// The MIT License (MIT) // Copyright (c) 2013-2016 Rapptz and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_STACK_HPP #define SOL_STACK_HPP #include "error.hpp" #include "reference.hpp" #include "tuple.hpp" #include "traits.hpp" #include "usertype_traits.hpp" #include #include #include #include namespace sol { namespace detail { template inline T* get_ptr(T& val) { return std::addressof(val); } template inline T* get_ptr(std::reference_wrapper val) { return std::addressof(val.get()); } template inline T* get_ptr(T* val) { return val; } } // detail namespace stack { template struct getter; template struct pusher; template::value, typename = void> struct checker; template inline int push(lua_State* L, T&& t, Args&&... args) { return pusher>{}.push(L, std::forward(t), std::forward(args)...); } template inline int push_tuple(lua_State* L, indices, T&& tuplen) { using swallow = char[1 + sizeof...(I)]; int pushcount = 0; swallow {'\0', (pushcount += sol::stack::push(L, std::get(tuplen)), '\0')... }; return pushcount; } // overload allows to use a pusher of a specific type, but pass in any kind of args template inline int push(lua_State* L, Arg&& arg, Args&&... args) { return pusher>{}.push(L, std::forward(arg), std::forward(args)...); } inline int push_args(lua_State*) { // do nothing return 0; } template inline int push_args(lua_State* L, T&& t, Args&&... args) { int pushcount = push(L, std::forward(t)); using swallow = char[]; void(swallow{'\0', (pushcount += sol::stack::push(L, std::forward(args)), '\0')... }); return pushcount; } template inline auto get(lua_State* L, int index = -1) -> decltype(getter>{}.get(L, index)) { return getter>{}.get(L, index); } template auto pop(lua_State* L) -> decltype(get(L)) { typedef decltype(get(L)) ret_t; ret_t r = get(L); lua_pop(L, 1); return r; } template bool check(lua_State* L, int index, Handler&& handler) { typedef Unqualified Tu; checker c; // VC++ has a bad warning here: shut it up (void)c; return c.check(L, index, std::forward(handler)); } template bool check(lua_State* L, int index) { auto handler = type_panic; return check(L, index, handler); } template using get_return = ReturnType( nullptr, 0 ))...>; template using get_return_or = ReturnTypeOr( nullptr, 0 ))...>; namespace detail { const bool default_check_arguments = #ifdef SOL_CHECK_ARGUMENTS true; #else false; #endif template struct userdata_pusher { template static void push (lua_State* L, Key&& metatablekey, Args&&... args) { // Basically, we store all data like this: // If it's a new value (no std::ref(x)), then we store the pointer to the new // data in the first sizeof(T*) bytes, and then however many bytes it takes to // do the actual object. Things that are just references/pointers are stored as // just the sizeof(T*), and nothing else. T** pdatum = static_cast(lua_newuserdata(L, sizeof(T*) + sizeof(T))); T** referencepointer = pdatum; T*& referencereference = *pdatum; T* allocationtarget = reinterpret_cast(pdatum + 1); referencereference = allocationtarget; std::allocator alloc{}; alloc.construct(allocationtarget, std::forward(args)...); luaL_getmetatable(L, std::addressof(metatablekey[0])); lua_setmetatable(L, -2); } }; template struct userdata_pusher { template static void push (lua_State* L, Key&& metatablekey, Args&&... args) { T** pdatum = static_cast(lua_newuserdata(L, sizeof(T*))); std::allocator alloc{}; alloc.construct(pdatum, std::forward(args)...); luaL_getmetatable(L, std::addressof(metatablekey[0])); lua_setmetatable(L, -2); } }; template inline int push_confirmed_userdata(lua_State* L, Key&& metatablekey, Args&&... args) { userdata_pusher{}.push(L, std::forward(metatablekey), std::forward(args)...); return 1; } template inline int push_userdata_pointer(lua_State* L, Key&& metatablekey) { return push_confirmed_userdata(L, std::forward(metatablekey)); } template >> = 0> inline int push_userdata_pointer(lua_State* L, Key&& metatablekey, Arg&& arg) { if (arg == nullptr) return push(L, nil); return push_confirmed_userdata(L, std::forward(metatablekey), std::forward(arg)); } template >> = 0> inline int push_userdata_pointer(lua_State* L, Key&& metatablekey, Arg&& arg) { return push_confirmed_userdata(L, std::forward(metatablekey), std::forward(arg)); } template inline int push_userdata_pointer(lua_State* L, Key&& metatablekey, Arg0&& arg0, Arg1&& arg1, Args&&... args) { return push_confirmed_userdata(L, std::forward(metatablekey), std::forward(arg0), std::forward(arg1), std::forward(args)...); } template> = 0> inline int push_userdata(lua_State* L, Key&& metatablekey, Args&&... args) { return push_confirmed_userdata(L, std::forward(metatablekey), std::forward(args)...); } template> = 0> inline int push_userdata(lua_State* L, Key&& metatablekey, Args&&... args) { return push_userdata_pointer(L, std::forward(metatablekey), std::forward(args)...); } } // detail template struct checker { template static bool check (lua_State* L, int index, const Handler& handler) { const type indextype = type_of(L, index); bool success = expected == indextype; if (!success) { // expected type, actual type handler(L, index, expected, indextype); } return success; } }; template struct checker { template static bool check (lua_State* L, int index, const Handler& handler) { const type indextype = type_of(L, index); // Allow nil to be transformed to nullptr bool success = expected == indextype || indextype == type::nil; if (!success) { // expected type, actual type handler(L, index, expected, indextype); } return success; } }; template struct getter { template> = 0> static U get(lua_State* L, int index = -1) { return static_cast(lua_tonumber(L, index)); } template, std::is_signed> = 0> static U get(lua_State* L, int index = -1) { return static_cast(lua_tointeger(L, index)); } template, std::is_unsigned> = 0> static U get(lua_State* L, int index = -1) { typedef std::make_signed_t signed_int; return static_cast(stack::get(L, index)); } template> = 0> static U get(lua_State* L, int index = -1) { return T(L, index); } template>, Not>, Not>> = 0> static U& get(lua_State* L, int index = -1) { return getter{}.get(L, index); } }; template struct getter { static T* get(lua_State* L, int index = -1) { type t = type_of(L, index); if (t == type::nil) return nullptr; return std::addressof(getter{}.get(L, index)); } }; template struct getter { static T& get(lua_State* L, int index = -1) { void* udata = lua_touserdata(L, index); T** obj = static_cast(udata); return **obj; } }; template struct getter> { static T& get(lua_State* L, int index = -1) { return getter{}.get(L, index); } }; template<> struct getter { static type get(lua_State *L, int index){ return static_cast(lua_type(L, index)); } }; template<> struct getter { static bool get(lua_State* L, int index) { return lua_toboolean(L, index) != 0; } }; template<> struct getter { static std::string get(lua_State* L, int index = -1) { std::string::size_type len; auto str = lua_tolstring(L, index, &len); return { str, len }; } }; template<> struct getter { static const char* get(lua_State* L, int index = -1) { return lua_tostring(L, index); } }; template<> struct getter { static nil_t get(lua_State* L, int index = -1) { if(lua_isnil(L, index) == 0) { throw sol::error("not nil"); } return nil_t{ }; } }; template<> struct getter { static userdata get(lua_State* L, int index = -1) { return{ lua_touserdata(L, index) }; } }; template<> struct getter { static light_userdata get(lua_State* L, int index = 1) { return{ lua_touserdata(L, index) }; } }; template<> struct getter { static upvalue get(lua_State* L, int index = 1) { return{ lua_touserdata(L, lua_upvalueindex(index)) }; } }; template<> struct getter { static void* get(lua_State* L, int index = 1) { return lua_touserdata(L, index); } }; template struct pusher { template> = 0> static int push(lua_State* L, const T& value) { lua_pushnumber(L, value); return 1; } template, std::is_signed> = 0> static int push(lua_State* L, const T& value) { lua_pushinteger(L, value); return 1; } template, std::is_unsigned> = 0> static int push(lua_State* L, const T& value) { typedef std::make_signed_t signed_int; return stack::push(L, static_cast(value)); } template, Not>> = 0> static int push(lua_State* L, const T& cont) { lua_createtable(L, static_cast(cont.size()), 0); unsigned index = 1; for(auto&& i : cont) { // push the index pusher{}.push(L, index++); // push the value pusher>{}.push(L, i); // set the table lua_settable(L, -3); } return 1; } template, has_key_value_pair> = 0> static int push(lua_State* L, const T& cont) { lua_createtable(L, static_cast(cont.size()), 0); for(auto&& pair : cont) { pusher>{}.push(L, pair.first); pusher>{}.push(L, pair.second); lua_settable(L, -3); } return 1; } template> = 0> static int push(lua_State*, T& ref) { return ref.push(); } template, EnableIf>, Not>, Not>, Not>> = 0> static int push(lua_State* L, T& t) { return detail::push_userdata(L, usertype_traits::metatable, t); } template, EnableIf>, Not>, Not>, Not>> = 0> static int push(lua_State* L, T&& t) { return detail::push_userdata(L, usertype_traits::metatable, std::move(t)); } }; template struct pusher { static int push(lua_State* L, T* obj) { return detail::push_userdata(L, usertype_traits::metatable, obj); } }; template struct pusher> { static int push(lua_State* L, const std::reference_wrapper& t) { return stack::push(L, std::addressof(t.get())); } }; template<> struct pusher { static int push(lua_State* L, const bool& b) { lua_pushboolean(L, b); return 1; } }; template<> struct pusher { static int push(lua_State* L, const nil_t&) { lua_pushnil(L); return 1; } }; template<> struct pusher { static int push(lua_State* L, lua_CFunction func, int n = 0) { lua_pushcclosure(L, func, n); return 1; } }; template<> struct pusher { static int push(lua_State* L, void* userdata) { lua_pushlightuserdata(L, userdata); return 1; } }; template<> struct pusher { static int push(lua_State* L, upvalue upvalue) { lua_pushlightuserdata(L, upvalue); return 1; } }; template<> struct pusher { static int push(lua_State* L, light_userdata userdata) { lua_pushlightuserdata(L, userdata); return 1; } }; template<> struct pusher { template> static int push(lua_State* L, T&& data) { U* userdata = static_cast(lua_newuserdata(L, sizeof(U))); new(userdata)U(std::forward(data)); return 1; } }; template<> struct pusher { static int push(lua_State* L, const char* str) { lua_pushlstring(L, str, std::char_traits::length(str)); return 1; } }; template struct pusher { static int push(lua_State* L, const char (&str)[N]) { lua_pushlstring(L, str, N - 1); return 1; } }; template<> struct pusher { static int push(lua_State* L, const std::string& str) { lua_pushlstring(L, str.c_str(), str.size()); return 1; } }; template struct pusher> { template static int push(lua_State* L, Tuple&& tuplen) { return push_tuple(L, build_indices(), std::forward(tuplen)); } }; namespace detail { template inline int push_as_upvalues(lua_State* L, T& item) { typedef std::decay_t TValue; const static std::size_t itemsize = sizeof(TValue); const static std::size_t voidsize = sizeof(void*); const static std::size_t voidsizem1 = voidsize - 1; const static std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize; typedef std::array data_t; data_t data{{}}; std::memcpy(std::addressof(data[0]), std::addressof(item), itemsize); int pushcount = 0; for(auto&& v : data) { pushcount += push(L, upvalue(v)); } return pushcount; } template inline std::pair get_as_upvalues(lua_State* L, int index = 1) { const static std::size_t data_t_count = (sizeof(T)+(sizeof(void*)-1)) / sizeof(void*); typedef std::array data_t; data_t voiddata{ {} }; for(std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) { voiddata[i] = get(L, index++); } return std::pair(*reinterpret_cast(static_cast(voiddata.data())), index); } template struct check_arguments { template static bool check(lua_State* L, int firstargument, indices, types) { bool checks = true; stack::check(L, firstargument + I0); using swallow = int[sizeof...(Args)+2]; (void)swallow { 0, (checks &= stack::check(L, firstargument + I))..., 0 }; return checks; } static bool check(lua_State*, int, indices<>, types<>) { return true; } }; template <> struct check_arguments { template static bool check(lua_State*, int, indices, types) { return true; } }; template ::value>> inline R call(lua_State* L, int start, indices, types, types ta, Fx&& fx, FxArgs&&... args) { const int stacksize = lua_gettop(L); const int firstargument = static_cast(start + stacksize - std::max(sizeof...(Args)-1, static_cast(0))); detail::check_arguments{}.check(L, firstargument, ta, ta); return fx(std::forward(args)..., stack::get(L, firstargument + I)...); } template inline void call(lua_State* L, int start, indices, types, types ta, Fx&& fx, FxArgs&&... args) { const int stacksize = lua_gettop(L); const int firstargument = static_cast(start + stacksize - std::max(sizeof...(Args)-1, static_cast(0))); bool checks = detail::check_arguments{}.check(L, firstargument, ta, ta); if ( !checks ) throw error("Arguments not of the proper types for this function call"); fx(std::forward(args)..., stack::get(L, firstargument + I)...); } } // detail inline void remove( lua_State* L, int index, int count ) { if ( count < 1 ) return; int top = lua_gettop( L ); if ( index == -1 || top == index ) { // Slice them right off the top lua_pop( L, static_cast(count) ); return; } // Remove each item one at a time using stack operations // Probably slower, maybe, haven't benchmarked, // but necessary if ( index < 0 ) { index = lua_gettop( L ) + (index + 1); } int last = index + count; for ( int i = index; i < last; ++i ) { lua_remove( L, i ); } } template ::value>::type> inline R call(lua_State* L, int start, types tr, types ta, Fx&& fx, FxArgs&&... args) { return detail::call(L, start, ta, tr, ta, std::forward(fx), std::forward(args)...); } template ::value>::type> inline R call(lua_State* L, types tr, types ta, Fx&& fx, FxArgs&&... args) { return call(L, 0, ta, tr, ta, std::forward(fx), std::forward(args)...); } template inline void call(lua_State* L, int start, types tr, types ta, Fx&& fx, FxArgs&&... args) { detail::call(L, start, ta, tr, ta, std::forward(fx), std::forward(args)...); } template inline void call(lua_State* L, types tr, types ta, Fx&& fx, FxArgs&&... args) { call(L, 0, ta, tr, ta, std::forward(fx), std::forward(args)...); } inline call_syntax get_call_syntax(lua_State* L, const std::string& meta) { if (sol::stack::get(L, 1) == type::table) { if (luaL_newmetatable(L, meta.c_str()) == 0) { lua_settop(L, -2); return call_syntax::colon; } } return call_syntax::dot; } } // stack } // sol #endif // SOL_STACK_HPP