dumb pusher void* rawdata = lua_newuserdata(L, sizeof(T)); T* data = static_cast(rawdata); std::allocator alloc; alloc.construct(data, std::forward(args)...); if (with_meta) { lua_CFunction cdel = detail::user_alloc_destroy; // Make sure we have a plain GC set for this data if (luaL_newmetatable(L, name) != 0) { lua_pushlightuserdata(L, rawdata); lua_pushcclosure(L, cdel, 1); lua_setfield(L, -2, "__gc"); } lua_setmetatable(L, -2); } return 1; } template , no_metatable_t, metatable_key_t>> = meta::enabler> static int push(lua_State* L, Arg&& arg, Args&&... args) { const auto name = &usertype_traits>::user_gc_metatable[0]; return push_with(L, name, std::forward(arg), std::forward(args)...); } template static int push(lua_State* L, no_metatable_t, Args&&... args) { const auto name = &usertype_traits>::user_gc_metatable[0]; return push_with(L, name, std::forward(args)...); } template static int push(lua_State* L, metatable_key_t, Key&& key, Args&&... args) { const auto name = &key[0]; return push_with(L, name, std::forward(args)...); } static int push(lua_State* L, const user& u) { const auto name = &usertype_traits>::user_gc_metatable[0]; return push_with(L, name, u.value); } static int push(lua_State* L, user&& u) { const auto name = &usertype_traits>::user_gc_metatable[0]; return push_with(L, name, std::move(u.value)); } static int push(lua_State* L, no_metatable_t, const user& u) { const auto name = &usertype_traits>::user_gc_metatable[0]; return push_with(L, name, u.value); } static int push(lua_State* L, no_metatable_t, user&& u) { const auto name = &usertype_traits>::user_gc_metatable[0]; return push_with(L, name, std::move(u.value)); } }; template<> struct pusher { static int push(lua_State* L, userdata_value data) { void** ud = static_cast(lua_newuserdata(L, sizeof(void*))); *ud = data.value; return 1; } }; template<> struct pusher { static int push_sized(lua_State* L, const char* str, std::size_t len) { lua_pushlstring(L, str, len); return 1; } static int push(lua_State* L, const char* str) { return push_sized(L, str, std::char_traits::length(str)); } static int push(lua_State* L, const char* strb, const char* stre) { return push_sized(L, strb, stre - strb); } static int push(lua_State* L, const char* str, std::size_t len) { return push_sized(L, str, len); } }; template struct pusher { static int push(lua_State* L, const char(&str)[N]) { lua_pushlstring(L, str, N - 1); return 1; } static int push(lua_State* L, const char(&str)[N], std::size_t sz) { lua_pushlstring(L, str, sz); return 1; } }; template <> struct pusher { static int push(lua_State* L, char c) { const char str[2] = { c, '\0' }; return stack::push(L, str, 1); } }; template<> struct pusher { static int push(lua_State* L, const std::string& str) { lua_pushlstring(L, str.c_str(), str.size()); return 1; } static int push(lua_State* L, const std::string& str, std::size_t sz) { lua_pushlstring(L, str.c_str(), sz); return 1; } }; template<> struct pusher { static int push(lua_State* L, meta_function m) { const std::string& str = name_of(m); lua_pushlstring(L, str.c_str(), str.size()); return 1; } }; #ifdef SOL_CODECVT_SUPPORT template<> struct pusher { static int push(lua_State* L, const wchar_t* wstr) { return push(L, wstr, std::char_traits::length(wstr)); } static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) { return push(L, wstr, wstr + sz); } static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { if (sizeof(wchar_t) == 2) { std::wstring_convert> convert; std::string u8str = convert.to_bytes(strb, stre); return stack::push(L, u8str); } std::wstring_convert> convert; std::string u8str = convert.to_bytes(strb, stre); return stack::push(L, u8str); } }; template<> struct pusher { static int push(lua_State* L, const char16_t* u16str) { return push(L, u16str, std::char_traits::length(u16str)); } static int push(lua_State* L, const char16_t* u16str, std::size_t sz) { return push(L, u16str, u16str + sz); } static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { #ifdef _MSC_VER std::wstring_convert, int16_t> convert; std::string u8str = convert.to_bytes(reinterpret_cast(strb), reinterpret_cast(stre)); #else std::wstring_convert, char16_t> convert; std::string u8str = convert.to_bytes(strb, stre); #endif // VC++ is a shit return stack::push(L, u8str); } }; template<> struct pusher { static int push(lua_State* L, const char32_t* u32str) { return push(L, u32str, u32str + std::char_traits::length(u32str)); } static int push(lua_State* L, const char32_t* u32str, std::size_t sz) { return push(L, u32str, u32str + sz); } static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { #ifdef _MSC_VER std::wstring_convert, int32_t> convert; std::string u8str = convert.to_bytes(reinterpret_cast(strb), reinterpret_cast(stre)); #else std::wstring_convert, char32_t> convert; std::string u8str = convert.to_bytes(strb, stre); #endif // VC++ is a shit return stack::push(L, u8str); } }; template struct pusher { static int push(lua_State* L, const wchar_t(&str)[N]) { return push(L, str, N - 1); } static int push(lua_State* L, const wchar_t(&str)[N], std::size_t sz) { return stack::push(L, str, str + sz); } }; template struct pusher { static int push(lua_State* L, const char16_t(&str)[N]) { return push(L, str, N - 1); } static int push(lua_State* L, const char16_t(&str)[N], std::size_t sz) { return stack::push(L, str, str + sz); } }; template struct pusher { static int push(lua_State* L, const char32_t(&str)[N]) { return push(L, str, N - 1); } static int push(lua_State* L, const char32_t(&str)[N], std::size_t sz) { return stack::push(L, str, str + sz); } }; template <> struct pusher { static int push(lua_State* L, wchar_t c) { const wchar_t str[2] = { c, '\0' }; return stack::push(L, str, 1); } }; template <> struct pusher { static int push(lua_State* L, char16_t c) { const char16_t str[2] = { c, '\0' }; return stack::push(L, str, 1); } }; template <> struct pusher { static int push(lua_State* L, char32_t c) { const char32_t str[2] = { c, '\0' }; return stack::push(L, str, 1); } }; template<> struct pusher { static int push(lua_State* L, const std::wstring& wstr) { return push(L, wstr.data(), wstr.size()); } static int push(lua_State* L, const std::wstring& wstr, std::size_t sz) { return stack::push(L, wstr.data(), wstr.data() + sz); } }; template<> struct pusher { static int push(lua_State* L, const std::u16string& u16str) { return push(L, u16str, u16str.size()); } static int push(lua_State* L, const std::u16string& u16str, std::size_t sz) { return stack::push(L, u16str.data(), u16str.data() + sz); } }; template<> struct pusher { static int push(lua_State* L, const std::u32string& u32str) { return push(L, u32str, u32str.size()); } static int push(lua_State* L, const std::u32string& u32str, std::size_t sz) { return stack::push(L, u32str.data(), u32str.data() + sz); } }; #endif // codecvt Header Support template struct pusher> { template static int push(std::index_sequence, lua_State* L, T&& t) { int pushcount = 0; (void)detail::swallow{ 0, (pushcount += stack::push(L, detail::forward_get(t) ), 0)... }; return pushcount; } template static int push(lua_State* L, T&& t) { return push(std::index_sequence_for(), L, std::forward(t)); } }; template struct pusher> { template static int push(lua_State* L, T&& t) { int pushcount = stack::push(L, detail::forward_get<0>(t)); pushcount += stack::push(L, detail::forward_get<1>(t)); return pushcount; } }; template struct pusher> { template static int push(lua_State* L, T&& t) { if (t == nullopt) { return stack::push(L, nullopt); } return stack::push(L, t.value()); } }; template<> struct pusher { static int push(lua_State* L, nullopt_t) { return stack::push(L, nil); } }; template<> struct pusher { static int push(lua_State* L, std::nullptr_t) { return stack::push(L, nil); } }; template<> struct pusher { static int push(lua_State*, const this_state&) { return 0; } }; } // stack } // sol // end of sol/stack_push.hpp // beginning of sol/stack_pop.hpp namespace sol { namespace stack { template struct popper { inline static decltype(auto) pop(lua_State* L) { record tracking{}; decltype(auto) r = get(L, -lua_size::value, tracking); lua_pop(L, tracking.used); return r; } }; template struct popper>::value>> { static_assert(meta::neg>>::value, "You cannot pop something that derives from stack_reference: it will not remain on the stack and thusly will go out of scope!"); }; } // stack } // sol // end of sol/stack_pop.hpp // beginning of sol/stack_field.hpp namespace sol { namespace stack { template struct field_getter { template void get(lua_State* L, Key&& key, int tableindex = -2) { push(L, std::forward(key)); lua_gettable(L, tableindex); } }; template struct field_getter { void get(lua_State* L, metatable_key_t, int tableindex = -1) { if (lua_getmetatable(L, tableindex) == 0) push(L, nil); } }; template struct field_getter::value>> { template void get(lua_State* L, Key&& key, int = -1) { lua_getglobal(L, &key[0]); } }; template struct field_getter::value>> { template void get(lua_State* L, Key&& key, int tableindex = -1) { lua_getfield(L, tableindex, &key[0]); } }; #if SOL_LUA_VERSION >= 503 template struct field_getter::value>> { template void get(lua_State* L, Key&& key, int tableindex = -1) { lua_geti(L, tableindex, static_cast(key)); } }; #endif // Lua 5.3.x #if SOL_LUA_VERSION >= 502 template struct field_getter { void get(lua_State* L, void* key, int tableindex = -1) { lua_rawgetp(L, tableindex, key); } }; #endif // Lua 5.3.x template struct field_getter::value>> { template void get(lua_State* L, Key&& key, int tableindex = -1) { lua_rawgeti(L, tableindex, static_cast(key)); } }; template struct field_getter, b, raw, C> { template void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex) { get_field(L, detail::forward_get<0>(keys), tableindex); void(detail::swallow{ (get_field(L, detail::forward_get(keys)), 0)... }); reference saved(L, -1); lua_pop(L, static_cast(sizeof...(I))); saved.push(); } template void get(lua_State* L, Keys&& keys) { apply(std::make_index_sequence(), L, std::forward(keys), lua_absindex(L, -1)); } template void get(lua_State* L, Keys&& keys, int tableindex) { apply(std::make_index_sequence(), L, std::forward(keys), tableindex); } }; template struct field_getter, b, raw, C> { template void get(lua_State* L, Keys&& keys, int tableindex) { get_field(L, detail::forward_get<0>(keys), tableindex); get_field(L, detail::forward_get<1>(keys)); reference saved(L, -1); lua_pop(L, static_cast(2)); saved.push(); } template void get(lua_State* L, Keys&& keys) { get_field(L, detail::forward_get<0>(keys)); get_field(L, detail::forward_get<1>(keys)); reference saved(L, -1); lua_pop(L, static_cast(2)); saved.push(); } }; template struct field_setter { template void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3) { push(L, std::forward(key)); push(L, std::forward(value)); lua_settable(L, tableindex); } }; template struct field_setter { template void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3) { push(L, std::forward(key)); push(L, std::forward(value)); lua_rawset(L, tableindex); } }; template struct field_setter { template void set(lua_State* L, metatable_key_t, Value&& value, int tableindex = -2) { push(L, std::forward(value)); lua_setmetatable(L, tableindex); } }; template struct field_setter::value>> { template void set(lua_State* L, Key&& key, Value&& value, int = -2) { push(L, std::forward(value)); lua_setglobal(L, &key[0]); } }; template struct field_setter::value>> { template void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) { push(L, std::forward(value)); lua_setfield(L, tableindex, &key[0]); } }; #if SOL_LUA_VERSION >= 503 template struct field_setter::value>> { template void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) { push(L, std::forward(value)); lua_seti(L, tableindex, static_cast(key)); } }; #endif // Lua 5.3.x template struct field_setter::value>> { template void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) { push(L, std::forward(value)); lua_rawseti(L, tableindex, static_cast(key)); } }; #if SOL_LUA_VERSION >= 502 template struct field_setter { template void set(lua_State* L, void* key, Value&& value, int tableindex = -2) { push(L, std::forward(value)); lua_rawsetp(L, tableindex, key); } }; #endif // Lua 5.2.x template struct field_setter, b, raw, C> { template void apply(std::index_sequence, lua_State* L, Key&& keys, Value&& value, int tableindex) { I < 1 ? set_field(L, detail::forward_get(keys), std::forward(value), tableindex) : set_field(L, detail::forward_get(keys), std::forward(value)); } template void apply(std::index_sequence, lua_State* L, Keys&& keys, Value&& value, int tableindex) { I0 < 1 ? get_field(L, detail::forward_get(keys), tableindex) : get_field(L, detail::forward_get(keys), -1); apply(std::index_sequence(), L, std::forward(keys), std::forward(value), -1); } template void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3) { apply(std::make_index_sequence(), L, std::forward(keys), std::forward(value), tableindex); } }; template struct field_setter, b, raw, C> { template void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1) { get_field(L, detail::forward_get<0>(keys), tableindex); set_field(L, detail::forward_get<1>(keys), std::forward(value)); } }; } // stack } // sol // end of sol/stack_field.hpp // beginning of sol/stack_probe.hpp namespace sol { namespace stack { template struct probe_field_getter { template probe get(lua_State* L, Key&& key, int tableindex = -2) { if (!b && !maybe_indexable(L, tableindex)) { return probe(false, 0); } get_field(L, std::forward(key), tableindex); return probe(!check(L), 1); } }; template struct probe_field_getter, b, raw, C> { template probe get(lua_State* L, Keys&& keys, int tableindex = -2) { if (!b && !maybe_indexable(L, tableindex)) { return probe(false, 0); } get_field(L, std::get<0>(keys), tableindex); if (!maybe_indexable(L)) { return probe(false, 1); } get_field(L, std::get<1>(keys), tableindex); return probe(!check(L), 2); } }; template struct probe_field_getter, b, raw, C> { template probe apply(std::index_sequence, int sofar, lua_State* L, Keys&& keys, int tableindex) { get_field < I < 1 && b, raw>(L, std::get(keys), tableindex); return probe(!check(L), sofar); } template probe apply(std::index_sequence, int sofar, lua_State* L, Keys&& keys, int tableindex) { get_field < I < 1 && b, raw>(L, std::get(keys), tableindex); if (!maybe_indexable(L)) { return probe(false, sofar); } return apply(std::index_sequence(), sofar + 1, L, std::forward(keys), -1); } template probe get(lua_State* L, Keys&& keys, int tableindex = -2) { if (!b && !maybe_indexable(L, tableindex)) { return probe(false, 0); } return apply(std::index_sequence_for(), 1, L, std::forward(keys), tableindex); } }; } // stack } // sol // end of sol/stack_probe.hpp #include namespace sol { namespace stack { namespace stack_detail { template inline int push_as_upvalues(lua_State* L, T& item) { typedef std::decay_t TValue; const static std::size_t itemsize = sizeof(TValue); const static std::size_t voidsize = sizeof(void*); const static std::size_t voidsizem1 = voidsize - 1; const static std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize; typedef std::array data_t; data_t data{ {} }; std::memcpy(&data[0], std::addressof(item), itemsize); int pushcount = 0; for (auto&& v : data) { pushcount += push(L, lightuserdata_value(v)); } return pushcount; } template inline std::pair get_as_upvalues(lua_State* L, int index = 1) { const static std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*); typedef std::array data_t; data_t voiddata{ {} }; for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) { voiddata[i] = get(L, upvalue_index(index++)); } return std::pair(*reinterpret_cast(static_cast(voiddata.data())), index); } struct evaluator { template static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, record&, Fx&& fx, Args&&... args) { return std::forward(fx)(std::forward(args)...); } template static decltype(auto) eval(types, std::index_sequence, lua_State* L, int start, record& tracking, Fx&& fx, FxArgs&&... fxargs) { return eval(types(), std::index_sequence(), L, start, tracking, std::forward(fx), std::forward(fxargs)..., stack_detail::unchecked_get(L, start + tracking.used, tracking)); } }; template ::value>> inline decltype(auto) call(types, types ta, std::index_sequence tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) { #ifndef _MSC_VER static_assert(meta::all...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention."); #endif // This compiler make me so fucking sad multi_check(L, start, type_panic); record tracking{}; return evaluator{}.eval(ta, tai, L, start, tracking, std::forward(fx), std::forward(args)...); } template inline void call(types, types ta, std::index_sequence tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) { #ifndef _MSC_VER static_assert(meta::all...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention."); #endif // This compiler make me so fucking sad multi_check(L, start, type_panic); record tracking{}; evaluator{}.eval(ta, tai, L, start, tracking, std::forward(fx), std::forward(args)...); } } // stack_detail template int set_ref(lua_State* L, T&& arg, int tableindex = -2) { push(L, std::forward(arg)); return luaL_ref(L, tableindex); } inline void remove(lua_State* L, int index, int count) { if (count < 1) return; int top = lua_gettop(L); if (index == -1 || top == index) { // Slice them right off the top lua_pop(L, static_cast(count)); return; } // Remove each item one at a time using stack operations // Probably slower, maybe, haven't benchmarked, // but necessary if (index < 0) { index = lua_gettop(L) + (index + 1); } int last = index + count; for (int i = index; i < last; ++i) { lua_remove(L, i); } } template ::value>> inline decltype(auto) call(types tr, types ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) { typedef std::make_index_sequence args_indices; return stack_detail::call(tr, ta, args_indices(), L, start, std::forward(fx), std::forward(args)...); } template ::value>> inline decltype(auto) call(types tr, types ta, lua_State* L, Fx&& fx, FxArgs&&... args) { return call(tr, ta, L, 1, std::forward(fx), std::forward(args)...); } template inline void call(types tr, types ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) { typedef std::make_index_sequence args_indices; stack_detail::call(tr, ta, args_indices(), L, start, std::forward(fx), std::forward(args)...); } template inline void call(types tr, types ta, lua_State* L, Fx&& fx, FxArgs&&... args) { call(tr, ta, L, 1, std::forward(fx), std::forward(args)...); } template ::value>> inline decltype(auto) call_from_top(types tr, types ta, lua_State* L, Fx&& fx, FxArgs&&... args) { return call(tr, ta, L, static_cast(lua_gettop(L) - sizeof...(Args)), std::forward(fx), std::forward(args)...); } template inline void call_from_top(types tr, types ta, lua_State* L, Fx&& fx, FxArgs&&... args) { call(tr, ta, L, static_cast(lua_gettop(L) - sizeof...(Args)), std::forward(fx), std::forward(args)...); } template inline int call_into_lua(types tr, types ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) { call(tr, ta, L, start, std::forward(fx), std::forward(fxargs)...); lua_settop(L, 0); return 0; } template>::value>> inline int call_into_lua(types, types ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) { decltype(auto) r = call(types>(), ta, L, start, std::forward(fx), std::forward(fxargs)...); lua_settop(L, 0); return push_reference(L, std::forward(r)); } template inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) { typedef lua_bind_traits> traits_type; typedef typename traits_type::args_list args_list; typedef typename traits_type::returns_list returns_list; return call_into_lua(returns_list(), args_list(), L, start, std::forward(fx), std::forward(fxargs)...); } inline call_syntax get_call_syntax(lua_State* L, const std::string& key, int index = -2) { luaL_getmetatable(L, key.c_str()); auto pn = pop_n(L, 1); if (lua_compare(L, -1, index, LUA_OPEQ) == 1) { return call_syntax::colon; } return call_syntax::dot; } inline void script(lua_State* L, const std::string& code) { if (luaL_dostring(L, code.c_str())) { lua_error(L); } } inline void script_file(lua_State* L, const std::string& filename) { if (luaL_dofile(L, filename.c_str())) { lua_error(L); } } inline void luajit_exception_handler(lua_State* L, int(*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) { #ifdef SOL_LUAJIT lua_pushlightuserdata(L, (void*)handler); auto pn = pop_n(L, 1); luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON); #else (void)L; (void)handler; #endif } inline void luajit_exception_off(lua_State* L) { #ifdef SOL_LUAJIT luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF); #else (void)L; #endif } } // stack } // sol // end of sol/stack.hpp // beginning of sol/variadic_args.hpp // beginning of sol/stack_proxy.hpp // beginning of sol/function.hpp // beginning of sol/function_result.hpp // beginning of sol/proxy_base.hpp namespace sol { template struct proxy_base { operator std::string() const { const Super& super = *static_cast(static_cast(this)); return super.template get(); } template>, is_proxy_primitive>> = meta::enabler> operator T () const { const Super& super = *static_cast(static_cast(this)); return super.template get(); } template>, meta::neg>>> = meta::enabler> operator T& () const { const Super& super = *static_cast(static_cast(this)); return super.template get(); } }; } // sol // end of sol/proxy_base.hpp #include namespace sol { struct function_result : public proxy_base { private: lua_State* L; int index; int returncount; public: function_result() = default; function_result(lua_State* L, int index = -1, int returncount = 0) : L(L), index(index), returncount(returncount) { } function_result(const function_result&) = default; function_result& operator=(const function_result&) = default; function_result(function_result&& o) : L(o.L), index(o.index), returncount(o.returncount) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but will be thorough o.L = nullptr; o.index = 0; o.returncount = 0; } function_result& operator=(function_result&& o) { L = o.L; index = o.index; returncount = o.returncount; // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but will be thorough o.L = nullptr; o.index = 0; o.returncount = 0; return *this; } template decltype(auto) get() const { return stack::get(L, index); } call_status status() const noexcept { return call_status::ok; } bool valid() const noexcept { return status() == call_status::ok || status() == call_status::yielded; } lua_State* lua_state() const { return L; }; int stack_index() const { return index; }; ~function_result() { lua_pop(L, returncount); } }; } // sol // end of sol/function_result.hpp // beginning of sol/function_types.hpp // beginning of sol/function_types_core.hpp // beginning of sol/wrapper.hpp namespace sol { template struct wrapper { typedef lua_bind_traits traits_type; typedef typename traits_type::args_list args_list; typedef typename traits_type::args_list free_args_list; typedef typename traits_type::returns_list returns_list; template static decltype(auto) call(F& f, Args&&... args) { return f(std::forward(args)...); } struct caller { template decltype(auto) operator()(F& fx, Args&&... args) const { return call(fx, std::forward(args)...); } }; }; template struct wrapper>>::value>> { typedef lua_bind_traits traits_type; typedef typename traits_type::args_list args_list; typedef typename traits_type::args_list free_args_list; typedef typename traits_type::returns_list returns_list; template static decltype(auto) invoke(Args&&... args) { return fx(std::forward(args)...); } template static decltype(auto) call(F& fx, Args&&... args) { return fx(std::forward(args)...); } struct caller { template decltype(auto) operator()(F& fx, Args&&... args) const { return call(fx, std::forward(args)...); } }; template struct invoker { template decltype(auto) operator()(Args&&... args) const { return invoke(std::forward(args)...); } }; }; template struct wrapper>::value>> { typedef lua_bind_traits traits_type; typedef typename traits_type::object_type object_type; typedef typename traits_type::return_type return_type; typedef typename traits_type::args_list args_list; typedef types free_args_list; typedef typename traits_type::returns_list returns_list; template static decltype(auto) invoke(object_type& mem, Args&&... args) { return (mem.*fx)(std::forward(args)...); } template static decltype(auto) call(Fx&& fx, object_type& mem) { return (mem.*fx); } template static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...) { (mem.*fx) = std::forward(arg); } struct caller { template decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const { return call(std::forward(fx), mem, std::forward(args)...); } }; template struct invoker { template decltype(auto) operator()(Args&&... args) const { return invoke(std::forward(args)...); } }; }; template struct member_function_wrapper { typedef O object_type; typedef lua_bind_traits traits_type; typedef typename traits_type::args_list args_list; typedef types free_args_list; typedef meta::tuple_types returns_list; template static R invoke(O& mem, Args&&... args) { return (mem.*fx)(std::forward(args)...); } template static R call(Fx&& fx, O& mem, Args&&... args) { return (mem.*fx)(std::forward(args)...); } struct caller { template decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const { return call(std::forward(fx), mem, std::forward(args)...); } }; template struct invoker { template decltype(auto) operator()(O& mem, Args&&... args) const { return invoke(mem, std::forward(args)...); } }; }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; template struct wrapper : public member_function_wrapper { }; } // sol // end of sol/wrapper.hpp namespace sol { namespace function_detail { template inline int call(lua_State* L) { Fx& fx = stack::get>(L, upvalue_index(1)); return fx(L); } } // function_detail } // sol // end of sol/function_types_core.hpp // beginning of sol/function_types_templated.hpp // beginning of sol/call.hpp // beginning of sol/protect.hpp namespace sol { template struct protect_t { T value; template >> = meta::enabler> protect_t(Arg&& arg, Args&&... args) : value(std::forward(arg), std::forward(args)...) {} protect_t(const protect_t&) = default; protect_t(protect_t&&) = default; protect_t& operator=(const protect_t&) = default; protect_t& operator=(protect_t&&) = default; }; template auto protect(T&& value) { return protect_t>(std::forward(value)); } } // sol // end of sol/protect.hpp // beginning of sol/property.hpp namespace sol { struct no_prop { }; template struct property_wrapper { typedef std::integral_constant::value> can_read; typedef std::integral_constant::value> can_write; typedef std::conditional_t Read; typedef std::conditional_t Write; Read read; Write write; template property_wrapper(Rx&& r, Wx&& w) : read(std::forward(r)), write(std::forward(w)) {} }; namespace property_detail { template inline decltype(auto) property(std::true_type, R&& read, W&& write) { return property_wrapper, std::decay_t>(std::forward(read), std::forward(write)); } template inline decltype(auto) property(std::false_type, W&& write, R&& read) { return property_wrapper, std::decay_t>(std::forward(read), std::forward(write)); } template inline decltype(auto) property(std::true_type, R&& read) { return property_wrapper, void>(std::forward(read), no_prop()); } template inline decltype(auto) property(std::false_type, W&& write) { return property_wrapper>(no_prop(), std::forward(write)); } } // property_detail template inline decltype(auto) property(F&& f, G&& g) { typedef lua_bind_traits> left_traits; typedef lua_bind_traits> right_traits; return property_detail::property(meta::boolean<(left_traits::free_arity < right_traits::free_arity)>(), std::forward(f), std::forward(g)); } template inline decltype(auto) property(F&& f) { typedef lua_bind_traits> left_traits; return property_detail::property(meta::boolean<(left_traits::free_arity < 2)>(), std::forward(f)); } template inline decltype(auto) readonly_property(F&& f) { return property_detail::property(std::true_type(), std::forward(f)); } // Allow someone to make a member variable readonly (const) template inline auto readonly(R T::* v) { typedef const R C; return static_cast(v); } template struct var_wrapper { T value; template var_wrapper(Args&&... args) : value(std::forward(args)...) {} var_wrapper(const var_wrapper&) = default; var_wrapper(var_wrapper&&) = default; var_wrapper& operator=(const var_wrapper&) = default; var_wrapper& operator=(var_wrapper&&) = default; }; template inline auto var(V&& v) { typedef meta::unqualified_t T; return var_wrapper(std::forward(v)); } } // sol // end of sol/property.hpp namespace sol { namespace call_detail { template inline auto& pick(std::true_type, property_wrapper& f) { return f.read; } template inline auto& pick(std::false_type, property_wrapper& f) { return f.write; } template struct void_call; template struct void_call> { static void call(Args...) {} }; template struct constructor_match { T* obj; constructor_match(T* obj) : obj(obj) {} template int operator()(types, index_value, types r, types a, lua_State* L, int, int start) const { detail::default_construct func{}; return stack::call_into_lua(r, a, L, start, func, obj); } }; namespace overload_detail { template inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence, Match&&, lua_State* L, int, int, Args&&...) { return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types"); } template inline int overload_match_arity(types, std::index_sequence, std::index_sequence, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { typedef lua_bind_traits> traits; typedef meta::tuple_types return_types; typedef typename traits::free_args_list args_list; // compile-time eliminate any functions that we know ahead of time are of improper arity if (meta::find_in_pack_v, index_value...>::value) { return overload_match_arity(types(), std::index_sequence(), std::index_sequence(), std::forward(matchfx), L, fxarity, start, std::forward(args)...); } if (traits::free_arity != fxarity) { return overload_match_arity(types(), std::index_sequence(), std::index_sequence(), std::forward(matchfx), L, fxarity, start, std::forward(args)...); } stack::record tracking{}; if (!stack::stack_detail::check_types{}.check(args_list(), L, start, no_panic, tracking)) { return overload_match_arity(types(), std::index_sequence(), std::index_sequence(), std::forward(matchfx), L, fxarity, start, std::forward(args)...); } return matchfx(types(), index_value(), return_types(), args_list(), L, fxarity, start, std::forward(args)...); } } // overload_detail template inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { return overload_detail::overload_match_arity(types(), std::make_index_sequence(), std::index_sequence<>(), std::forward(matchfx), L, fxarity, start, std::forward(args)...); } template inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) { int fxarity = lua_gettop(L) - (start - 1); return overload_match_arity(std::forward(matchfx), L, fxarity, start, std::forward(args)...); } template inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { // use same overload resolution matching as all other parts of the framework return overload_match_arity::call)...>(std::forward(matchfx), L, fxarity, start, std::forward(args)...); } template inline int construct(lua_State* L) { static const auto& meta = usertype_traits::metatable; int argcount = lua_gettop(L); call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, meta, 1) : call_syntax::dot; argcount -= static_cast(syntax); T** pointerpointer = reinterpret_cast(lua_newuserdata(L, sizeof(T*) + sizeof(T))); T*& referencepointer = *pointerpointer; T* obj = reinterpret_cast(pointerpointer + 1); referencepointer = obj; reference userdataref(L, -1); userdataref.pop(); construct_match(constructor_match(obj), L, argcount, 1 + static_cast(syntax)); userdataref.push(); luaL_getmetatable(L, &meta[0]); if (type_of(L, -1) == type::nil) { lua_pop(L, 1); return luaL_error(L, "sol: unable to get usertype metatable"); } lua_setmetatable(L, -2); return 1; } template struct agnostic_lua_call_wrapper { template static int call(lua_State* L, Fx&& f, Args&&... args) { typedef wrapper> wrap; typedef typename wrap::returns_list returns_list; typedef typename wrap::free_args_list args_list; typedef typename wrap::caller caller; return stack::call_into_lua(returns_list(), args_list(), L, boost + 1, caller(), std::forward(f), std::forward(args)...); } }; template struct agnostic_lua_call_wrapper, true, is_variable, checked, boost, C> { template static int call(lua_State* L, F&& f) { return stack::push_reference(L, detail::unwrap(f.value)); } }; template struct agnostic_lua_call_wrapper, false, is_variable, checked, boost, C> { template static int call_assign(std::true_type, lua_State* L, V&& f) { detail::unwrap(f.value) = stack::get>(L, boost + (is_variable ? 3 : 1)); return 0; } template static int call_assign(std::false_type, lua_State* L, Args&&...) { return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available"); } template static int call_const(std::false_type, lua_State* L, Args&&... args) { typedef meta::unwrapped_t R; return call_assign(std::is_assignable>, R>(), L, std::forward(args)...); } template static int call_const(std::true_type, lua_State* L, Args&&...) { return luaL_error(L, "sol: cannot write to a readonly (const) variable"); } template static int call(lua_State* L, V&& f) { return call_const(std::is_const>(), L, f); } }; template struct agnostic_lua_call_wrapper { static int call(lua_State* L, lua_r_CFunction f) { return f(L); } }; template struct agnostic_lua_call_wrapper { static int call(lua_State* L, lua_CFunction f) { return f(L); } }; template struct agnostic_lua_call_wrapper { static int call(lua_State* L, const no_prop&) { return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property"); } }; template struct agnostic_lua_call_wrapper { static int call(lua_State* L, const no_construction&) { return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)"); } }; template struct agnostic_lua_call_wrapper, is_index, is_variable, checked, boost, C> { static int call(lua_State*, const bases&) { // Uh. How did you even call this, lul return 0; } }; template struct lua_call_wrapper : agnostic_lua_call_wrapper {}; template struct lua_call_wrapper::value>> { typedef wrapper> wrap; typedef typename wrap::object_type object_type; template static int call(lua_State* L, Fx&& f, object_type& o) { typedef typename wrap::returns_list returns_list; typedef typename wrap::args_list args_list; typedef typename wrap::caller caller; return stack::call_into_lua(returns_list(), args_list(), L, boost + ( is_variable ? 3 : 2 ), caller(), std::forward(f), o); } template static int call(lua_State* L, Fx&& f) { typedef std::conditional_t::value, object_type, T> Ta; #ifdef SOL_SAFE_USERTYPE object_type* o = static_cast(stack::get(L, 1)); if (o == nullptr) { return luaL_error(L, "sol: received null for 'self' argument (use ':' for accessing member functions, make sure member variables are preceeded by the actual object with '.' syntax)"); } return call(L, std::forward(f), *o); #else object_type& o = static_cast(*stack::get>(L, 1)); return call(L, std::forward(f), o); #endif // Safety } }; template struct lua_call_wrapper::value>> { typedef lua_bind_traits traits_type; typedef wrapper> wrap; typedef typename wrap::object_type object_type; template static int call_assign(std::true_type, lua_State* L, V&& f, object_type& o) { typedef typename wrap::args_list args_list; typedef typename wrap::caller caller; return stack::call_into_lua(types(), args_list(), L, boost + ( is_variable ? 3 : 2 ), caller(), f, o); } template static int call_assign(std::true_type, lua_State* L, V&& f) { typedef std::conditional_t::value, object_type, T> Ta; #ifdef SOL_SAFE_USERTYPE object_type* o = static_cast(stack::get(L, 1)); if (o == nullptr) { if (is_variable) { return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)"); } return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)"); } return call_assign(std::true_type(), L, f, *o); #else object_type& o = static_cast(*stack::get>(L, 1)); return call_assign(std::true_type(), L, f, o); #endif // Safety } template static int call_assign(std::false_type, lua_State* L, Args&&...) { return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available"); } template static int call_const(std::false_type, lua_State* L, Args&&... args) { typedef typename traits_type::return_type R; return call_assign(std::is_assignable>, R>(), L, std::forward(args)...); } template static int call_const(std::true_type, lua_State* L, Args&&...) { return luaL_error(L, "sol: cannot write to a readonly (const) variable"); } template static int call(lua_State* L, V&& f) { return call_const(std::is_const(), L, f); } template static int call(lua_State* L, V&& f, object_type& o) { return call_const(std::is_const(), L, f, o); } }; template struct lua_call_wrapper::value>> { typedef lua_bind_traits traits_type; typedef wrapper> wrap; typedef typename wrap::object_type object_type; template static int call(lua_State* L, V&& f, object_type& o) { typedef typename wrap::returns_list returns_list; typedef typename wrap::caller caller; return stack::call_into_lua(returns_list(), types<>(), L, boost + ( is_variable ? 3 : 2 ), caller(), f, o); } template static int call(lua_State* L, V&& f) { typedef std::conditional_t::value, object_type, T> Ta; #ifdef SOL_SAFE_USERTYPE object_type* o = static_cast(stack::get(L, 1)); if (o == nullptr) { if (is_variable) { return luaL_error(L, "sol: 'self' argument is nil (bad '.' access?)"); } return luaL_error(L, "sol: 'self' argument is nil (pass 'self' as first argument)"); } return call(L, f, *o); #else object_type& o = static_cast(*stack::get>(L, 1)); return call(L, f, o); #endif // Safety } }; template struct lua_call_wrapper, is_index, is_variable, checked, boost, C> { typedef constructor_list F; static int call(lua_State* L, F&) { const auto& metakey = usertype_traits::metatable; int argcount = lua_gettop(L); call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, metakey, 1) : call_syntax::dot; argcount -= static_cast(syntax); T** pointerpointer = reinterpret_cast(lua_newuserdata(L, sizeof(T*) + sizeof(T))); reference userdataref(L, -1); T*& referencepointer = *pointerpointer; T* obj = reinterpret_cast(pointerpointer + 1); referencepointer = obj; construct_match(constructor_match(obj), L, argcount, boost + 1 + static_cast(syntax)); userdataref.push(); luaL_getmetatable(L, &metakey[0]); if (type_of(L, -1) == type::nil) { lua_pop(L, 1); return luaL_error(L, "sol: unable to get usertype metatable"); } lua_setmetatable(L, -2); return 1; } }; template struct lua_call_wrapper, is_index, is_variable, checked, boost, C> { typedef constructor_wrapper F; struct onmatch { template int operator()(types, index_value, types r, types a, lua_State* L, int, int start, F& f) { const auto& metakey = usertype_traits::metatable; T** pointerpointer = reinterpret_cast(lua_newuserdata(L, sizeof(T*) + sizeof(T))); reference userdataref(L, -1); T*& referencepointer = *pointerpointer; T* obj = reinterpret_cast(pointerpointer + 1); referencepointer = obj; auto& func = std::get(f.set); stack::call_into_lua(r, a, L, boost + start, func, detail::implicit_wrapper(obj)); userdataref.push(); luaL_getmetatable(L, &metakey[0]); if (type_of(L, -1) == type::nil) { lua_pop(L, 1); std::string err = "sol: unable to get usertype metatable for "; err += usertype_traits::name; return luaL_error(L, err.c_str()); } lua_setmetatable(L, -2); return 1; } }; static int call(lua_State* L, F& f) { call_syntax syntax = stack::get_call_syntax(L, usertype_traits::metatable); int syntaxval = static_cast(syntax); int argcount = lua_gettop(L) - syntaxval; return construct_match>...>(onmatch(), L, argcount, 1 + syntaxval, f); } }; template struct lua_call_wrapper, is_index, is_variable, checked, boost, std::enable_if_t::value>> { typedef destructor_wrapper F; static int call(lua_State* L, const F&) { return detail::usertype_alloc_destroy(L); } }; template struct lua_call_wrapper, is_index, is_variable, checked, boost, std::enable_if_t::value>> { typedef destructor_wrapper F; static int call(lua_State* L, const F& f) { T& obj = stack::get(L); f.fx(detail::implicit_wrapper(obj)); return 0; } }; template struct lua_call_wrapper, is_index, is_variable, checked, boost, C> { typedef overload_set F; struct on_match { template int operator()(types, index_value, types, types, lua_State* L, int, int, F& fx) { auto& f = std::get(fx.set); return lua_call_wrapper{}.call(L, f); } }; static int call(lua_State* L, F& fx) { return overload_match_arity(on_match(), L, lua_gettop(L), 1, fx); } }; template struct lua_call_wrapper, is_index, is_variable, checked, boost, C> { typedef factory_wrapper F; struct on_match { template int operator()(types, index_value, types, types, lua_State* L, int, int, F& fx) { auto& f = std::get(fx.set); return lua_call_wrapper{}.call(L, f); } }; static int call(lua_State* L, F& fx) { return overload_match_arity(on_match(), L, lua_gettop(L), 1, fx); } }; template struct lua_call_wrapper, is_index, is_variable, checked, boost, C> { typedef std::conditional_t P; typedef meta::unqualified_t

U; typedef lua_bind_traits traits_type; template static int self_call(lua_State* L, F&& f) { typedef wrapper wrap; typedef meta::unqualified_t> object_type; typedef meta::pop_front_type_t args_list; typedef T Ta; #ifdef SOL_SAFE_USERTYPE object_type* po = static_cast(stack::get(L, 1)); if (po == nullptr) { if (is_variable) { return luaL_error(L, "sol: 'self' argument is nil (bad '.' access?)"); } return luaL_error(L, "sol: 'self' argument is nil (pass 'self' as first argument)"); } object_type& o = *po; #else object_type& o = static_cast(*stack::get>(L, 1)); #endif // Safety typedef typename wrap::returns_list returns_list; typedef typename wrap::caller caller; return stack::call_into_lua(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f, o); } template static int defer_call(std::false_type, lua_State* L, F&& f, Args&&... args) { return self_call(L, pick(meta::boolean(), f), std::forward(args)...); } template static int defer_call(std::true_type, lua_State* L, F&& f, Args&&... args) { auto& p = pick(meta::boolean(), std::forward(f)); return lua_call_wrapper, is_index, is_variable, checked, boost>{}.call(L, p, std::forward(args)...); } template static int call(lua_State* L, F&& f, Args&&... args) { typedef meta::any< std::is_void, std::is_same, meta::is_specialization_of, meta::is_specialization_of, meta::is_specialization_of, std::is_member_pointer > is_specialized; return defer_call(is_specialized(), L, std::forward(f), std::forward(args)...); } }; template struct lua_call_wrapper, is_index, is_variable, checked, boost, C> { typedef protect_t F; template static int call(lua_State* L, F& fx, Args&&... args) { return lua_call_wrapper{}.call(L, fx.value, std::forward(args)...); } }; template inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) { return lua_call_wrapper, is_index, is_variable, stack::stack_detail::default_check_arguments, boost>{}.call(L, std::forward(fx), std::forward(args)...); } template inline int call_user(lua_State* L) { auto& fx = stack::get>(L, upvalue_index(1)); return call_wrapped(L, fx); } template struct is_var_bind : std::false_type {}; template struct is_var_bind::value>> : std::true_type {}; template <> struct is_var_bind : std::true_type {}; template struct is_var_bind> : std::true_type {}; template struct is_var_bind> : std::true_type {}; } // call_detail template struct is_variable_binding : call_detail::is_var_bind> {}; template struct is_function_binding : meta::neg> {}; } // sol // end of sol/call.hpp namespace sol { namespace function_detail { template inline int call_wrapper_variable(std::false_type, lua_State* L) { typedef meta::bind_traits> traits_type; typedef typename traits_type::args_list args_list; typedef meta::tuple_types return_type; return stack::call_into_lua(return_type(), args_list(), L, 1, fx); } template inline int call_set_assignable(std::false_type, T&&, lua_State* L) { return luaL_error(L, "cannot write to this type: copy assignment/constructor not available"); } template inline int call_set_assignable(std::true_type, lua_State* L, T&& mem) { (mem.*variable) = stack::get(L, 2); return 0; } template inline int call_set_variable(std::false_type, lua_State* L, T&&) { return luaL_error(L, "cannot write to a const variable"); } template inline int call_set_variable(std::true_type, lua_State* L, T&& mem) { return call_set_assignable(std::is_assignable, R>(), L, std::forward(mem)); } template inline int call_wrapper_variable(std::true_type, lua_State* L) { typedef meta::bind_traits> traits_type; typedef typename traits_type::object_type T; typedef typename traits_type::return_type R; auto& mem = stack::get(L, 1); switch (lua_gettop(L)) { case 1: { decltype(auto) r = (mem.*variable); stack::push_reference(L, std::forward(r)); return 1; } case 2: return call_set_variable(meta::neg>(), L, mem); default: return luaL_error(L, "incorrect number of arguments to member variable function call"); } } template inline int call_wrapper_function(std::false_type, lua_State* L) { return call_wrapper_variable(std::is_member_object_pointer(), L); } template inline int call_wrapper_function(std::true_type, lua_State* L) { return call_detail::call_wrapped(L, fx); } template int call_wrapper_entry(lua_State* L) { return call_wrapper_function(std::is_member_function_pointer>(), L); } template struct c_call_matcher { template int operator()(types, index_value, types, types, lua_State* L, int, int) const { typedef meta::at_in_pack_t target; return target::call(L); } }; } // function_detail template inline int c_call(lua_State* L) { #ifdef __clang__ return detail::trampoline(L, function_detail::call_wrapper_entry); #else return detail::static_trampoline<(&function_detail::call_wrapper_entry)>(L); #endif // fuck you clang :c } template struct wrap { typedef F type; static int call(lua_State* L) { return c_call(L); } }; template inline int c_call(lua_State* L) { if (sizeof...(Fxs) < 2) { return meta::at_in_pack_t<0, Fxs...>::call(L); } else { return call_detail::overload_match_arity(function_detail::c_call_matcher(), L, lua_gettop(L), 1); } } } // sol // end of sol/function_types_templated.hpp // beginning of sol/function_types_stateless.hpp namespace sol { namespace function_detail { template struct upvalue_free_function { typedef std::remove_pointer_t> function_type; typedef lua_bind_traits traits_type; static int real_call(lua_State* L) { auto udata = stack::stack_detail::get_as_upvalues(L); function_type* fx = udata.first; return call_detail::call_wrapped(L, fx); } static int call(lua_State* L) { return detail::static_trampoline<(&real_call)>(L); } int operator()(lua_State* L) { return call(L); } }; template struct upvalue_member_function { typedef std::remove_pointer_t> function_type; typedef lua_bind_traits traits_type; static int real_call(lua_State* L) { // Layout: // idx 1...n: verbatim data of member function pointer // idx n + 1: is the object's void pointer // We don't need to store the size, because the other side is templated // with the same member function pointer type auto memberdata = stack::stack_detail::get_as_upvalues(L, 1); auto objdata = stack::stack_detail::get_as_upvalues(L, memberdata.second); function_type& memfx = memberdata.first; auto& item = *objdata.first; return call_detail::call_wrapped(L, memfx, item); } static int call(lua_State* L) { return detail::static_trampoline<(&real_call)>(L); } int operator()(lua_State* L) { return call(L); } }; template struct upvalue_member_variable { typedef std::remove_pointer_t> function_type; typedef lua_bind_traits traits_type; static int real_call(lua_State* L) { // Layout: // idx 1...n: verbatim data of member variable pointer // idx n + 1: is the object's void pointer // We don't need to store the size, because the other side is templated // with the same member function pointer type auto memberdata = stack::stack_detail::get_as_upvalues(L, 1); auto objdata = stack::stack_detail::get_as_upvalues(L, memberdata.second); auto& mem = *objdata.first; function_type& var = memberdata.first; switch (lua_gettop(L)) { case 0: return call_detail::call_wrapped(L, var, mem); case 1: return call_detail::call_wrapped(L, var, mem); default: return luaL_error(L, "sol: incorrect number of arguments to member variable function"); } } static int call(lua_State* L) { return detail::static_trampoline<(&real_call)>(L); } int operator()(lua_State* L) { return call(L); } }; template struct upvalue_this_member_function { typedef std::remove_pointer_t> function_type; typedef lua_bind_traits traits_type; static int real_call(lua_State* L) { // Layout: // idx 1...n: verbatim data of member variable pointer auto memberdata = stack::stack_detail::get_as_upvalues(L, 1); function_type& memfx = memberdata.first; return call_detail::call_wrapped(L, memfx); } static int call(lua_State* L) { return detail::static_trampoline<(&real_call)>(L); } int operator()(lua_State* L) { return call(L); } }; template struct upvalue_this_member_variable { typedef std::remove_pointer_t> function_type; typedef lua_bind_traits traits_type; static int real_call(lua_State* L) { // Layout: // idx 1...n: verbatim data of member variable pointer auto memberdata = stack::stack_detail::get_as_upvalues(L, 1); function_type& var = memberdata.first; switch (lua_gettop(L)) { case 1: return call_detail::call_wrapped(L, var); case 2: return call_detail::call_wrapped(L, var); default: return luaL_error(L, "sol: incorrect number of arguments to member variable function"); } } static int call(lua_State* L) { return detail::static_trampoline<(&real_call)>(L); } int operator()(lua_State* L) { return call(L); } }; } // function_detail } // sol // end of sol/function_types_stateless.hpp // beginning of sol/function_types_stateful.hpp namespace sol { namespace function_detail { template struct functor_function { typedef meta::unwrapped_t> Function; typedef decltype(&Function::operator()) function_type; typedef meta::function_return_t return_type; typedef meta::function_args_t args_lists; Function fx; template functor_function(Function f, Args&&... args) : fx(std::move(f), std::forward(args)...) {} int call(lua_State* L) { return call_detail::call_wrapped(L, fx); } int operator()(lua_State* L) { auto f = [&](lua_State* L) -> int { return this->call(L); }; return detail::trampoline(L, f); } }; template struct member_function { typedef std::remove_pointer_t> function_type; typedef meta::function_return_t return_type; typedef meta::function_args_t args_lists; function_type invocation; T member; template member_function(function_type f, Args&&... args) : invocation(std::move(f)), member(std::forward(args)...) {} int call(lua_State* L) { return call_detail::call_wrapped(L, invocation, detail::unwrap(detail::deref(member))); } int operator()(lua_State* L) { auto f = [&](lua_State* L) -> int { return this->call(L); }; return detail::trampoline(L, f); } }; template struct member_variable { typedef std::remove_pointer_t> function_type; typedef typename meta::bind_traits::return_type return_type; typedef typename meta::bind_traits::args_list args_lists; function_type var; T member; typedef std::add_lvalue_reference_t>> M; template member_variable(function_type v, Args&&... args) : var(std::move(v)), member(std::forward(args)...) {} int call(lua_State* L) { M mem = detail::unwrap(detail::deref(member)); switch (lua_gettop(L)) { case 0: return call_detail::call_wrapped(L, var, mem); case 1: return call_detail::call_wrapped(L, var, mem); default: return luaL_error(L, "sol: incorrect number of arguments to member variable function"); } } int operator()(lua_State* L) { auto f = [&](lua_State* L) -> int { return this->call(L); }; return detail::trampoline(L, f); } }; } // function_detail } // sol // end of sol/function_types_stateful.hpp // beginning of sol/function_types_overloaded.hpp namespace sol { namespace function_detail { template struct overloaded_function { typedef std::tuple overload_list; typedef std::make_index_sequence indices; overload_list overloads; overloaded_function(overload_list set) : overloads(std::move(set)) {} overloaded_function(Functions... fxs) : overloads(fxs...) { } template int call(types, index_value, types, types, lua_State* L, int, int) { auto& func = std::get(overloads); return call_detail::call_wrapped(L, func); } int operator()(lua_State* L) { auto mfx = [&](auto&&... args) { return this->call(std::forward(args)...); }; return call_detail::overload_match(mfx, L, 1); } }; } // function_detail } // sol // end of sol/function_types_overloaded.hpp // beginning of sol/resolve.hpp namespace sol { namespace detail { template(Args...)>> inline auto resolve_i(types, F&&)->R(meta::unqualified_t::*)(Args...) { using Sig = R(Args...); typedef meta::unqualified_t Fu; return static_cast(&Fu::operator()); } template> inline auto resolve_f(std::true_type, F&& f) -> decltype(resolve_i(types>(), std::forward(f))) { return resolve_i(types>(), std::forward(f)); } template inline void resolve_f(std::false_type, F&&) { static_assert(meta::has_deducible_signature::value, "Cannot use no-template-parameter call with an overloaded functor: specify the signature"); } template> inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature(), std::forward(f))) { return resolve_f(meta::has_deducible_signature {}, std::forward(f)); } template> inline auto resolve_i(types, F&& f) -> decltype(resolve_i(types(), std::forward(f))) { return resolve_i(types(), std::forward(f)); } template inline Sig C::* resolve_v(std::false_type, Sig C::* mem_func_ptr) { return mem_func_ptr; } template inline Sig C::* resolve_v(std::true_type, Sig C::* mem_variable_ptr) { return mem_variable_ptr; } } // detail template inline auto resolve(R fun_ptr(Args...))->R(*)(Args...) { return fun_ptr; } template inline Sig* resolve(Sig* fun_ptr) { return fun_ptr; } template inline auto resolve(R(C::*mem_ptr)(Args...))->R(C::*)(Args...) { return mem_ptr; } template inline Sig C::* resolve(Sig C::* mem_ptr) { return detail::resolve_v(std::is_member_object_pointer(), mem_ptr); } template inline auto resolve(F&& f) -> decltype(detail::resolve_i(types(), std::forward(f))) { return detail::resolve_i(types(), std::forward(f)); } } // sol // end of sol/resolve.hpp namespace sol { namespace stack { template struct pusher> { template static void select_convertible(std::false_type, types, lua_State* L, Fx&& fx, Args&&... args) { typedef std::remove_pointer_t> clean_fx; typedef function_detail::functor_function F; set_fx(L, std::forward(fx), std::forward(args)...); } template static void select_convertible(std::true_type, types, lua_State* L, Fx&& fx, Args&&... args) { using fx_ptr_t = R(*)(A...); fx_ptr_t fxptr = detail::unwrap(std::forward(fx)); select_function(std::true_type(), L, fxptr, std::forward(args)...); } template static void select_convertible(types t, lua_State* L, Fx&& fx, Args&&... args) { typedef std::decay_t> raw_fx_t; typedef R(*fx_ptr_t)(A...); typedef std::is_convertible is_convertible; select_convertible(is_convertible(), t, L, std::forward(fx), std::forward(args)...); } template static void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args) { typedef meta::function_signature_t> Sig; select_convertible(types(), L, std::forward(fx), std::forward(args)...); } template static void select_reference_member_variable(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { typedef std::remove_pointer_t> clean_fx; typedef function_detail::member_variable, clean_fx> F; set_fx(L, std::forward(fx), std::forward(obj), std::forward(args)...); } template static void select_reference_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { typedef std::decay_t dFx; dFx memfxptr(std::forward(fx)); auto userptr = detail::ptr(std::forward(obj), std::forward(args)...); lua_CFunction freefunc = &function_detail::upvalue_member_variable, meta::unqualified_t>::call; int upvalues = stack::stack_detail::push_as_upvalues(L, memfxptr); upvalues += stack::push(L, lightuserdata_value(static_cast(userptr))); stack::push(L, c_closure(freefunc, upvalues)); } template static void select_member_variable(std::false_type, lua_State* L, Fx&& fx, Args&&... args) { select_convertible(types(), L, std::forward(fx), std::forward(args)...); } template static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { typedef meta::boolean>::value || std::is_pointer::value> is_reference; select_reference_member_variable(is_reference(), L, std::forward(fx), std::forward(obj), std::forward(args)...); } template static void select_member_variable(std::true_type, lua_State* L, Fx&& fx) { typedef typename meta::bind_traits>::object_type C; lua_CFunction freefunc = &function_detail::upvalue_this_member_variable::call; int upvalues = stack::stack_detail::push_as_upvalues(L, fx); stack::push(L, c_closure(freefunc, upvalues)); } template static void select_reference_member_function(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { typedef std::decay_t clean_fx; typedef function_detail::member_function, clean_fx> F; set_fx(L, std::forward(fx), std::forward(obj), std::forward(args)...); } template static void select_reference_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { typedef std::decay_t dFx; dFx memfxptr(std::forward(fx)); auto userptr = detail::ptr(std::forward(obj), std::forward(args)...); lua_CFunction freefunc = &function_detail::upvalue_member_function, meta::unqualified_t>::call; int upvalues = stack::stack_detail::push_as_upvalues(L, memfxptr); upvalues += stack::push(L, lightuserdata_value(static_cast(userptr))); stack::push(L, c_closure(freefunc, upvalues)); } template static void select_member_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args) { select_member_variable(std::is_member_object_pointer>(), L, std::forward(fx), std::forward(args)...); } template static void select_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { typedef meta::boolean>::value || std::is_pointer::value> is_reference; select_reference_member_function(is_reference(), L, std::forward(fx), std::forward(obj), std::forward(args)...); } template static void select_member_function(std::true_type, lua_State* L, Fx&& fx) { typedef typename meta::bind_traits>::object_type C; lua_CFunction freefunc = &function_detail::upvalue_this_member_function::call; int upvalues = stack::stack_detail::push_as_upvalues(L, fx); stack::push(L, c_closure(freefunc, upvalues)); } template static void select_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args) { select_member_function(std::is_member_function_pointer>(), L, std::forward(fx), std::forward(args)...); } template static void select_function(std::true_type, lua_State* L, Fx&& fx, Args&&... args) { std::decay_t target(std::forward(fx), std::forward(args)...); lua_CFunction freefunc = &function_detail::upvalue_free_function::call; int upvalues = stack::stack_detail::push_as_upvalues(L, target); stack::push(L, c_closure(freefunc, upvalues)); } static void select_function(std::true_type, lua_State* L, lua_CFunction f) { stack::push(L, f); } template static void select(lua_State* L, Fx&& fx, Args&&... args) { select_function(std::is_function>(), L, std::forward(fx), std::forward(args)...); } template static void set_fx(lua_State* L, Args&&... args) { lua_CFunction freefunc = function_detail::call>; stack::push>(L, std::forward(args)...); stack::push(L, c_closure(freefunc, 1)); } template static int push(lua_State* L, Args&&... args) { // Set will always place one thing (function) on the stack select(L, std::forward(args)...); return 1; } }; template struct pusher> { template static int push_func(std::index_sequence, lua_State* L, FP&& fp) { return stack::push(L, detail::forward_get(fp.params)...); } static int push(lua_State* L, const function_arguments& fp) { return push_func(std::make_index_sequence(), L, fp); } static int push(lua_State* L, function_arguments&& fp) { return push_func(std::make_index_sequence(), L, std::move(fp)); } }; template struct pusher> { static int push(lua_State* L, std::function fx) { return pusher>{}.push(L, std::move(fx)); } }; template struct pusher::value>> { template static int push(lua_State* L, F&& f) { return pusher>{}.push(L, std::forward(f)); } }; template struct pusher, meta::neg>, meta::neg>>>::value>> { template static int push(lua_State* L, F&& f) { return pusher>{}.push(L, std::forward(f)); } }; template struct pusher> { static int push(lua_State* L, overload_set&& set) { typedef function_detail::overloaded_function F; pusher>{}.set_fx(L, std::move(set.set)); return 1; } static int push(lua_State* L, const overload_set& set) { typedef function_detail::overloaded_function F; pusher>{}.set_fx(L, set.set); return 1; } }; template struct pusher> { static int push(lua_State* L, protect_t&& pw) { lua_CFunction cf = call_detail::call_user>; int closures = stack::push>>(L, std::move(pw.value)); return stack::push(L, c_closure(cf, closures)); } static int push(lua_State* L, const protect_t& pw) { lua_CFunction cf = call_detail::call_user>; int closures = stack::push>>(L, pw.value); return stack::push(L, c_closure(cf, closures)); } }; template struct pusher, std::enable_if_t::value && !std::is_void::value>> { static int push(lua_State* L, property_wrapper&& pw) { return stack::push(L, sol::overload(std::move(pw.read), std::move(pw.write))); } static int push(lua_State* L, const property_wrapper& pw) { return stack::push(L, sol::overload(pw.read, pw.write)); } }; template struct pusher> { static int push(lua_State* L, property_wrapper&& pw) { return stack::push(L, std::move(pw.read)); } static int push(lua_State* L, const property_wrapper& pw) { return stack::push(L, pw.read); } }; template struct pusher> { static int push(lua_State* L, property_wrapper&& pw) { return stack::push(L, std::move(pw.write)); } static int push(lua_State* L, const property_wrapper& pw) { return stack::push(L, pw.write); } }; template struct pusher> { static int push(lua_State* L, var_wrapper&& vw) { return stack::push(L, std::move(vw.value)); } static int push(lua_State* L, const var_wrapper& vw) { return stack::push(L, vw.value); } }; template struct pusher>> { static int push(lua_State* L, detail::tagged>) { lua_CFunction cf = call_detail::construct; return stack::push(L, cf); } }; template struct pusher>> { static int push(lua_State* L, constructor_wrapper c) { lua_CFunction cf = call_detail::call_user>; int closures = stack::push>(L, std::move(c)); return stack::push(L, c_closure(cf, closures)); } }; template struct pusher>> { static int push(lua_State* L, detail::tagged>) { lua_CFunction cf = detail::user_alloc_destroy; return stack::push(L, cf); } }; template struct pusher>> { static int push(lua_State* L, destructor_wrapper c) { lua_CFunction cf = call_detail::call_user>; int closures = stack::push>(L, std::move(c)); return stack::push(L, c_closure(cf, closures)); } }; } // stack } // sol // end of sol/function_types.hpp namespace sol { template class basic_function : public base_t { private: void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const { lua_callk(base_t::lua_state(), static_cast(argcount), static_cast(resultcount), 0, nullptr); } template auto invoke(types, std::index_sequence, std::ptrdiff_t n) const { luacall(n, lua_size>::value); return stack::pop>(base_t::lua_state()); } template Ret invoke(types, std::index_sequence, std::ptrdiff_t n) const { luacall(n, lua_size::value); return stack::pop(base_t::lua_state()); } template void invoke(types, std::index_sequence, std::ptrdiff_t n) const { luacall(n, 0); } function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const { int stacksize = lua_gettop(base_t::lua_state()); int firstreturn = (std::max)(1, stacksize - static_cast(n)); luacall(n, LUA_MULTRET); int poststacksize = lua_gettop(base_t::lua_state()); int returncount = poststacksize - (firstreturn - 1); return function_result(base_t::lua_state(), firstreturn, returncount); } public: basic_function() = default; basic_function(const basic_function&) = default; basic_function& operator=(const basic_function&) = default; basic_function(basic_function&&) = default; basic_function& operator=(basic_function&&) = default; basic_function(const stack_reference& r) : basic_function(r.lua_state(), r.stack_index()) {} basic_function(stack_reference&& r) : basic_function(r.lua_state(), r.stack_index()) {} basic_function(lua_State* L, int index = -1) : base_t(L, index) { #ifdef SOL_CHECK_ARGUMENTS stack::check(L, index, type_panic); #endif // Safety } template function_result operator()(Args&&... args) const { return call<>(std::forward(args)...); } template decltype(auto) operator()(types, Args&&... args) const { return call(std::forward(args)...); } template decltype(auto) call(Args&&... args) const { base_t::push(); int pushcount = stack::multi_push_reference(base_t::lua_state(), std::forward(args)...); return invoke(types(), std::make_index_sequence(), pushcount); } }; namespace stack { template struct getter> { typedef meta::bind_traits fx_t; typedef typename fx_t::args_list args_lists; typedef meta::tuple_types return_types; template static std::function get_std_func(types, types, lua_State* L, int index) { sol::function f(L, index); auto fx = [f, L, index](Args&&... args) -> meta::return_type_t { return f.call(std::forward(args)...); }; return std::move(fx); } template static std::function get_std_func(types, types, lua_State* L, int index) { sol::function f(L, index); auto fx = [f, L, index](FxArgs&&... args) -> void { f(std::forward(args)...); }; return std::move(fx); } template static std::function get_std_func(types<>, types t, lua_State* L, int index) { return get_std_func(types(), t, L, index); } static std::function get(lua_State* L, int index, record& tracking) { tracking.last = 1; tracking.used += 1; type t = type_of(L, index); if (t == type::none || t == type::nil) { return nullptr; } return get_std_func(return_types(), args_lists(), L, index); } }; } // stack } // sol // end of sol/function.hpp // beginning of sol/protected_function.hpp // beginning of sol/protected_function_result.hpp namespace sol { struct protected_function_result : public proxy_base { private: lua_State* L; int index; int returncount; int popcount; call_status err; template decltype(auto) tagged_get(types>) const { if (!valid()) { return sol::optional(nullopt); } return stack::get>(L, index); } template decltype(auto) tagged_get(types) const { #ifdef SOL_CHECK_ARGUMENTS if (!valid()) { type_panic(L, index, type_of(L, index), type::none); } #endif // Check Argument Safety return stack::get(L, index); } optional tagged_get(types>) const { if (valid()) { return nullopt; } return error(detail::direct_error, stack::get(L, index)); } error tagged_get(types) const { #ifdef SOL_CHECK_ARGUMENTS if (valid()) { type_panic(L, index, type_of(L, index), type::none); } #endif // Check Argument Safety return error(detail::direct_error, stack::get(L, index)); } public: protected_function_result() = default; protected_function_result(lua_State* L, int index = -1, int returncount = 0, int popcount = 0, call_status err = call_status::ok) noexcept : L(L), index(index), returncount(returncount), popcount(popcount), err(err) { } protected_function_result(const protected_function_result&) = default; protected_function_result& operator=(const protected_function_result&) = default; protected_function_result(protected_function_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.L = nullptr; o.index = 0; o.returncount = 0; o.popcount = 0; o.err = call_status::runtime; } protected_function_result& operator=(protected_function_result&& o) noexcept { L = o.L; index = o.index; returncount = o.returncount; popcount = o.popcount; err = o.err; // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.L = nullptr; o.index = 0; o.returncount = 0; o.popcount = 0; o.err = call_status::runtime; return *this; } call_status status() const noexcept { return err; } bool valid() const noexcept { return status() == call_status::ok || status() == call_status::yielded; } template T get() const { return tagged_get(types>()); } lua_State* lua_state() const noexcept { return L; }; int stack_index() const noexcept { return index; }; ~protected_function_result() { stack::remove(L, index, popcount); } }; } // sol // end of sol/protected_function_result.hpp #include namespace sol { template class basic_protected_function : public base_t { private: static reference& handler_storage() { static sol::reference h; return h; } public: static const reference& get_default_handler() { return handler_storage(); } static void set_default_handler(reference& ref) { handler_storage() = ref; } private: struct handler { const reference& target; int stackindex; handler(const reference& target) : target(target), stackindex(0) { if (target.valid()) { stackindex = lua_gettop(target.lua_state()) + 1; target.push(); } } bool valid() const { return stackindex > 0; } ~handler() { if (valid()) { lua_remove(target.lua_state(), stackindex); } } }; int luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, handler& h) const { return lua_pcallk(base_t::lua_state(), static_cast(argcount), static_cast(resultcount), h.stackindex, 0, nullptr); } template auto invoke(types, std::index_sequence, std::ptrdiff_t n, handler& h) const { luacall(n, sizeof...(Ret), h); return stack::pop>(base_t::lua_state()); } template Ret invoke(types, std::index_sequence, std::ptrdiff_t n, handler& h) const { luacall(n, 1, h); return stack::pop(base_t::lua_state()); } template void invoke(types, std::index_sequence, std::ptrdiff_t n, handler& h) const { luacall(n, 0, h); } protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, handler& h) const { int stacksize = lua_gettop(base_t::lua_state()); int firstreturn = (std::max)(1, stacksize - static_cast(n) - 1); int returncount = 0; call_status code = call_status::ok; #ifndef SOL_NO_EXCEPTIONS auto onexcept = [&](const char* error) { h.stackindex = 0; if (h.target.valid()) { h.target.push(); stack::push(base_t::lua_state(), error); lua_call(base_t::lua_state(), 1, 1); } else { stack::push(base_t::lua_state(), error); } }; try { #endif // No Exceptions code = static_cast(luacall(n, LUA_MULTRET, h)); int poststacksize = lua_gettop(base_t::lua_state()); returncount = poststacksize - (stacksize - 1); #ifndef SOL_NO_EXCEPTIONS } // Handle C++ errors thrown from C++ functions bound inside of lua catch (const char* error) { onexcept(error); firstreturn = lua_gettop(base_t::lua_state()); return protected_function_result(base_t::lua_state(), firstreturn, 0, 1, call_status::runtime); } catch (const std::exception& error) { onexcept(error.what()); firstreturn = lua_gettop(base_t::lua_state()); return protected_function_result(base_t::lua_state(), firstreturn, 0, 1, call_status::runtime); } catch (...) { onexcept("caught (...) unknown error during protected_function call"); firstreturn = lua_gettop(base_t::lua_state()); return protected_function_result(base_t::lua_state(), firstreturn, 0, 1, call_status::runtime); } #endif // No Exceptions return protected_function_result(base_t::lua_state(), firstreturn, returncount, returncount, code); } public: reference error_handler; basic_protected_function() = default; basic_protected_function(const basic_protected_function&) = default; basic_protected_function& operator=(const basic_protected_function&) = default; basic_protected_function(basic_protected_function&&) = default; basic_protected_function& operator=(basic_protected_function&&) = default; basic_protected_function(const basic_function& b) : base_t(b) {} basic_protected_function(basic_function&& b) : base_t(std::move(b)) {} basic_protected_function(const stack_reference& r) : basic_protected_function(r.lua_state(), r.stack_index()) {} basic_protected_function(stack_reference&& r) : basic_protected_function(r.lua_state(), r.stack_index()) {} basic_protected_function(lua_State* L, int index = -1) : base_t(L, index), error_handler(get_default_handler()) { #ifdef SOL_CHECK_ARGUMENTS stack::check(L, index, type_panic); #endif // Safety } template protected_function_result operator()(Args&&... args) const { return call<>(std::forward(args)...); } template decltype(auto) operator()(types, Args&&... args) const { return call(std::forward(args)...); } template decltype(auto) call(Args&&... args) const { handler h(error_handler); base_t::push(); int pushcount = stack::multi_push_reference(base_t::lua_state(), std::forward(args)...); return invoke(types(), std::make_index_sequence(), pushcount, h); } }; } // sol // end of sol/protected_function.hpp namespace sol { struct stack_proxy : public proxy_base { private: lua_State* L; int index; public: stack_proxy() : L(nullptr), index(0) {} stack_proxy(lua_State* L, int index) : L(L), index(index) {} template decltype(auto) get() const { return stack::get(L, stack_index()); } int push() const { lua_pushvalue(L, index); return 1; } lua_State* lua_state() const { return L; } int stack_index() const { return index; } template decltype(auto) call(Args&&... args) { return get().template call(std::forward(args)...); } template decltype(auto) operator()(Args&&... args) { return call<>(std::forward(args)...); } }; namespace stack { template <> struct getter { static stack_proxy get(lua_State* L, int index = -1) { return stack_proxy(L, index); } }; template <> struct pusher { static int push(lua_State*, const stack_proxy& ref) { return ref.push(); } }; } // stack namespace detail { template <> struct is_speshul : std::true_type {}; template <> struct is_speshul : std::true_type {}; template stack_proxy get(types, index_value<0>, index_value, const T& fr) { return stack_proxy(fr.lua_state(), static_cast(fr.stack_index() + I)); } template 0)>> = meta::enabler> stack_proxy get(types, index_value, index_value, const T& fr) { return get(types(), index_value(), index_value::value>(), fr); } } template <> struct tie_size : std::integral_constant {}; template stack_proxy get(const function_result& fr) { return stack_proxy(fr.lua_state(), static_cast(fr.stack_index() + I)); } template stack_proxy get(types t, const function_result& fr) { return detail::get(t, index_value(), index_value<0>(), fr); } template <> struct tie_size : std::integral_constant {}; template stack_proxy get(const protected_function_result& fr) { return stack_proxy(fr.lua_state(), static_cast(fr.stack_index() + I)); } template stack_proxy get(types t, const protected_function_result& fr) { return detail::get(t, index_value(), index_value<0>(), fr); } } // sol // end of sol/stack_proxy.hpp #include #include namespace sol { template struct va_iterator : std::iterator, std::ptrdiff_t, std::conditional_t, std::conditional_t> { typedef std::iterator, std::ptrdiff_t, std::conditional_t, std::conditional_t> base_t; typedef typename base_t::reference reference; typedef typename base_t::pointer pointer; typedef typename base_t::value_type value_type; typedef typename base_t::difference_type difference_type; typedef typename base_t::iterator_category iterator_category; lua_State* L; int index; int stacktop; stack_proxy sp; va_iterator() : L(nullptr), index((std::numeric_limits::max)()), stacktop((std::numeric_limits::max)()) {} va_iterator(lua_State* L, int index, int stacktop) : L(L), index(index), stacktop(stacktop), sp(L, index) {} reference operator*() { return stack_proxy(L, index); } pointer operator->() { sp = stack_proxy(L, index); return &sp; } va_iterator& operator++ () { ++index; return *this; } va_iterator operator++ (int) { auto r = *this; this->operator ++(); return r; } va_iterator& operator-- () { --index; return *this; } va_iterator operator-- (int) { auto r = *this; this->operator --(); return r; } va_iterator& operator+= (difference_type idx) { index += static_cast(idx); return *this; } va_iterator& operator-= (difference_type idx) { index -= static_cast(idx); return *this; } difference_type operator- (const va_iterator& r) const { return index - r.index; } va_iterator operator+ (difference_type idx) const { va_iterator r = *this; r += idx; return r; } reference operator[](difference_type idx) { return stack_proxy(L, index + static_cast(idx)); } bool operator==(const va_iterator& r) const { if (stacktop == (std::numeric_limits::max)()) { return r.index == r.stacktop; } else if (r.stacktop == (std::numeric_limits::max)()) { return index == stacktop; } return index == r.index; } bool operator != (const va_iterator& r) const { return !(this->operator==(r)); } bool operator < (const va_iterator& r) const { return index < r.index; } bool operator > (const va_iterator& r) const { return index > r.index; } bool operator <= (const va_iterator& r) const { return index <= r.index; } bool operator >= (const va_iterator& r) const { return index >= r.index; } }; template inline va_iterator operator+(typename va_iterator::difference_type n, const va_iterator& r) { return r + n; } struct variadic_args { private: lua_State* L; int index; int stacktop; public: typedef stack_proxy reference_type; typedef stack_proxy value_type; typedef stack_proxy* pointer; typedef std::ptrdiff_t difference_type; typedef std::size_t size_type; typedef va_iterator iterator; typedef va_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; variadic_args() = default; variadic_args(lua_State* L, int index = -1) : L(L), index(lua_absindex(L, index)), stacktop(lua_gettop(L)) {} variadic_args(const variadic_args&) = default; variadic_args& operator=(const variadic_args&) = default; variadic_args(variadic_args&& o) : L(o.L), index(o.index), stacktop(o.stacktop) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but will be thorough o.L = nullptr; o.index = 0; o.stacktop = 0; } variadic_args& operator=(variadic_args&& o) { L = o.L; index = o.index; stacktop = o.stacktop; // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but will be thorough o.L = nullptr; o.index = 0; o.stacktop = 0; return *this; } iterator begin() { return iterator(L, index, stacktop + 1); } iterator end() { return iterator(L, stacktop + 1, stacktop + 1); } const_iterator begin() const { return const_iterator(L, index, stacktop + 1); } const_iterator end() const { return const_iterator(L, stacktop + 1, stacktop + 1); } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } reverse_iterator rbegin() { return std::reverse_iterator(begin()); } reverse_iterator rend() { return std::reverse_iterator(end()); } const_reverse_iterator rbegin() const { return std::reverse_iterator(begin()); } const_reverse_iterator rend() const { return std::reverse_iterator(end()); } const_reverse_iterator crbegin() const { return std::reverse_iterator(cbegin()); } const_reverse_iterator crend() const { return std::reverse_iterator(cend()); } int push() const { int pushcount = 0; for (int i = index; i <= stacktop; ++i) { lua_pushvalue(L, i); pushcount += 1; } return pushcount; } template decltype(auto) get(difference_type start = 0) const { return stack::get(L, index + static_cast(start)); } stack_proxy operator[](difference_type start) const { return stack_proxy(L, index + static_cast(start)); } lua_State* lua_state() const { return L; }; int stack_index() const { return index; }; int leftover_count() const { return stacktop - (index - 1); } int top() const { return stacktop; } }; namespace stack { template <> struct getter { static variadic_args get(lua_State* L, int index, record& tracking) { tracking.last = 0; return variadic_args(L, index); } }; template <> struct pusher { static int push(lua_State*, const variadic_args& ref) { return ref.push(); } }; } // stack } // sol // end of sol/variadic_args.hpp namespace sol { template ::value, typename T> R make_reference(lua_State* L, T&& value) { int backpedal = stack::push(L, std::forward(value)); R r = stack::get(L, -backpedal); if (should_pop) { lua_pop(L, backpedal); } return r; } template ::value, typename... Args> R make_reference(lua_State* L, Args&&... args) { int backpedal = stack::push(L, std::forward(args)...); R r = stack::get(L, -backpedal); if (should_pop) { lua_pop(L, backpedal); } return r; } template class basic_object : public base_t { private: template decltype(auto) as_stack(std::true_type) const { return stack::get(base_t::lua_state(), base_t::stack_index()); } template decltype(auto) as_stack(std::false_type) const { base_t::push(); return stack::pop(base_t::lua_state()); } template bool is_stack(std::true_type) const { return stack::check(base_t::lua_state(), base_t::stack_index(), no_panic); } template bool is_stack(std::false_type) const { auto pp = stack::push_pop(*this); return stack::check(base_t::lua_state(), -1, no_panic); } template basic_object(std::integral_constant, lua_State* L, int index = -1) noexcept : base_t(L, index) { if (invert_and_pop) { lua_pop(L, -index); } } public: basic_object() noexcept = default; template , basic_object>>, std::is_base_of>> = meta::enabler> basic_object(T&& r) : base_t(std::forward(r)) {} basic_object(nil_t r) : base_t(r) {} basic_object(const basic_object&) = default; basic_object(basic_object&&) = default; basic_object& operator=(const basic_object&) = default; basic_object& operator=(basic_object&&) = default; basic_object(const stack_reference& r) noexcept : basic_object(r.lua_state(), r.stack_index()) {} basic_object(stack_reference&& r) noexcept : basic_object(r.lua_state(), r.stack_index()) {} basic_object(lua_State* L, int index = -1) noexcept : base_t(L, index) {} template basic_object(lua_State* L, in_place_type_t, Args&&... args) noexcept : basic_object(std::integral_constant::value>(), L, -stack::push(L, std::forward(args)...)) {} template basic_object(lua_State* L, in_place_t, T&& arg, Args&&... args) noexcept : basic_object(L, in_place, std::forward(arg), std::forward(args)...) {} template decltype(auto) as() const { return as_stack(std::is_same()); } template bool is() const { if (!base_t::valid()) return false; return is_stack(std::is_same()); } }; template object make_object(lua_State* L, T&& value) { return make_reference(L, std::forward(value)); } template object make_object(lua_State* L, Args&&... args) { return make_reference(L, std::forward(args)...); } inline bool operator==(const object& lhs, const nil_t&) { return !lhs.valid(); } inline bool operator==(const nil_t&, const object& rhs) { return !rhs.valid(); } inline bool operator!=(const object& lhs, const nil_t&) { return lhs.valid(); } inline bool operator!=(const nil_t&, const object& rhs) { return rhs.valid(); } } // sol // end of sol/object.hpp namespace sol { template struct proxy : public proxy_base> { private: typedef meta::condition, Key, std::tuple>, Key&, meta::unqualified_t>>> key_type; template decltype(auto) tuple_get(std::index_sequence) const { return tbl.template traverse_get(std::get(key)...); } template void tuple_set(std::index_sequence, T&& value) const { tbl.traverse_set(std::get(key)..., std::forward(value)); } public: Table tbl; key_type key; template proxy(Table table, T&& key) : tbl(table), key(std::forward(key)) {} template proxy& set(T&& item) { tuple_set(std::make_index_sequence>::value>(), std::forward(item)); return *this; } template proxy& set_function(Args&&... args) { tbl.set_function(key, std::forward(args)...); return *this; } template>>, meta::is_callable>> = meta::enabler> proxy& operator=(U&& other) { return set_function(std::forward(other)); } template>>, meta::is_callable>> = meta::enabler> proxy& operator=(U&& other) { return set(std::forward(other)); } template decltype(auto) get() const { return tuple_get(std::make_index_sequence>::value>()); } template decltype(auto) get_or(T&& otherwise) const { typedef decltype(get()) U; sol::optional option = get>(); if (option) { return static_cast(option.value()); } return static_cast(std::forward(otherwise)); } template decltype(auto) get_or(D&& otherwise) const { sol::optional option = get>(); if (option) { return static_cast(option.value()); } return static_cast(std::forward(otherwise)); } template decltype(auto) operator[](K&& k) const { auto keys = meta::tuplefy(key, std::forward(k)); return proxy(tbl, std::move(keys)); } template decltype(auto) call(Args&&... args) { return get().template call(std::forward(args)...); } template decltype(auto) operator()(Args&&... args) { return call<>(std::forward(args)...); } bool valid() const { stack::push_pop(tbl); auto p = stack::probe_get_field, global_table>::value>(tbl.lua_state(), key, lua_gettop(tbl.lua_state())); lua_pop(tbl.lua_state(), p.levels); return p; } }; template inline bool operator==(T&& left, const proxy& right) { return left == right.template get>(); } template inline bool operator==(const proxy& right, T&& left) { return right.template get>() == left; } template inline bool operator!=(T&& left, const proxy& right) { return right.template get>() != left; } template inline bool operator!=(const proxy& right, T&& left) { return right.template get>() != left; } template inline bool operator==(nil_t, const proxy& right) { return !right.valid(); } template inline bool operator==(const proxy& right, nil_t) { return !right.valid(); } template inline bool operator!=(nil_t, const proxy& right) { return right.valid(); } template inline bool operator!=(const proxy& right, nil_t) { return right.valid(); } namespace stack { template struct pusher> { static int push(lua_State*, const proxy& p) { sol::reference r = p; return r.push(); } }; } // stack } // sol // end of sol/proxy.hpp // beginning of sol/usertype.hpp // beginning of sol/usertype_metatable.hpp // beginning of sol/deprecate.hpp #ifndef SOL_DEPRECATED #ifdef _MSC_VER #define SOL_DEPRECATED __declspec(deprecated) #elif __GNUC__ #define SOL_DEPRECATED __attribute__((deprecated)) #else #define SOL_DEPRECATED [[deprecated]] #endif // compilers #endif // SOL_DEPRECATED namespace sol { namespace detail { template struct SOL_DEPRECATED deprecate_type { using type = T; }; } // detail } // sol // end of sol/deprecate.hpp #include namespace sol { namespace usertype_detail { struct no_comp { template bool operator()(A&&, B&&) { return false; } }; inline bool is_indexer(string_detail::string_shim s) { return s == name_of(meta_function::index) || s == name_of(meta_function::new_index); } inline bool is_indexer(meta_function mf) { return mf == meta_function::index || mf == meta_function::new_index; } inline bool is_indexer(call_construction) { return false; } inline bool is_indexer(base_classes_tag) { return false; } inline auto make_shim(string_detail::string_shim s) { return s; } inline auto make_shim(call_construction) { return string_detail::string_shim(name_of(meta_function::call_function)); } inline auto make_shim(meta_function mf) { return string_detail::string_shim(name_of(mf)); } inline auto make_shim(base_classes_tag) { return string_detail::string_shim(detail::base_class_cast_key()); } template inline luaL_Reg make_reg(N&& n, lua_CFunction f) { luaL_Reg l{ make_shim(std::forward(n)).c_str(), f }; return l; } struct registrar { virtual int push_um(lua_State* L) = 0; virtual ~registrar() {} }; template inline int indexing_fail(lua_State* L) { auto maybeaccessor = stack::get>(L, is_index ? -1 : -2); string_detail::string_shim accessor = maybeaccessor.value_or(string_detail::string_shim("(unknown)")); if (is_index) return luaL_error(L, "sol: attempt to index (get) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.data()); else return luaL_error(L, "sol: attempt to index (set) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.data()); } template inline int operator_wrap(lua_State* L) { auto maybel = stack::check_get(L, 1); if (maybel) { auto mayber = stack::check_get(L, 2); if (mayber) { auto& l = *maybel; auto& r = *mayber; if (std::is_same::value) { return stack::push(L, detail::ptr(l) == detail::ptr(r)); } else { Op op; return stack::push(L, (detail::ptr(l) == detail::ptr(r)) || op(detail::deref(l), detail::deref(r))); } } } return stack::push(L, false); } template = meta::enabler> inline void make_reg_op(Regs& l, int& index, const char* name) { l[index] = { name, &operator_wrap }; ++index; } template = meta::enabler> inline void make_reg_op(Regs&, int&, const char*) { // Do nothing if there's no support } struct add_destructor_tag {}; struct check_destructor_tag {}; struct verified_tag {} const verified{}; template struct is_constructor : std::false_type {}; template struct is_constructor> : std::true_type {}; template struct is_constructor> : std::true_type {}; template struct is_constructor> : std::true_type {}; template <> struct is_constructor : std::true_type {}; template using has_constructor = meta::any>...>; template struct is_destructor : std::false_type {}; template struct is_destructor> : std::true_type {}; template using has_destructor = meta::any>...>; } // usertype_detail template struct clean_type { typedef std::conditional_t>::value, T&, std::decay_t> type; }; template using clean_type_t = typename clean_type::type; template struct usertype_metatable : usertype_detail::registrar {}; template struct usertype_metatable, Tn...> : usertype_detail::registrar { typedef std::make_index_sequence indices; typedef std::index_sequence half_indices; typedef std::array regs_t; typedef std::tuple RawTuple; typedef std::tuple ...> Tuple; template struct check_binding : is_variable_binding> {}; typedef void (*base_walk)(lua_State*, bool&, int&, string_detail::string_shim&); Tuple functions; lua_CFunction indexfunc; lua_CFunction newindexfunc; lua_CFunction destructfunc; lua_CFunction callconstructfunc; lua_CFunction indexbase; lua_CFunction newindexbase; base_walk indexbaseclasspropogation; base_walk newindexbaseclasspropogation; void* baseclasscheck; void* baseclasscast; bool mustindex; bool secondarymeta; bool hasequals; bool hasless; bool haslessequals; template >> = meta::enabler> inline lua_CFunction make_func() { return std::get(functions); } template >> = meta::enabler> inline lua_CFunction make_func() { return call; } static bool contains_variable() { typedef meta::any...> has_variables; return has_variables::value; } bool contains_index() const { bool idx = false; (void)detail::swallow{ 0, ((idx |= usertype_detail::is_indexer(std::get(functions))), 0) ... }; return idx; } int finish_regs(regs_t& l, int& index) { if (!hasless) { const char* name = name_of(meta_function::less_than).c_str(); usertype_detail::make_reg_op, meta::supports_op_less>(l, index, name); } if (!haslessequals) { const char* name = name_of(meta_function::less_than_or_equal_to).c_str(); usertype_detail::make_reg_op, meta::supports_op_less_equal>(l, index, name); } if (!hasequals) { const char* name = name_of(meta_function::equal_to).c_str(); usertype_detail::make_reg_op::value, std::equal_to<>, usertype_detail::no_comp>, std::true_type>(l, index, name); } if (destructfunc != nullptr) { l[index] = { name_of(meta_function::garbage_collect).c_str(), destructfunc }; ++index; } return index; } template void make_regs(regs_t&, int&, call_construction, F&&) { callconstructfunc = call; secondarymeta = true; } template void make_regs(regs_t&, int&, base_classes_tag, bases) { if (sizeof...(Bases) < 1) { return; } mustindex = true; (void)detail::swallow{ 0, ((detail::has_derived::value = true), 0)... }; static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report."); static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report."); baseclasscheck = (void*)&detail::inheritance::type_check; baseclasscast = (void*)&detail::inheritance::type_cast; indexbaseclasspropogation = walk_all_bases; newindexbaseclasspropogation = walk_all_bases; } template , base_classes_tag, call_construction>::value>> void make_regs(regs_t& l, int& index, N&& n, F&&) { if (is_variable_binding>::value) { return; } luaL_Reg reg = usertype_detail::make_reg(std::forward(n), make_func()); // Returnable scope // That would be a neat keyword for C++ // returnable { ... }; if (reg.name == name_of(meta_function::equal_to)) { hasequals = true; } if (reg.name == name_of(meta_function::less_than)) { hasless = true; } if (reg.name == name_of(meta_function::less_than_or_equal_to)) { haslessequals = true; } if (reg.name == name_of(meta_function::garbage_collect)) { destructfunc = reg.func; return; } else if (reg.name == name_of(meta_function::index)) { indexfunc = reg.func; mustindex = true; return; } else if (reg.name == name_of(meta_function::new_index)) { newindexfunc = reg.func; mustindex = true; return; } l[index] = reg; ++index; } template > usertype_metatable(Args&&... args) : functions(std::forward(args)...), indexfunc(usertype_detail::indexing_fail), newindexfunc(usertype_detail::indexing_fail), destructfunc(nullptr), callconstructfunc(nullptr), indexbase(&core_indexing_call), newindexbase(&core_indexing_call), indexbaseclasspropogation(walk_all_bases), newindexbaseclasspropogation(walk_all_bases), baseclasscheck(nullptr), baseclasscast(nullptr), mustindex(contains_variable() || contains_index()), secondarymeta(contains_variable()), hasequals(false), hasless(false), haslessequals(false) { } template int real_find_call(std::integral_constant, lua_State* L) { if (is_variable_binding(functions))>::value) { return real_call_with(L, *this); } return stack::push(L, c_closure(call, stack::push(L, light(*this)))); } template void find_call(std::integral_constant idx, lua_State* L, bool& found, int& ret, const sol::string_detail::string_shim& accessor) { if (found) { return; } string_detail::string_shim name = usertype_detail::make_shim(std::get(functions)); if (accessor != name) { return; } found = true; ret = real_find_call(idx, L); } template void propogating_call(lua_State* L, bool& found, int& ret, string_detail::string_shim& accessor) { (void)detail::swallow{ 0, (find_call(std::integral_constant(), L, found, ret, accessor), 0)... }; } template static void walk_single_base(lua_State* L, bool& found, int& ret, string_detail::string_shim&) { if (found) return; const char* metakey = &usertype_traits::metatable[0]; const char* gcmetakey = &usertype_traits::gc_table[0]; const char* basewalkkey = b ? detail::base_class_index_propogation_key() : detail::base_class_new_index_propogation_key(); luaL_getmetatable(L, metakey); if (type_of(L, -1) == type::nil) { lua_pop(L, 1); return; } stack::get_field(L, basewalkkey); if (type_of(L, -1) == type::nil) { lua_pop(L, 2); return; } lua_CFunction basewalkfunc = stack::pop(L); lua_pop(L, 1); stack::get_field(L, gcmetakey); int value = basewalkfunc(L); if (value > -1) { found = true; ret = value; } } template static void walk_all_bases(lua_State* L, bool& found, int& ret, string_detail::string_shim& accessor) { (void)L; (void)found; (void)ret; (void)accessor; (void)detail::swallow{ 0, (walk_single_base(L, found, ret, accessor), 0)... }; } template static int core_indexing_call(lua_State* L) { usertype_metatable& f = toplevel ? stack::get>(L, upvalue_index(1)) : stack::pop>(L); static const int keyidx = -2 + static_cast(b); if (toplevel && stack::get(L, keyidx) != type::string) { return b ? f.indexfunc(L) : f.newindexfunc(L); } string_detail::string_shim accessor = stack::get(L, keyidx); int ret = 0; bool found = false; f.propogating_call(L, found, ret, accessor); if (found) { return ret; } // Otherwise, we need to do propagating calls through the bases if (b) f.indexbaseclasspropogation(L, found, ret, accessor); else f.newindexbaseclasspropogation(L, found, ret, accessor); if (found) { return ret; } return toplevel ? (b ? f.indexfunc(L) : f.newindexfunc(L)) : -1; } static int real_index_call(lua_State* L) { return core_indexing_call(L); } static int real_new_index_call(lua_State* L) { return core_indexing_call(L); } template static int real_call(lua_State* L) { usertype_metatable& f = stack::get>(L, upvalue_index(1)); return real_call_with(L, f); } template static int real_call_with(lua_State* L, usertype_metatable& um) { auto& f = std::get(um.functions); return call_detail::call_wrapped(L, f); } template static int call(lua_State* L) { return detail::static_trampoline<(&real_call)>(L); } template static int call_with(lua_State* L) { return detail::static_trampoline<(&real_call_with)>(L); } static int index_call(lua_State* L) { return detail::static_trampoline<(&real_index_call)>(L); } static int new_index_call(lua_State* L) { return detail::static_trampoline<(&real_new_index_call)>(L); } virtual int push_um(lua_State* L) override { return stack::push(L, std::move(*this)); } ~usertype_metatable() override { } }; namespace stack { template struct pusher, Args...>> { typedef usertype_metatable, Args...> umt_t; typedef typename umt_t::regs_t regs_t; static umt_t& make_cleanup(lua_State* L, umt_t&& umx) { // ensure some sort of uniqueness static int uniqueness = 0; std::string uniquegcmetakey = usertype_traits::user_gc_metatable; // std::to_string doesn't exist in android still, with NDK, so this bullshit // is necessary // thanks, Android :v int appended = snprintf(nullptr, 0, "%d", uniqueness); std::size_t insertionpoint = uniquegcmetakey.length() - 1; uniquegcmetakey.append(appended, '\0'); char* uniquetarget = &uniquegcmetakey[insertionpoint]; snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness); ++uniqueness; const char* gcmetakey = &usertype_traits::gc_table[0]; // Make sure userdata's memory is properly in lua first, // otherwise all the light userdata we make later will become invalid stack::push>(L, metatable_key, uniquegcmetakey, std::move(umx)); // Create the top level thing that will act as our deleter later on stack_reference umt(L, -1); stack::set_field(L, gcmetakey, umt); umt.pop(); stack::get_field(L, gcmetakey); return stack::pop>(L); } static int push(lua_State* L, umt_t&& umx) { umt_t& um = make_cleanup(L, std::move(umx)); regs_t value_table{ {} }; int lastreg = 0; (void)detail::swallow{ 0, (um.template make_regs<(I * 2)>(value_table, lastreg, std::get<(I * 2)>(um.functions), std::get<(I * 2 + 1)>(um.functions)), 0)... }; um.finish_regs(value_table, lastreg); value_table[lastreg] = { nullptr, nullptr }; regs_t ref_table = value_table; regs_t unique_table = value_table; bool hasdestructor = !value_table.empty() && name_of(meta_function::garbage_collect) == value_table[lastreg - 1].name; if (hasdestructor) { ref_table[lastreg - 1] = { nullptr, nullptr }; unique_table[lastreg - 1] = { value_table[lastreg - 1].name, detail::unique_destruct }; } // Now use um const bool& mustindex = um.mustindex; for (std::size_t i = 0; i < 3; ++i) { // Pointer types, AKA "references" from C++ const char* metakey = nullptr; luaL_Reg* metaregs = nullptr; switch (i) { case 0: metakey = &usertype_traits::metatable[0]; metaregs = ref_table.data(); break; case 1: metakey = &usertype_traits>::metatable[0]; metaregs = unique_table.data(); break; case 2: default: metakey = &usertype_traits::metatable[0]; metaregs = value_table.data(); break; } luaL_newmetatable(L, metakey); stack_reference t(L, -1); stack::push(L, make_light(um)); luaL_setfuncs(L, metaregs, 1); if (um.baseclasscheck != nullptr) { stack::set_field(L, detail::base_class_check_key(), um.baseclasscheck, t.stack_index()); } else { stack::set_field(L, detail::base_class_check_key(), nil, t.stack_index()); } if (um.baseclasscast != nullptr) { stack::set_field(L, detail::base_class_cast_key(), um.baseclasscast, t.stack_index()); } else { stack::set_field(L, detail::base_class_cast_key(), nil, t.stack_index()); } stack::set_field(L, detail::base_class_index_propogation_key(), make_closure(um.indexbase, make_light(um)), t.stack_index()); stack::set_field(L, detail::base_class_new_index_propogation_key(), make_closure(um.newindexbase, make_light(um)), t.stack_index()); if (mustindex) { // Basic index pushing: specialize // index and newindex to give variables and stuff stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, make_light(um)), t.stack_index()); stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, make_light(um)), t.stack_index()); } else { // If there's only functions, we can use the fast index version stack::set_field(L, meta_function::index, t, t.stack_index()); } // metatable on the metatable // for call constructor purposes and such lua_createtable(L, 0, 1); stack_reference metabehind(L, -1); if (um.callconstructfunc != nullptr) { stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, make_light(um)), metabehind.stack_index()); } if (um.secondarymeta) { stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, make_light(um)), metabehind.stack_index()); stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, make_light(um)), metabehind.stack_index()); } stack::set_field(L, metatable_key, metabehind, t.stack_index()); metabehind.pop(); // We want to just leave the table // in the registry only, otherwise we return it if (i < 2) { t.pop(); } } return 1; } }; } // stack } // sol // end of sol/usertype_metatable.hpp // beginning of sol/simple_usertype_metatable.hpp namespace sol { struct simple_tag {} const simple{}; template struct simple_usertype_metatable : usertype_detail::registrar { std::vector> registrations; object callconstructfunc; template >> = meta::enabler> void add(lua_State* L, N&& n, F&& f) { registrations.emplace_back(make_object(L, std::forward(n)), make_object(L, as_function(std::forward(f)))); } template >> = meta::enabler> void add(lua_State* L, N&& n, F&& f) { registrations.emplace_back(make_object(L, std::forward(n)), make_object(L, std::forward(f))); } template void add(lua_State* L, N&& n, constructor_wrapper c) { registrations.emplace_back(make_object(L, std::forward(n)), make_object(L, detail::tagged>{std::move(c)})); } template void add(lua_State* L, N&& n, constructor_list c) { registrations.emplace_back(make_object(L, std::forward(n)), make_object(L, detail::tagged>{std::move(c)})); } template void add(lua_State* L, call_construction, F&& f) { callconstructfunc = make_object(L, std::forward(f)); } template simple_usertype_metatable(usertype_detail::verified_tag, std::index_sequence, lua_State* L, Tuple&& args) : callconstructfunc(nil) { registrations.reserve(std::tuple_size>::value); (void)detail::swallow{ 0, (add(L, detail::forward_get(args), detail::forward_get(args)),0)... }; } template simple_usertype_metatable(lua_State* L, usertype_detail::verified_tag v, Args&&... args) : simple_usertype_metatable(v, std::make_index_sequence(), L, std::forward_as_tuple(std::forward(args)...)) {} template simple_usertype_metatable(lua_State* L, usertype_detail::add_destructor_tag, Args&&... args) : simple_usertype_metatable(L, usertype_detail::verified, std::forward(args)..., "__gc", default_destructor) {} template simple_usertype_metatable(lua_State* L, usertype_detail::check_destructor_tag, Args&&... args) : simple_usertype_metatable(L, meta::condition, meta::neg>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward(args)...) {} public: simple_usertype_metatable(lua_State* L) : simple_usertype_metatable(meta::condition>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), L) {} template, usertype_detail::verified_tag, usertype_detail::add_destructor_tag, usertype_detail::check_destructor_tag >, meta::is_specialization_of>, meta::is_specialization_of> > = meta::enabler> simple_usertype_metatable(lua_State* L, Arg&& arg, Args&&... args) : simple_usertype_metatable(L, meta::condition, meta::neg>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward(arg), std::forward(args)...) {} template simple_usertype_metatable(lua_State* L, constructors constructorlist, Args&&... args) : simple_usertype_metatable(L, usertype_detail::check_destructor_tag(), std::forward(args)..., "new", constructorlist) {} template simple_usertype_metatable(lua_State* L, constructor_wrapper constructorlist, Args&&... args) : simple_usertype_metatable(L, usertype_detail::check_destructor_tag(), std::forward(args)..., "new", constructorlist) {} virtual int push_um(lua_State* L) override { return stack::push(L, std::move(*this)); } }; namespace stack { template struct pusher> { typedef simple_usertype_metatable umt_t; static int push(lua_State* L, umt_t&& umx) { bool hasequals = false; bool hasless = false; bool haslessequals = false; for (std::size_t i = 0; i < 3; ++i) { // Pointer types, AKA "references" from C++ const char* metakey = nullptr; switch (i) { case 0: metakey = &usertype_traits::metatable[0]; break; case 1: metakey = &usertype_traits>::metatable[0]; break; case 2: default: metakey = &usertype_traits::metatable[0]; break; } luaL_newmetatable(L, metakey); stack_reference t(L, -1); for (auto& kvp : umx.registrations) { if (kvp.first.template is()) { std::string regname = kvp.first.template as(); if (regname == name_of(meta_function::equal_to)) { hasequals = true; } else if (regname == name_of(meta_function::less_than)) { hasless = true; } else if (regname == name_of(meta_function::less_than_or_equal_to)) { haslessequals = true; } switch (i) { case 0: if (regname == name_of(meta_function::garbage_collect)) { continue; } break; case 1: if (regname == name_of(meta_function::garbage_collect)) { stack::set_field(L, kvp.first, detail::unique_destruct, t.stack_index()); continue; } break; case 2: default: break; } } stack::set_field(L, kvp.first, kvp.second, t.stack_index()); } luaL_Reg opregs[4]{}; int opregsindex = 0; if (!hasless) { const char* name = name_of(meta_function::less_than).c_str(); usertype_detail::make_reg_op, meta::supports_op_less>(opregs, opregsindex, name); } if (!haslessequals) { const char* name = name_of(meta_function::less_than_or_equal_to).c_str(); usertype_detail::make_reg_op, meta::supports_op_less_equal>(opregs, opregsindex, name); } if (!hasequals) { const char* name = name_of(meta_function::equal_to).c_str(); usertype_detail::make_reg_op::value, std::equal_to<>, usertype_detail::no_comp>, std::true_type>(opregs, opregsindex, name); } t.push(); luaL_setfuncs(L, opregs, 0); t.pop(); // Metatable indexes itself stack::set_field(L, meta_function::index, t, t.stack_index()); // metatable on the metatable // for call constructor purposes and such lua_createtable(L, 0, 1); stack_reference metabehind(L, -1); if (umx.callconstructfunc.valid()) { stack::set_field(L, sol::meta_function::call_function, umx.callconstructfunc, metabehind.stack_index()); } stack::set_field(L, metatable_key, metabehind, t.stack_index()); metabehind.pop(); if (i < 2) t.pop(); } return 1; } }; } // stack } // sol // end of sol/simple_usertype_metatable.hpp // beginning of sol/container_usertype_metatable.hpp namespace sol { namespace detail { template struct has_find { private: typedef std::array one; typedef std::array two; template static one test(decltype(&C::find)); template static two test(...); public: static const bool value = sizeof(test(0)) == sizeof(char); }; template T& get_first(const T& t) { return std::forward(t); } template decltype(auto) get_first(const std::pair& t) { return t.first; } template >> = meta::enabler> auto find(C& c, I&& i) { return c.find(std::forward(i)); } template >> = meta::enabler> auto find(C& c, I&& i) { using std::begin; using std::end; return std::find_if(begin(c), end(c), [&i](auto&& x) { return i == get_first(x); }); } } template struct container_usertype_metatable { typedef meta::unqualified_t T; typedef std::size_t K; typedef typename T::value_type V; typedef typename T::iterator I; typedef std::remove_reference_t())> IR; struct iter { T& source; I it; iter(T& source, I it) : source(source), it(std::move(it)) {} }; static auto& get_src(lua_State* L) { #ifdef SOL_SAFE_USERTYPE auto p = stack::get(L, 1); if (p == nullptr) { luaL_error(L, "sol: 'self' argument is nil (pass 'self' as first argument or call on proper type)"); } return *p; #else return stack::get(L, 1); #endif } static int real_index_call(lua_State* L) { auto& src = get_src(L); #ifdef SOL_SAFE_USERTYPE auto maybek = stack::check_get(L, 2); if (maybek) { using std::begin; auto it = begin(src); K k = *maybek; if (k <= src.size() && k > 0) { --k; std::advance(it, k); return stack::push(L, *it); } } return stack::push(L, nil); #else using std::begin; auto it = begin(src); K k = stack::get(L, 2); --k; std::advance(it, k); return stack::push(L, *it); #endif // Safety } template > = meta::enabler> static int real_new_index_call_const(std::integral_constant, lua_State* L) { luaL_error(L, "sol: cannot write to a const value type or an immutable iterator (e.g., std::set)"); return 0; } template > = meta::enabler> static int real_new_index_call_const(std::integral_constant, lua_State* L) { auto& src = get_src(L); #ifdef SOL_SAFE_USERTYPE auto maybek = stack::check_get(L, 2); if (maybek) { K k = *maybek; if (k <= src.size() && k > 0) { --k; using std::begin; auto it = begin(src); std::advance(it, k); *it = stack::get(L, 3); } } #else using std::begin; auto it = begin(src); K k = stack::get(L, 2); --k; std::advance(it, k); *it = stack::get(L, 3); #endif return 0; } static int real_new_index_call(lua_State* L) { return real_new_index_call_const(meta::neg, std::is_const>>(), L); } static int real_pairs_next_call(lua_State* L) { using std::end; iter& i = stack::get>(L, 1); auto& source = i.source; auto& it = i.it; K k = stack::get(L, 2); if (it == end(source)) { return 0; } int p = stack::push(L, k + 1); p += stack::push(L, *it); std::advance(it, 1); return p; } static int real_pairs_call(lua_State* L) { auto& src = get_src(L); using std::begin; stack::push(L, pairs_next_call); stack::push>(L, src, begin(src)); stack::push(L, 0); return 3; } static int real_length_call(lua_State*L) { auto& src = get_src(L); return stack::push(L, src.size()); } #if 0 static int real_push_back_call(lua_State*L) { auto& src = get_src(L); src.push_back(stack::get(L, 2)); return 0; } static int real_insert_call(lua_State*L) { using std::begin; auto& src = get_src(L); src.insert(std::next(begin(src), stack::get(L, 2)), stack::get(L, 3)); return 0; } static int push_back_call(lua_State*L) { return detail::static_trampoline<(&real_length_call)>(L); } static int insert_call(lua_State*L) { return detail::static_trampoline<(&real_insert_call)>(L); } #endif // Sometime later, in a distant universe... static int length_call(lua_State*L) { return detail::static_trampoline<(&real_length_call)>(L); } static int pairs_next_call(lua_State*L) { return detail::static_trampoline<(&real_pairs_next_call)>(L); } static int pairs_call(lua_State*L) { return detail::static_trampoline<(&real_pairs_call)>(L); } static int index_call(lua_State*L) { return detail::static_trampoline<(&real_index_call)>(L); } static int new_index_call(lua_State*L) { return detail::static_trampoline<(&real_new_index_call)>(L); } }; template struct container_usertype_metatable>::value>> { typedef meta::unqualified_t T; typedef typename T::value_type KV; typedef typename KV::first_type K; typedef typename KV::second_type V; typedef typename T::iterator I; struct iter { T& source; I it; iter(T& source, I it) : source(source), it(std::move(it)) {} }; static auto& get_src(lua_State* L) { #ifdef SOL_SAFE_USERTYPE auto p = stack::get(L, 1); if (p == nullptr) { luaL_error(L, "sol: 'self' argument is nil (pass 'self' as first argument or call on proper type)"); } return *p; #else return stack::get(L, 1); #endif } static int real_index_call(lua_State* L) { auto& src = get_src(L); auto k = stack::check_get(L, 2); if (k) { using std::end; auto it = detail::find(src, *k); if (it != end(src)) { auto& v = *it; return stack::push(L, v.second); } } return stack::push(L, nil); } static int real_new_index_call_const(std::false_type, lua_State* L) { luaL_error(L, "sol: cannot write to a const value type"); return 0; } static int real_new_index_call_const(std::true_type, lua_State* L) { auto& src = get_src(L); auto k = stack::check_get(L, 2); if (k) { using std::end; auto it = detail::find(src, *k); if (it != end(src)) { auto& v = *it; v.second = stack::get(L, 3); } else { src.insert(it, { std::move(*k), stack::get(L, 3) }); } } return 0; } static int real_new_index_call(lua_State* L) { return real_new_index_call_const(meta::neg>(), L); } static int real_pairs_next_call(lua_State* L) { using std::end; iter& i = stack::get>(L, 1); auto& source = i.source; auto& it = i.it; std::advance(it, 1); if (it == end(source)) { return 0; } return stack::multi_push_reference(L, it->first, it->second); } static int real_pairs_call(lua_State* L) { auto& src = get_src(L); using std::begin; stack::push(L, pairs_next_call); stack::push>(L, src, begin(src)); stack::push(L, 1); return 3; } static int real_length_call(lua_State*L) { auto& src = get_src(L); return stack::push(L, src.size()); } static int length_call(lua_State*L) { return detail::static_trampoline<(&real_length_call)>(L); } static int pairs_next_call(lua_State*L) { return detail::static_trampoline<(&real_pairs_next_call)>(L); } static int pairs_call(lua_State*L) { return detail::static_trampoline<(&real_pairs_call)>(L); } static int index_call(lua_State*L) { return detail::static_trampoline<(&real_index_call)>(L); } static int new_index_call(lua_State*L) { return detail::static_trampoline<(&real_new_index_call)>(L); } }; namespace stack { template struct pusher, meta::neg, std::is_base_of>>>::value>> { typedef container_usertype_metatable cumt; static int push(lua_State* L, const T& cont) { auto fx = [&L]() { const char* metakey = &usertype_traits::metatable[0]; if (luaL_newmetatable(L, metakey) == 1) { luaL_Reg reg[] = { { "__index", &cumt::index_call }, { "__newindex", &cumt::new_index_call }, { "__pairs", &cumt::pairs_call }, { "__len", &cumt::length_call }, { "__gc", &detail::usertype_alloc_destroy }, { nullptr, nullptr } }; luaL_setfuncs(L, reg, 0); } lua_setmetatable(L, -2); }; return pusher>{}.push_fx(L, fx, cont); } static int push(lua_State* L, T&& cont) { auto fx = [&L]() { const char* metakey = &usertype_traits::metatable[0]; if (luaL_newmetatable(L, metakey) == 1) { luaL_Reg reg[] = { { "__index", &cumt::index_call }, { "__newindex", &cumt::new_index_call }, { "__pairs", &cumt::pairs_call }, { "__len", &cumt::length_call }, { "__gc", &detail::usertype_alloc_destroy }, { nullptr, nullptr } }; luaL_setfuncs(L, reg, 0); } lua_setmetatable(L, -2); }; return pusher>{}.push_fx(L, fx, std::move(cont)); } }; template struct pusher>, meta::neg>, std::is_base_of>>>>::value>> { typedef container_usertype_metatable cumt; static int push(lua_State* L, T* cont) { auto fx = [&L]() { const char* metakey = &usertype_traits*>::metatable[0]; if (luaL_newmetatable(L, metakey) == 1) { luaL_Reg reg[] = { { "__index", &cumt::index_call }, { "__newindex", &cumt::new_index_call }, { "__pairs", &cumt::pairs_call }, { "__len", &cumt::length_call }, { nullptr, nullptr } }; luaL_setfuncs(L, reg, 0); } lua_setmetatable(L, -2); }; return pusher>{}.push_fx(L, fx, cont); } }; } // stack } // sol // end of sol/container_usertype_metatable.hpp namespace sol { template class usertype { private: std::unique_ptr metatableregister; template usertype(usertype_detail::verified_tag, Args&&... args) : metatableregister(detail::make_unique_deleter, Args...>, detail::deleter>(std::forward(args)...)) {} template usertype(usertype_detail::add_destructor_tag, Args&&... args) : usertype(usertype_detail::verified, std::forward(args)..., "__gc", default_destructor) {} template usertype(usertype_detail::check_destructor_tag, Args&&... args) : usertype(meta::condition, meta::neg>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward(args)...) {} public: template usertype(Args&&... args) : usertype(meta::condition, meta::neg>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward(args)...) {} template usertype(constructors constructorlist, Args&&... args) : usertype(usertype_detail::check_destructor_tag(), std::forward(args)..., "new", constructorlist) {} template usertype(constructor_wrapper constructorlist, Args&&... args) : usertype(usertype_detail::check_destructor_tag(), std::forward(args)..., "new", constructorlist) {} template usertype(simple_tag, lua_State* L, Args&&... args) : metatableregister(detail::make_unique_deleter, detail::deleter>(L, std::forward(args)...)) {} int push(lua_State* L) { return metatableregister->push_um(L); } }; namespace stack { template struct pusher> { static int push(lua_State* L, usertype& user) { return user.push(L); } }; } // stack } // sol // end of sol/usertype.hpp // beginning of sol/table_iterator.hpp namespace sol { template class basic_table_iterator : public std::iterator> { private: typedef std::iterator> base_t; public: typedef object key_type; typedef object mapped_type; typedef base_t::value_type value_type; typedef base_t::iterator_category iterator_category; typedef base_t::difference_type difference_type; typedef base_t::pointer pointer; typedef base_t::reference reference; typedef const value_type& const_reference; private: std::pair kvp; reference_type ref; int tableidx = 0; int keyidx = 0; std::ptrdiff_t idx = 0; public: basic_table_iterator() : keyidx(-1), idx(-1) { } basic_table_iterator(reference_type x) : ref(std::move(x)) { ref.push(); tableidx = lua_gettop(ref.lua_state()); stack::push(ref.lua_state(), nil); this->operator++(); if (idx == -1) { return; } --idx; } basic_table_iterator& operator++() { if (idx == -1) return *this; if (lua_next(ref.lua_state(), tableidx) == 0) { idx = -1; keyidx = -1; return *this; } ++idx; kvp.first = object(ref.lua_state(), -2); kvp.second = object(ref.lua_state(), -1); lua_pop(ref.lua_state(), 1); // leave key on the stack keyidx = lua_gettop(ref.lua_state()); return *this; } basic_table_iterator operator++(int) { auto saved = *this; this->operator++(); return saved; } reference operator*() { return kvp; } const_reference operator*() const { return kvp; } bool operator== (const basic_table_iterator& right) const { return idx == right.idx; } bool operator!= (const basic_table_iterator& right) const { return idx != right.idx; } ~basic_table_iterator() { if (keyidx != -1) { stack::remove(ref.lua_state(), keyidx, 1); } if (ref.valid()) { stack::remove(ref.lua_state(), tableidx, 1); } } }; } // sol // end of sol/table_iterator.hpp namespace sol { namespace detail { template struct clean { lua_State* L; clean(lua_State* L) : L(L) {} ~clean() { lua_pop(L, static_cast(n)); } }; struct ref_clean { lua_State* L; int& n; ref_clean(lua_State* L, int& n) : L(L), n(n) {} ~ref_clean() { lua_pop(L, static_cast(n)); } }; inline int fail_on_newindex(lua_State* L) { return luaL_error(L, "sol: cannot modify the elements of an enumeration table"); } } template class basic_table_core : public base_t { friend class state; friend class state_view; template using is_global = meta::all, meta::is_c_str...>; template void for_each(std::true_type, Fx&& fx) const { auto pp = stack::push_pop(*this); stack::push(base_t::lua_state(), nil); while (lua_next(base_t::lua_state(), -2)) { sol::object key(base_t::lua_state(), -2); sol::object value(base_t::lua_state(), -1); std::pair keyvalue(key, value); auto pn = stack::pop_n(base_t::lua_state(), 1); fx(keyvalue); } } template void for_each(std::false_type, Fx&& fx) const { auto pp = stack::push_pop(*this); stack::push(base_t::lua_state(), nil); while (lua_next(base_t::lua_state(), -2)) { sol::object key(base_t::lua_state(), -2); sol::object value(base_t::lua_state(), -1); auto pn = stack::pop_n(base_t::lua_state(), 1); fx(key, value); } } template auto tuple_get(types, std::index_sequence<0, 1, I...>, Keys&& keys) const -> decltype(stack::pop>(nullptr)) { typedef decltype(stack::pop>(nullptr)) Tup; return Tup( traverse_get_optional(meta::is_specialization_of>(), detail::forward_get<0>(keys)), traverse_get_optional(meta::is_specialization_of>(), detail::forward_get<1>(keys)), traverse_get_optional(meta::is_specialization_of>(), detail::forward_get(keys))... ); } template decltype(auto) tuple_get(types, std::index_sequence, Keys&& keys) const { return traverse_get_optional(meta::is_specialization_of>(), detail::forward_get(keys)); } template void tuple_set(std::index_sequence, Pairs&& pairs) { auto pp = stack::push_pop(pairs))...>::value)>(*this); void(detail::swallow{ (stack::set_field(base_t::lua_state(), detail::forward_get(pairs), detail::forward_get(pairs), lua_gettop(base_t::lua_state()) ), 0)... }); } template decltype(auto) traverse_get_deep(Key&& key) const { stack::get_field(base_t::lua_state(), std::forward(key)); return stack::get(base_t::lua_state()); } template decltype(auto) traverse_get_deep(Key&& key, Keys&&... keys) const { stack::get_field(base_t::lua_state(), std::forward(key)); return traverse_get_deep(std::forward(keys)...); } template decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key) const { typedef decltype(stack::get(base_t::lua_state())) R; auto p = stack::probe_get_field(base_t::lua_state(), std::forward(key), lua_gettop(base_t::lua_state())); popcount += p.levels; if (!p.success) return R(nullopt); return stack::get(base_t::lua_state()); } template decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key, Keys&&... keys) const { auto p = I > 0 ? stack::probe_get_field(base_t::lua_state(), std::forward(key), -1) : stack::probe_get_field(base_t::lua_state(), std::forward(key), lua_gettop(base_t::lua_state())); popcount += p.levels; if (!p.success) return T(nullopt); return traverse_get_deep_optional(popcount, std::forward(keys)...); } template decltype(auto) traverse_get_optional(std::false_type, Keys&&... keys) const { detail::clean c(base_t::lua_state()); return traverse_get_deep(std::forward(keys)...); } template decltype(auto) traverse_get_optional(std::true_type, Keys&&... keys) const { int popcount = 0; detail::ref_clean c(base_t::lua_state(), popcount); return traverse_get_deep_optional(popcount, std::forward(keys)...); } template void traverse_set_deep(Key&& key, Value&& value) const { stack::set_field(base_t::lua_state(), std::forward(key), std::forward(value)); } template void traverse_set_deep(Key&& key, Keys&&... keys) const { stack::get_field(base_t::lua_state(), std::forward(key)); traverse_set_deep(std::forward(keys)...); } basic_table_core(lua_State* L, detail::global_tag t) noexcept : reference(L, t) { } public: typedef basic_table_iterator iterator; typedef iterator const_iterator; basic_table_core() noexcept : base_t() { } template , basic_table_core>>, std::is_base_of>> = meta::enabler> basic_table_core(T&& r) noexcept : base_t(std::forward(r)) { #ifdef SOL_CHECK_ARGUMENTS if (!is_table>::value) { auto pp = stack::push_pop(*this); stack::check(base_t::lua_state(), -1, type_panic); } #endif // Safety } basic_table_core(const basic_table_core&) = default; basic_table_core(basic_table_core&&) = default; basic_table_core& operator=(const basic_table_core&) = default; basic_table_core& operator=(basic_table_core&&) = default; basic_table_core(const stack_reference& r) : basic_table_core(r.lua_state(), r.stack_index()) {} basic_table_core(stack_reference&& r) : basic_table_core(r.lua_state(), r.stack_index()) {} basic_table_core(lua_State* L, int index = -1) : base_t(L, index) { #ifdef SOL_CHECK_ARGUMENTS stack::check(L, index, type_panic); #endif // Safety } iterator begin() const { return iterator(*this); } iterator end() const { return iterator(); } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } template decltype(auto) get(Keys&&... keys) const { static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match"); auto pp = stack::push_pop::value>(*this); return tuple_get(types(), std::make_index_sequence(), std::forward_as_tuple(std::forward(keys)...)); } template decltype(auto) get_or(Key&& key, T&& otherwise) const { typedef decltype(get("")) U; sol::optional option = get>(std::forward(key)); if (option) { return static_cast(option.value()); } return static_cast(std::forward(otherwise)); } template decltype(auto) get_or(Key&& key, D&& otherwise) const { sol::optional option = get>(std::forward(key)); if (option) { return static_cast(option.value()); } return static_cast(std::forward(otherwise)); } template decltype(auto) traverse_get(Keys&&... keys) const { auto pp = stack::push_pop::value>(*this); return traverse_get_optional(meta::is_specialization_of>(), std::forward(keys)...); } template basic_table_core& traverse_set(Keys&&... keys) { auto pp = stack::push_pop::value>(*this); auto pn = stack::pop_n(base_t::lua_state(), static_cast(sizeof...(Keys)-2)); traverse_set_deep(std::forward(keys)...); return *this; } template basic_table_core& set(Args&&... args) { tuple_set(std::make_index_sequence(), std::forward_as_tuple(std::forward(args)...)); return *this; } template basic_table_core& set_usertype(usertype& user) { return set_usertype(usertype_traits::name, user); } template basic_table_core& set_usertype(Key&& key, usertype& user) { return set(std::forward(key), user); } template basic_table_core& new_usertype(const std::string& name, Args&&... args) { usertype utype(std::forward(args)...); set_usertype(name, utype); return *this; } template basic_table_core& new_usertype(const std::string& name, Args&&... args) { constructors> ctor{}; return new_usertype(name, ctor, std::forward(args)...); } template basic_table_core& new_usertype(const std::string& name, constructors ctor, Args&&... args) { usertype utype(ctor, std::forward(args)...); set_usertype(name, utype); return *this; } template basic_table_core& new_simple_usertype(const std::string& name, Args&&... args) { usertype utype(simple, base_t::lua_state(), std::forward(args)...); set_usertype(name, utype); return *this; } template basic_table_core& new_simple_usertype(const std::string& name, Args&&... args) { constructors> ctor{}; return new_simple_usertype(name, ctor, std::forward(args)...); } template basic_table_core& new_simple_usertype(const std::string& name, constructors ctor, Args&&... args) { usertype utype(simple, base_t::lua_state(), ctor, std::forward(args)...); set_usertype(name, utype); return *this; } template basic_table_core& new_enum(const std::string& name, Args&&... args) { if (read_only) { table idx = create_with(std::forward(args)...); table x = create_with( meta_function::new_index, detail::fail_on_newindex, meta_function::index, idx ); table target = create_named(name); target[metatable_key] = x; } else { create_named(name, std::forward(args)...); } return *this; } template void for_each(Fx&& fx) const { typedef meta::is_invokable)> is_paired; for_each(is_paired(), std::forward(fx)); } size_t size() const { auto pp = stack::push_pop(*this); lua_len(base_t::lua_state(), -1); return stack::pop(base_t::lua_state()); } bool empty() const { return cbegin() == cend(); } template proxy operator[](T&& key) & { return proxy(*this, std::forward(key)); } template proxy operator[](T&& key) const & { return proxy(*this, std::forward(key)); } template proxy operator[](T&& key) && { return proxy(*this, std::forward(key)); } template basic_table_core& set_function(Key&& key, Args&&... args) { set_fx(types(), std::forward(key), std::forward(args)...); return *this; } template basic_table_core& set_function(Key&& key, Args&&... args) { set_fx(types<>(), std::forward(key), std::forward(args)...); return *this; } template basic_table_core& add(Args&&... args) { auto pp = stack::push_pop(*this); (void)detail::swallow{0, (stack::set_ref(base_t::lua_state(), std::forward(args)), 0)... }; return *this; } private: template> void set_fx(types, Key&& key, Fx&& fx) { set_resolved_function(std::forward(key), std::forward(fx)); } template>> = meta::enabler> void set_fx(types<>, Key&& key, Fx&& fx) { set(std::forward(key), std::forward(fx)); } template>> = meta::enabler> void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) { set(std::forward(key), as_function(std::forward(fx), std::forward(args)...)); } template void set_resolved_function(Key&& key, Args&&... args) { set(std::forward(key), as_function>(std::forward(args)...)); } public: static inline table create(lua_State* L, int narr = 0, int nrec = 0) { lua_createtable(L, narr, nrec); table result(L); lua_pop(L, 1); return result; } template static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { lua_createtable(L, narr, nrec); table result(L); result.set(std::forward(key), std::forward(value), std::forward(args)...); lua_pop(L, 1); return result; } template static inline table create_with(lua_State* L, Args&&... args) { static const int narr = static_cast(meta::count_2_for_pack::value); return create(L, narr, static_cast((sizeof...(Args) / 2) - narr), std::forward(args)...); } table create(int narr = 0, int nrec = 0) { return create(base_t::lua_state(), narr, nrec); } template table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) { return create(base_t::lua_state(), narr, nrec, std::forward(key), std::forward(value), std::forward(args)...); } template table create(Name&& name, int narr = 0, int nrec = 0) { table x = create(base_t::lua_state(), narr, nrec); this->set(std::forward(name), x); return x; } template table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { table x = create(base_t::lua_state(), narr, nrec, std::forward(key), std::forward(value), std::forward(args)...); this->set(std::forward(name), x); return x; } template table create_with(Args&&... args) { return create_with(base_t::lua_state(), std::forward(args)...); } template table create_named(Name&& name, Args&&... args) { static const int narr = static_cast(meta::count_2_for_pack::value); return create(std::forward(name), narr, sizeof...(Args) / 2 - narr, std::forward(args)...); } }; } // sol // end of sol/table_core.hpp namespace sol { typedef table_core table; } // sol // end of sol/table.hpp // beginning of sol/load_result.hpp namespace sol { struct load_result : public proxy_base { private: lua_State* L; int index; int returncount; int popcount; load_status err; template decltype(auto) tagged_get(types>) const { if (!valid()) { return sol::optional(nullopt); } return stack::get>(L, index); } template decltype(auto) tagged_get(types) const { #ifdef SOL_CHECK_ARGUMENTS if (!valid()) { type_panic(L, index, type_of(L, index), type::none); } #endif // Check Argument Safety return stack::get(L, index); } sol::optional tagged_get(types>) const { if (valid()) { return nullopt; } return sol::error(detail::direct_error, stack::get(L, index)); } sol::error tagged_get(types) const { #ifdef SOL_CHECK_ARGUMENTS if (valid()) { type_panic(L, index, type_of(L, index), type::none); } #endif // Check Argument Safety return sol::error(detail::direct_error, stack::get(L, index)); } public: load_result() = default; load_result(lua_State* L, int index = -1, int returncount = 0, int popcount = 0, load_status err = load_status::ok) noexcept : L(L), index(index), returncount(returncount), popcount(popcount), err(err) { } load_result(const load_result&) = default; load_result& operator=(const load_result&) = default; load_result(load_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.L = nullptr; o.index = 0; o.returncount = 0; o.popcount = 0; o.err = load_status::syntax; } load_result& operator=(load_result&& o) noexcept { L = o.L; index = o.index; returncount = o.returncount; popcount = o.popcount; err = o.err; // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.L = nullptr; o.index = 0; o.returncount = 0; o.popcount = 0; o.err = load_status::syntax; return *this; } load_status status() const noexcept { return err; } bool valid() const noexcept { return status() == load_status::ok; } template T get() const { return tagged_get(types>()); } template decltype(auto) call(Args&&... args) { return get().template call(std::forward(args)...); } template decltype(auto) operator()(Args&&... args) { return call<>(std::forward(args)...); } lua_State* lua_state() const noexcept { return L; }; int stack_index() const noexcept { return index; }; ~load_result() { stack::remove(L, index, popcount); } }; } // sol // end of sol/load_result.hpp namespace sol { enum class lib : char { base, package, coroutine, string, os, math, table, debug, bit32, io, ffi, jit, utf8, count }; class state_view { private: lua_State* L; table reg; global_table global; optional is_loaded_package(const std::string& key) { auto loaded = reg.traverse_get>("_LOADED", key); bool is53mod = loaded && !(loaded->is() && !loaded->as()); if (is53mod) return loaded; #if SOL_LUA_VERSION <= 501 auto loaded51 = global.traverse_get>("package", "loaded", key); bool is51mod = loaded51 && !(loaded51->is() && !loaded51->as()); if (is51mod) return loaded51; #endif return nullopt; } template void ensure_package(const std::string& key, T&& sr) { #if SOL_LUA_VERSION <= 501 auto pkg = global["package"]; if (!pkg.valid()) { pkg = create_table_with("loaded", create_table_with(key, sr)); } else { auto ld = pkg["loaded"]; if (!ld.valid()) { ld = create_table_with(key, sr); } else { ld[key] = sr; } } #endif auto loaded = reg["_LOADED"]; if (!loaded.valid()) { loaded = create_table_with(key, sr); } else { loaded[key] = sr; } } template object require_core(const std::string& key, Fx&& action, bool create_global = true) { optional loaded = is_loaded_package(key); if (loaded && loaded->valid()) return std::move(*loaded); action(); auto sr = stack::get(L); if (create_global) set(key, sr); ensure_package(key, sr); return stack::pop(L); } public: typedef global_table::iterator iterator; typedef global_table::const_iterator const_iterator; state_view(lua_State* L) : L(L), reg(L, LUA_REGISTRYINDEX), global(L, detail::global_) { } lua_State* lua_state() const { return L; } template void open_libraries(Args&&... args) { static_assert(meta::all_same::value, "all types must be libraries"); if (sizeof...(args) == 0) { luaL_openlibs(L); return; } lib libraries[1 + sizeof...(args)] = { lib::count, std::forward(args)... }; for (auto&& library : libraries) { switch (library) { #if SOL_LUA_VERSION <= 501 && defined(SOL_LUAJIT) case lib::coroutine: #endif // luajit opens coroutine base stuff case lib::base: luaL_requiref(L, "base", luaopen_base, 1); lua_pop(L, 1); break; case lib::package: luaL_requiref(L, "package", luaopen_package, 1); lua_pop(L, 1); break; #if !defined(SOL_LUAJIT) case lib::coroutine: #if SOL_LUA_VERSION > 501 luaL_requiref(L, "coroutine", luaopen_coroutine, 1); lua_pop(L, 1); #endif // Lua 5.2+ only break; #endif // Not LuaJIT case lib::string: luaL_requiref(L, "string", luaopen_string, 1); lua_pop(L, 1); break; case lib::table: luaL_requiref(L, "table", luaopen_table, 1); lua_pop(L, 1); break; case lib::math: luaL_requiref(L, "math", luaopen_math, 1); lua_pop(L, 1); break; case lib::bit32: #ifdef SOL_LUAJIT luaL_requiref(L, "bit32", luaopen_bit, 1); lua_pop(L, 1); #elif SOL_LUA_VERSION == 502 luaL_requiref(L, "bit32", luaopen_bit32, 1); lua_pop(L, 1); #else #endif // Lua 5.2 only (deprecated in 5.3 (503)) break; case lib::io: luaL_requiref(L, "io", luaopen_io, 1); lua_pop(L, 1); break; case lib::os: luaL_requiref(L, "os", luaopen_os, 1); lua_pop(L, 1); break; case lib::debug: luaL_requiref(L, "debug", luaopen_debug, 1); lua_pop(L, 1); break; case lib::utf8: #if SOL_LUA_VERSION > 502 && !defined(SOL_LUAJIT) luaL_requiref(L, "utf8", luaopen_utf8, 1); lua_pop(L, 1); #endif // Lua 5.3+ only break; case lib::ffi: #ifdef SOL_LUAJIT luaL_requiref(L, "ffi", luaopen_ffi, 1); lua_pop(L, 1); #endif break; case lib::jit: #ifdef SOL_LUAJIT luaL_requiref(L, "jit", luaopen_jit, 1); lua_pop(L, 1); #endif break; case lib::count: default: break; } } } object require(const std::string& key, lua_CFunction open_function, bool create_global = true) { luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0); return stack::pop(L); } object require_script(const std::string& key, const std::string& code, bool create_global = true) { return require_core(key, [this, &code]() {stack::script(L, code); }, create_global); } object require_file(const std::string& key, const std::string& filename, bool create_global = true) { return require_core(key, [this, &filename]() {stack::script_file(L, filename); }, create_global); } function_result script(const std::string& code) { int index = (::std::max)(lua_gettop(L), 1); stack::script(L, code); int returns = lua_gettop(L) - (index - 1); return function_result(L, index, returns); } function_result script_file(const std::string& filename) { int index = (::std::max)(lua_gettop(L), 1); stack::script_file(L, filename); int returns = lua_gettop(L) - index; return function_result(L, index, returns); } load_result load(const std::string& code) { load_status x = static_cast(luaL_loadstring(L, code.c_str())); return load_result(L, lua_absindex(L, -1), 1, 1, x); } load_result load_file(const std::string& filename) { load_status x = static_cast(luaL_loadfile(L, filename.c_str())); return load_result(L, lua_absindex(L, -1), 1, 1, x); } load_result load_buffer(const char *buff, size_t size, const char *name, const char* mode = nullptr) { load_status x = static_cast(luaL_loadbufferx(L, buff, size, name, mode)); return load_result(L, lua_absindex(L, -1), 1, 1, x); } iterator begin() const { return global.begin(); } iterator end() const { return global.end(); } const_iterator cbegin() const { return global.cbegin(); } const_iterator cend() const { return global.cend(); } global_table globals() const { return global; } table registry() const { return reg; } operator lua_State* () const { return lua_state(); } void set_panic(lua_CFunction panic) { lua_atpanic(L, panic); } template decltype(auto) get(Keys&&... keys) const { return global.get(std::forward(keys)...); } template decltype(auto) get_or(Key&& key, T&& otherwise) const { return global.get_or(std::forward(key), std::forward(otherwise)); } template decltype(auto) get_or(Key&& key, D&& otherwise) const { return global.get_or(std::forward(key), std::forward(otherwise)); } template state_view& set(Args&&... args) { global.set(std::forward(args)...); return *this; } template decltype(auto) traverse_get(Keys&&... keys) const { return global.traverse_get(std::forward(keys)...); } template state_view& traverse_set(Args&&... args) { global.traverse_set(std::forward(args)...); return *this; } template state_view& set_usertype(usertype& user) { return set_usertype(usertype_traits::name, user); } template state_view& set_usertype(Key&& key, usertype& user) { global.set_usertype(std::forward(key), user); return *this; } template state_view& new_usertype(const std::string& name, Args&&... args) { global.new_usertype(name, std::forward(args)...); return *this; } template state_view& new_usertype(const std::string& name, Args&&... args) { global.new_usertype(name, std::forward(args)...); return *this; } template state_view& new_usertype(const std::string& name, constructors ctor, Args&&... args) { global.new_usertype(name, ctor, std::forward(args)...); return *this; } template state_view& new_simple_usertype(const std::string& name, Args&&... args) { global.new_simple_usertype(name, std::forward(args)...); return *this; } template state_view& new_simple_usertype(const std::string& name, Args&&... args) { global.new_simple_usertype(name, std::forward(args)...); return *this; } template state_view& new_simple_usertype(const std::string& name, constructors ctor, Args&&... args) { global.new_simple_usertype(name, ctor, std::forward(args)...); return *this; } template state_view& new_enum(const std::string& name, Args&&... args) { global.new_enum(name, std::forward(args)...); return *this; } template void for_each(Fx&& fx) { global.for_each(std::forward(fx)); } template proxy operator[](T&& key) { return global[std::forward(key)]; } template proxy operator[](T&& key) const { return global[std::forward(key)]; } template state_view& set_function(Key&& key, Args&&... args) { global.set_function(std::forward(key), std::forward(args)...); return *this; } template state_view& set_function(Key&& key, Args&&... args) { global.set_function(std::forward(key), std::forward(args)...); return *this; } template table create_table(Name&& name, int narr = 0, int nrec = 0) { return global.create(std::forward(name), narr, nrec); } template table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { return global.create(std::forward(name), narr, nrec, std::forward(key), std::forward(value), std::forward(args)...); } template table create_named_table(Name&& name, Args&&... args) { table x = global.create_with(std::forward(args)...); global.set(std::forward(name), x); return x; } table create_table(int narr = 0, int nrec = 0) { return create_table(lua_state(), narr, nrec); } template table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args) { return create_table(lua_state(), narr, nrec, std::forward(key), std::forward(value), std::forward(args)...); } template table create_table_with(Args&&... args) { return create_table_with(lua_state(), std::forward(args)...); } static inline table create_table(lua_State* L, int narr = 0, int nrec = 0) { return global_table::create(L, narr, nrec); } template static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { return global_table::create(L, narr, nrec, std::forward(key), std::forward(value), std::forward(args)...); } template static inline table create_table_with(lua_State* L, Args&&... args) { return global_table::create_with(L, std::forward(args)...); } }; } // sol // end of sol/state_view.hpp namespace sol { inline int default_at_panic(lua_State* L) { #ifdef SOL_NO_EXCEPTIONS (void)L; return -1; #else const char* message = lua_tostring(L, -1); std::string err = message ? message : "An unexpected error occurred and forced the lua state to call atpanic"; throw error(err); #endif } class state : private std::unique_ptr, public state_view { private: typedef std::unique_ptr unique_base; public: state(lua_CFunction panic = default_at_panic) : unique_base(luaL_newstate(), lua_close), state_view(unique_base::get()) { set_panic(panic); stack::luajit_exception_handler(unique_base::get()); } state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr) : unique_base(lua_newstate(alfunc, alpointer), lua_close), state_view(unique_base::get()) { set_panic(panic); stack::luajit_exception_handler(unique_base::get()); } using state_view::get; }; } // sol // end of sol/state.hpp // beginning of sol/coroutine.hpp // beginning of sol/thread.hpp namespace sol { class thread : public reference { public: thread() noexcept = default; thread(const thread&) = default; thread(thread&&) = default; thread(const stack_reference& r) : thread(r.lua_state(), r.stack_index()) {}; thread(stack_reference&& r) : thread(r.lua_state(), r.stack_index()) {}; thread& operator=(const thread&) = default; thread& operator=(thread&&) = default; thread(lua_State* L, int index = -1) : reference(L, index) { #ifdef SOL_CHECK_ARGUMENTS type_assert(L, index, type::thread); #endif // Safety } state_view state() const { return state_view(this->thread_state()); } lua_State* thread_state() const { auto pp = stack::push_pop(*this); lua_State* lthread = lua_tothread(lua_state(), -1); return lthread; } thread_status status() const { lua_State* lthread = thread_state(); thread_status lstat = static_cast(lua_status(lthread)); if (lstat != thread_status::ok && lua_gettop(lthread) == 0) { // No thing on the thread's stack means its dead return thread_status::dead; } return lstat; } thread create() { return create(lua_state()); } static thread create(lua_State* L) { lua_newthread(L); thread result(L); lua_pop(L, 1); return result; } }; } // sol // end of sol/thread.hpp namespace sol { class coroutine : public reference { private: call_status stats = call_status::yielded; void luacall(std::ptrdiff_t argcount, std::ptrdiff_t) { #if SOL_LUA_VERSION < 502 stats = static_cast(lua_resume(lua_state(), static_cast(argcount))); #else stats = static_cast(lua_resume(lua_state(), nullptr, static_cast(argcount))); #endif // Lua 5.1 compat } template auto invoke(types, std::index_sequence, std::ptrdiff_t n) { luacall(n, sizeof...(Ret)); return stack::pop>(lua_state()); } template Ret invoke(types, std::index_sequence, std::ptrdiff_t n) { luacall(n, 1); return stack::pop(lua_state()); } template void invoke(types, std::index_sequence, std::ptrdiff_t n) { luacall(n, 0); } protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) { int stacksize = lua_gettop(lua_state()); int firstreturn = (std::max)(1, stacksize - static_cast(n)); luacall(n, LUA_MULTRET); int poststacksize = lua_gettop(lua_state()); int returncount = poststacksize - (firstreturn - 1); return protected_function_result(lua_state(), firstreturn, returncount, returncount, status()); } public: coroutine() noexcept = default; coroutine(const coroutine&) noexcept = default; coroutine& operator=(const coroutine&) noexcept = default; coroutine(lua_State* L, int index = -1) : reference(L, index) { #ifdef SOL_CHECK_ARGUMENTS stack::check(L, index, type_panic); #endif // Safety } call_status status() const noexcept { return stats; } bool error() const noexcept { call_status cs = status(); return cs != call_status::ok && cs != call_status::yielded; } bool runnable() const noexcept { return valid() && (status() == call_status::yielded); } explicit operator bool() const noexcept { return runnable(); } template protected_function_result operator()(Args&&... args) { return call<>(std::forward(args)...); } template decltype(auto) operator()(types, Args&&... args) { return call(std::forward(args)...); } template decltype(auto) call(Args&&... args) { push(); int pushcount = stack::multi_push(lua_state(), std::forward(args)...); return invoke(types(), std::make_index_sequence(), pushcount); } }; } // sol // end of sol/coroutine.hpp #endif // SOL_SINGLE_INCLUDE_HPP