// The MIT License (MIT) // Copyright (c) 2013 Danny Y., Rapptz // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_STACK_HPP #define SOL_STACK_HPP #include "error.hpp" #include "reference.hpp" #include "tuple.hpp" #include "traits.hpp" #include #include #include namespace sol { namespace stack { namespace detail { inline nil_t get(types, lua_State* L, int index = -1) { if (lua_isnil(L, index) == 0) throw sol::sol_error("not nil"); return nil_t{ }; } inline lightuserdata_t get(types, lua_State* L, int index = -1) { return{ lua_touserdata(L, lua_upvalueindex(index)) }; } inline userdata_t get(types, lua_State* L, int index = -1) { return{ lua_touserdata(L, index) }; } inline std::string get(types, lua_State* L, int index = -1) { std::string::size_type len; auto str = lua_tolstring(L, index, &len); return{ str, len }; } inline const char* get(types, lua_State* L, int index = -1) { return lua_tostring(L, index); } inline type get(types, lua_State* L, int index = -1) { return static_cast(lua_type(L, index)); } template inline T& get(types>, lua_State* L, int index = -1) { userdata_t udata = get(types{}, L, index); T* obj = static_cast(udata.value); return *obj; } template inline T get(types, lua_State* L, int index = -1) { return T(L, index); } template inline T get_unsigned(std::true_type, lua_State* L, int index = -1) { return lua_tounsigned(L, index); } template inline T get_unsigned(std::false_type, lua_State* L, int index = -1) { return static_cast(lua_tointeger(L, index)); } template inline T get_arithmetic(std::false_type, lua_State* L, int index = -1) { // T is a floating point return static_cast(lua_tonumber(L, index)); } template inline T get_arithmetic(std::true_type, lua_State* L, int index = -1) { // T is an integral return get_unsigned(std::is_unsigned{}, L, index); } template inline T get_helper(std::true_type, lua_State* L, int index = -1) { // T is a fundamental type return get_arithmetic(std::is_integral{}, L, index); } template<> inline bool get_helper(std::true_type, lua_State* L, int index) { return lua_toboolean(L, index) != 0; } template inline auto get_helper(std::false_type, lua_State* L, int index = -1) -> decltype(get(types(), L, index)) { // T is a class return get(types(), L, index); } template inline void push_unsigned(std::true_type, lua_State* L, T x) { lua_pushunsigned(L, x); } template inline void push_unsigned(std::false_type, lua_State* L, T x) { lua_pushinteger(L, x); } template inline void push_arithmetic(std::true_type, lua_State* L, T x) { // T is an integral type push_unsigned(std::is_unsigned{}, L, x); } template inline void push_arithmetic(std::false_type, lua_State* L, T x) { // T is an floating point type lua_pushnumber(L, x); } } // detail template inline auto get(lua_State* L, int index = -1) -> decltype(detail::get_helper(std::is_arithmetic{}, L, index)) { return detail::get_helper(std::is_arithmetic{}, L, index); } template inline std::pair get_user(lua_State* L, int index = 1) { const static std::size_t data_t_count = (sizeof(T)+(sizeof(void*)-1)) / sizeof(void*); typedef std::array data_t; data_t voiddata{ {} }; for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) { voiddata[ i ] = stack::get(L, index++); } return std::pair(*reinterpret_cast(static_cast(voiddata.data())), index); } template auto pop(lua_State* L) -> decltype(get(L)) { auto&& r = get(L); lua_pop(L, 1); return r; } template inline EnableIf> push(lua_State* L, T arithmetic) { detail::push_arithmetic(std::is_integral{}, L, arithmetic); } inline void push(lua_State*, reference& ref) { ref.push(); } inline void push(lua_State* L, bool boolean) { lua_pushboolean(L, boolean); } inline void push(lua_State* L, const nil_t&) { lua_pushnil(L); } inline void push(lua_State* L, lua_CFunction func) { lua_pushcfunction(L, func); } inline void push(lua_State* L, lua_CFunction func, int n) { lua_pushcclosure(L, func, n); } inline void push(lua_State* L, void* userdata) { lua_pushlightuserdata(L, userdata); } template inline void push(lua_State* L, const char (&str)[N]) { lua_pushlstring(L, str, N - 1); } inline void push(lua_State* L, const char* str) { lua_pushlstring(L, str, std::char_traits::length(str)); } inline void push(lua_State* L, const std::string& str) { lua_pushlstring(L, str.c_str(), str.size()); } template inline void push_user(lua_State* L, T& userdata, const char* metatablekey) { T* pdatum = static_cast(lua_newuserdata(L, sizeof(T))); T& datum = *pdatum; datum = userdata; if (metatablekey != nullptr) { lua_getfield(L, LUA_REGISTRYINDEX, metatablekey); lua_setmetatable(L, -2); } } template inline void push(lua_State* L, const std::array& data) { for (auto&& i : data) { push(L, i); } } template inline int push_user(lua_State* L, T& item) { typedef typename std::decay::type TValue; const static std::size_t itemsize = sizeof(TValue); const static std::size_t voidsize = sizeof(void*); const static std::size_t voidsizem1 = voidsize - 1; const static std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize; typedef std::array data_t; data_t data{{}}; std::memcpy(std::addressof(data[0]), std::addressof(item), itemsize); push(L, data); return data_t_count; } namespace detail { template inline void push_tuple(lua_State* L, indices, T&& tuplen) { using swallow = char[1 + sizeof...(I)]; swallow {'\0', (sol::stack::push(L, std::get(tuplen)), '\0')... }; } template inline auto ltr_get(lua_State*, int, F&& f, types, types<>, Vs&&... vs) -> decltype(f(std::forward(vs)...)) { return f(std::forward(vs)...); } template inline auto ltr_get(lua_State* L, int index, F&& f, types t, types, Vs&&... vs) -> decltype(f(std::declval()...)) { return ltr_get(L, index + 1, std::forward(f), t, types(), std::forward(vs)..., stack::get(L, index)); } template inline auto ltr_pop(lua_State*, F&& f, types, types<>, Vs&&... vs) -> decltype(f(std::forward(vs)...)) { return f(std::forward(vs)...); } template inline auto ltr_pop(lua_State* L, F&& f, types t, types, Vs&&... vs) -> decltype(f(std::declval()...)) { return ltr_pop(L, std::forward(f), t, types(), std::forward(vs)..., stack::pop(L)); } template inline auto rtl_pop(lua_State*, F&& f, types, types<>, Vs&&... vs) -> decltype(f(std::forward(vs)...)) { return f(std::forward(vs)...); } template inline auto rtl_pop(lua_State* L, F&& f, types t, types, Vs&&... vs) -> decltype(f(std::declval()...)) { return rtl_pop(L, std::forward(f), t, types(), stack::pop(L), std::forward(vs)...); } } // detail template inline void push(lua_State* L, const std::tuple& tuplen) { detail::push_tuple(L, build_indices(), tuplen); } template inline void push(lua_State* L, std::tuple&& tuplen) { detail::push_tuple(L, build_indices(), std::move(tuplen)); } template inline void push_reverse(lua_State* L, T&& item) { push(L, std::forward(item)); } template inline void push_reverse(lua_State* L, const std::tuple& tuplen) { detail::push_tuple(L, build_reverse_indices(), tuplen); } template inline void push_reverse(lua_State* L, std::tuple&& tuplen) { detail::push_tuple(L, build_reverse_indices(), std::move(tuplen)); } template inline auto get_call(lua_State* L, int index, TFx&& fx, types t) -> decltype(detail::ltr_get(L, index, std::forward(fx), t, t)) { return detail::ltr_get(L, index, std::forward(fx), t, t); } template inline auto pop_call(lua_State* L, TFx&& fx, types t) -> decltype(detail::ltr_pop(L, std::forward(fx), t, t)) { return detail::ltr_pop(L, std::forward(fx), t, t); } template inline auto pop_reverse_call(lua_State* L, TFx&& fx, types t) -> decltype(detail::rtl_pop(L, std::forward(fx), t, reversed())) { return detail::rtl_pop(L, std::forward(fx), t, reversed()); } inline void push_args(lua_State*) { } template inline void push_args(lua_State* L, Arg&& arg, Args&&... args) { using swallow = char[]; stack::push(L, std::forward(arg)); void(swallow{'\0', (stack::push(L, std::forward(args)), '\0')... }); } inline call_syntax get_call_syntax(lua_State* L, const std::string& meta) { if (get(L, 1) == type::table) { if (luaL_newmetatable(L, meta.c_str()) == 0) { lua_settop(L, -2); return call_syntax::colon; } } return call_syntax::dot; } inline std::string dump_types(lua_State* L) { std::string visual; std::size_t size = lua_gettop(L) + 1; for (std::size_t i = 1; i < size; ++i) { if (i != 1) visual += " | "; visual += type_name(L, stack::get(L, i)); } return visual; } template struct get_return { typedef decltype(get(nullptr)) type; }; } // stack } // sol #endif // SOL_STACK_HPP