#define SOL_CHECK_ARGUMENTS #include #include #include #include #include #include struct vars { vars() { } int boop = 0; ~vars() { } }; struct fuser { int x; fuser() : x(0) {} fuser(int x) : x(x) {} int add(int y) { return x + y; } int add2(int y) { return x + y + 2; } }; namespace crapola { struct fuser { int x; fuser() : x(0) {} fuser(int x) : x(x) {} fuser(int x, int x2) : x(x * x2) {} int add(int y) { return x + y; } int add2(int y) { return x + y + 2; } }; } // crapola class Base { public: Base(int a_num) : m_num(a_num) { } int get_num() { return m_num; } protected: int m_num; }; class Derived : public Base { public: Derived(int a_num) : Base(a_num) { } int get_num_10() { return 10 * m_num; } }; class abstract_A { public: virtual void a() = 0; }; class abstract_B : public abstract_A { public: virtual void a() override { INFO("overridden a() in B : public A - BARK"); } }; struct Vec { float x, y, z; Vec(float x, float y, float z) : x{ x }, y{ y }, z{ z } {} float length() { return sqrtf(x*x + y*y + z*z); } Vec normalized() { float invS = 1 / length(); return{ x * invS, y * invS, z * invS }; } }; struct giver { int a = 0; giver() { } void gief() { a = 1; } static void stuff() { } static void gief_stuff(giver& t, int a) { t.a = a; } ~giver() { } }; struct factory_test { private: factory_test() { a = true_a; } ~factory_test() { a = 0; } public: static int num_saved; static int num_killed; struct deleter { void operator()(factory_test* f) { f->~factory_test(); } }; static const int true_a; int a; static std::unique_ptr make() { return std::unique_ptr(new factory_test(), deleter()); } static void save(factory_test& f) { new(&f)factory_test(); ++num_saved; } static void kill(factory_test& f) { f.~factory_test(); ++num_killed; } }; int factory_test::num_saved = 0; int factory_test::num_killed = 0; const int factory_test::true_a = 156; bool something() { return true; } struct thing { int v = 100; thing() {} thing(int x) : v(x) {} }; struct self_test { int bark; self_test() : bark(100) { } void g(const std::string& str) { std::cout << str << '\n'; bark += 1; } void f(const self_test& t) { std::cout << "got test" << '\n'; if (t.bark != bark) throw sol::error("bark values are not the same for self_test f function"); if (&t != this) throw sol::error("call does not reference self for self_test f function"); } }; struct ext_getset { int bark = 24; const int meow = 56; ext_getset() = default; ext_getset(int v) : bark(v) {} ext_getset(ext_getset&&) = default; ext_getset(const ext_getset&) = delete; ext_getset& operator=(ext_getset&&) = default; ext_getset& operator=(const ext_getset&) = delete; ~ext_getset() { } std::string x() { return "bark bark bark"; } int x2(std::string x) { return static_cast(x.length()); } void set(sol::variadic_args, sol::this_state, int x) { bark = x; } int get(sol::this_state, sol::variadic_args) { return bark; } static void s_set(int) { } static int s_get(int x) { return x + 20; } }; template void des(T& e) { e.~T(); } TEST_CASE("usertype/usertype", "Show that we can create classes from usertype and use them") { sol::state lua; sol::usertype lc{ "add", &fuser::add, "add2", &fuser::add2 }; lua.set_usertype(lc); lua.script("a = fuser:new()\n" "b = a:add(1)\n" "c = a:add2(1)\n"); sol::object a = lua.get("a"); sol::object b = lua.get("b"); sol::object c = lua.get("c"); REQUIRE((a.is())); auto atype = a.get_type(); auto btype = b.get_type(); auto ctype = c.get_type(); REQUIRE((atype == sol::type::userdata)); REQUIRE((btype == sol::type::number)); REQUIRE((ctype == sol::type::number)); int bresult = b.as(); int cresult = c.as(); REQUIRE(bresult == 1); REQUIRE(cresult == 3); } TEST_CASE("usertype/usertype-constructors", "Show that we can create classes from usertype and use them with multiple constructors") { sol::state lua; sol::constructors, sol::types, sol::types> con; sol::usertype lc(con, "add", &crapola::fuser::add, "add2", &crapola::fuser::add2); lua.set_usertype(lc); lua.script( "a = fuser.new(2)\n" "u = a:add(1)\n" "v = a:add2(1)\n" "b = fuser:new()\n" "w = b:add(1)\n" "x = b:add2(1)\n" "c = fuser.new(2, 3)\n" "y = c:add(1)\n" "z = c:add2(1)\n"); sol::object a = lua.get("a"); auto atype = a.get_type(); REQUIRE((atype == sol::type::userdata)); sol::object u = lua.get("u"); sol::object v = lua.get("v"); REQUIRE((u.as() == 3)); REQUIRE((v.as() == 5)); sol::object b = lua.get("b"); auto btype = b.get_type(); REQUIRE((btype == sol::type::userdata)); sol::object w = lua.get("w"); sol::object x = lua.get("x"); REQUIRE((w.as() == 1)); REQUIRE((x.as() == 3)); sol::object c = lua.get("c"); auto ctype = c.get_type(); REQUIRE((ctype == sol::type::userdata)); sol::object y = lua.get("y"); sol::object z = lua.get("z"); REQUIRE((y.as() == 7)); REQUIRE((z.as() == 9)); } TEST_CASE("usertype/usertype-utility", "Show internal management of classes registered through new_usertype") { sol::state lua; lua.new_usertype("fuser", "add", &fuser::add, "add2", &fuser::add2); lua.script("a = fuser.new()\n" "b = a:add(1)\n" "c = a:add2(1)\n"); sol::object a = lua.get("a"); sol::object b = lua.get("b"); sol::object c = lua.get("c"); REQUIRE((a.is())); auto atype = a.get_type(); auto btype = b.get_type(); auto ctype = c.get_type(); REQUIRE((atype == sol::type::userdata)); REQUIRE((btype == sol::type::number)); REQUIRE((ctype == sol::type::number)); int bresult = b.as(); int cresult = c.as(); REQUIRE(bresult == 1); REQUIRE(cresult == 3); } TEST_CASE("usertype/usertype-utility-derived", "usertype classes must play nice when a derived class does not overload a publically visible base function") { sol::state lua; lua.open_libraries(sol::lib::base); sol::constructors> basector; sol::usertype baseusertype(basector, "get_num", &Base::get_num); lua.set_usertype(baseusertype); lua.script("base = Base.new(5)"); REQUIRE_NOTHROW(lua.script("print(base:get_num())")); sol::constructors> derivedctor; sol::usertype derivedusertype(derivedctor, "get_num_10", &Derived::get_num_10, "get_num", &Derived::get_num ); lua.set_usertype(derivedusertype); lua.script("derived = Derived.new(7)"); Derived& derived = lua["derived"]; lua.script("dgn = derived:get_num()\n" "print(dgn)"); lua.script("dgn10 = derived:get_num_10()\n" "print(dgn10)"); REQUIRE((lua.get("dgn10") == 70)); REQUIRE((lua.get("dgn") == 7)); } TEST_CASE("usertype/self-referential usertype", "usertype classes must play nice when C++ object types are requested for C++ code") { sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("test", "g", &self_test::g, "f", &self_test::f); lua.script( "local a = test.new()\n" "a:g(\"woof\")\n" "a:f(a)\n" ); } TEST_CASE("usertype/issue-number-twenty-five", "Using pointers and references from C++ classes in Lua") { struct test { int x = 0; test& set() { x = 10; return *this; } int get() { return x; } test* pget() { return this; } test create_get() { return *this; } int fun(int xa) { return xa * 10; } }; sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("test", "set", &test::set, "get", &test::get, "pointer_get", &test::pget, "fun", &test::fun, "create_get", &test::create_get); REQUIRE_NOTHROW(lua.script("x = test.new()")); REQUIRE_NOTHROW(lua.script("assert(x:set():get() == 10)")); REQUIRE_NOTHROW(lua.script("y = x:pointer_get()")); REQUIRE_NOTHROW(lua.script("y:set():get()")); REQUIRE_NOTHROW(lua.script("y:fun(10)")); REQUIRE_NOTHROW(lua.script("x:fun(10)")); REQUIRE_NOTHROW(lua.script("assert(y:fun(10) == x:fun(10), '...')")); REQUIRE_NOTHROW(lua.script("assert(y:fun(10) == 100, '...')")); REQUIRE_NOTHROW(lua.script("assert(y:set():get() == y:set():get(), '...')")); REQUIRE_NOTHROW(lua.script("assert(y:set():get() == 10, '...')")); } TEST_CASE("usertype/issue-number-thirty-five", "using value types created from lua-called C++ code, fixing user-defined types with constructors") { sol::state lua; lua.open_libraries(sol::lib::base); sol::constructors> ctor; sol::usertype udata(ctor, "normalized", &Vec::normalized, "length", &Vec::length); lua.set_usertype(udata); REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n" "print(v:length())")); REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n" "print(v:normalized():length())")); } TEST_CASE("usertype/lua-stored-usertype", "ensure usertype values can be stored without keeping usertype object alive") { sol::state lua; lua.open_libraries(sol::lib::base); { sol::constructors> ctor; sol::usertype udata(ctor, "normalized", &Vec::normalized, "length", &Vec::length); lua.set_usertype(udata); // usertype dies, but still usable in lua! } REQUIRE_NOTHROW(lua.script("collectgarbage()\n" "v = Vec.new(1, 2, 3)\n" "print(v:length())")); REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n" "print(v:normalized():length())")); } TEST_CASE("usertype/member-variables", "allow table-like accessors to behave as member variables for usertype") { sol::state lua; lua.open_libraries(sol::lib::base); sol::constructors> ctor; sol::usertype udata(ctor, "x", &Vec::x, "y", &Vec::y, "z", &Vec::z, "normalized", &Vec::normalized, "length", &Vec::length); lua.set_usertype(udata); REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n" "v2 = Vec.new(0, 1, 0)\n" "print(v:length())\n" )); REQUIRE_NOTHROW(lua.script("v.x = 2\n" "v2.y = 2\n" "print(v.x, v.y, v.z)\n" "print(v2.x, v2.y, v2.z)\n" )); REQUIRE_NOTHROW(lua.script("assert(v.x == 2)\n" "assert(v2.x == 0)\n" "assert(v2.y == 2)\n" )); REQUIRE_NOTHROW(lua.script("v.x = 3\n" "local x = v.x\n" "assert(x == 3)\n" )); struct breaks { sol::function f; }; lua.open_libraries(sol::lib::base); lua.set("b", breaks()); lua.new_usertype("breaks", "f", &breaks::f ); breaks& b = lua["b"]; REQUIRE_NOTHROW(lua.script("b.f = function () print('BARK!') end")); REQUIRE_NOTHROW(lua.script("b.f()")); REQUIRE_NOTHROW(b.f()); } TEST_CASE("usertype/nonmember-functions", "let users set non-member functions that take unqualified T as first parameter to usertype") { sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("giver", "gief_stuff", giver::gief_stuff, "gief", &giver::gief, "__tostring", [](const giver& t) { return std::to_string(t.a) + ": giving value"; } ).get("giver") .set_function("stuff", giver::stuff); REQUIRE_NOTHROW(lua.script("giver.stuff()")); REQUIRE_NOTHROW(lua.script("t = giver.new()\n" "print(tostring(t))\n" "t:gief()\n" "t:gief_stuff(20)\n")); giver& g = lua.get("t"); REQUIRE(g.a == 20); } TEST_CASE("usertype/unique-shared-ptr", "manage the conversion and use of unique and shared pointers ('unique usertypes')") { const int64_t unique_value = 0x7125679355635963; auto uniqueint = std::make_unique(unique_value); auto sharedint = std::make_shared(unique_value); long preusecount = sharedint.use_count(); { sol::state lua; lua.open_libraries(sol::lib::base); lua.set("uniqueint", std::move(uniqueint)); lua.set("sharedint", sharedint); std::unique_ptr& uniqueintref = lua["uniqueint"]; std::shared_ptr& sharedintref = lua["sharedint"]; int64_t* rawuniqueintref = lua["uniqueint"]; int64_t* rawsharedintref = lua["sharedint"]; int siusecount = sharedintref.use_count(); REQUIRE((uniqueintref.get() == rawuniqueintref && sharedintref.get() == rawsharedintref)); REQUIRE((uniqueintref != nullptr && sharedintref != nullptr && rawuniqueintref != nullptr && rawsharedintref != nullptr)); REQUIRE((unique_value == *uniqueintref.get() && unique_value == *sharedintref.get())); REQUIRE((unique_value == *rawuniqueintref && unique_value == *rawsharedintref)); REQUIRE(siusecount == sharedint.use_count()); std::shared_ptr moreref = sharedint; REQUIRE(unique_value == *moreref.get()); REQUIRE(moreref.use_count() == sharedint.use_count()); REQUIRE(moreref.use_count() == sharedintref.use_count()); } REQUIRE(preusecount == sharedint.use_count()); } TEST_CASE("regressions/one", "issue number 48") { sol::state lua; lua.new_usertype("vars", "boop", &vars::boop); REQUIRE_NOTHROW(lua.script("beep = vars.new()\n" "beep.boop = 1")); // test for segfault auto my_var = lua.get("beep"); REQUIRE(my_var.boop == 1); auto* ptr = &my_var; REQUIRE(ptr->boop == 1); } TEST_CASE("usertype/get-set-references", "properly get and set with std::ref semantics. Note that to get, we must not use Unqualified on the type...") { sol::state lua; lua.new_usertype("vars", "boop", &vars::boop); vars var{}; vars rvar{}; lua.set("beep", var); lua.set("rbeep", std::ref(rvar)); auto& my_var = lua.get("beep"); auto& ref_var = lua.get>("rbeep"); vars& proxy_my_var = lua["beep"]; std::reference_wrapper proxy_ref_var = lua["rbeep"]; var.boop = 2; rvar.boop = 5; // Was return as a value: var must be diferent from "beep" REQUIRE_FALSE(std::addressof(var) == std::addressof(my_var)); REQUIRE_FALSE(std::addressof(proxy_my_var) == std::addressof(var)); REQUIRE((my_var.boop == 0)); REQUIRE(var.boop != my_var.boop); REQUIRE(std::addressof(ref_var) == std::addressof(rvar)); REQUIRE(std::addressof(proxy_ref_var.get()) == std::addressof(rvar)); REQUIRE(rvar.boop == 5); REQUIRE(rvar.boop == ref_var.boop); } TEST_CASE("usertype/destructor-tests", "Show that proper copies / destruction happens") { static int created = 0; static int destroyed = 0; static void* last_call = nullptr; struct x { x() { ++created; } x(const x&) { ++created; } x(x&&) { ++created; } x& operator=(const x&) { return *this; } x& operator=(x&&) { return *this; } ~x() { ++destroyed; } }; { sol::state lua; lua.new_usertype("x"); x x1; x x2; lua.set("x1copy", x1, "x2copy", x2, "x1ref", std::ref(x1)); x& x1copyref = lua["x1copy"]; x& x2copyref = lua["x2copy"]; x& x1ref = lua["x1ref"]; REQUIRE(created == 4); REQUIRE(destroyed == 0); REQUIRE(std::addressof(x1) == std::addressof(x1ref)); } REQUIRE(created == 4); REQUIRE(destroyed == 4); } TEST_CASE("usertype/private-constructible", "Check to make sure special snowflake types from Enterprise thingamahjongs work properly.") { int numsaved = factory_test::num_saved; int numkilled = factory_test::num_killed; { sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("factory_test", "new", sol::initializers(factory_test::save), "__gc", sol::destructor(factory_test::kill), "a", &factory_test::a ); std::unique_ptr f = factory_test::make(); lua.set("true_a", factory_test::true_a, "f", f.get()); REQUIRE_NOTHROW(lua.script("assert(f.a == true_a)")); REQUIRE_NOTHROW(lua.script( "local fresh_f = factory_test:new()\n" "assert(fresh_f.a == true_a)\n")); } int expectednumsaved = numsaved + 1; int expectednumkilled = numkilled + 1; REQUIRE(expectednumsaved == factory_test::num_saved); REQUIRE(expectednumkilled == factory_test::num_killed); } TEST_CASE("usertype/const-pointer", "Make sure const pointers can be taken") { struct A { int x = 201; }; struct B { int foo(const A* a) { return a->x; }; }; sol::state lua; lua.new_usertype("B", "foo", &B::foo ); lua.set("a", A()); lua.set("b", B()); lua.script("x = b:foo(a)"); int x = lua["x"]; REQUIRE(x == 201); } TEST_CASE("usertype/overloading", "Check if overloading works properly for usertypes") { struct woof { int var; int func(int x) { return var + x; } double func2(int x, int y) { return var + x + y + 0.5; } std::string func2s(int x, std::string y) { return y + " " + std::to_string(x); } }; sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("woof", "var", &woof::var, "func", sol::overload(&woof::func, &woof::func2, &woof::func2s) ); const std::string bark_58 = "bark 58"; REQUIRE_NOTHROW(lua.script( "r = woof:new()\n" "a = r:func(1)\n" "b = r:func(1, 2)\n" "c = r:func(58, 'bark')\n" )); REQUIRE((lua["a"] == 1)); REQUIRE((lua["b"] == 3.5)); REQUIRE((lua["c"] == bark_58)); REQUIRE_THROWS(lua.script("r:func(1,2,'meow')")); } TEST_CASE("usertype/overloading_values", "ensure overloads handle properly") { struct overloading_test { int print(int i) { INFO("Integer print: " << i); return 500 + i; } int print() { INFO("No param print."); return 500; } }; sol::state lua; lua.new_usertype("overloading_test", sol::constructors<>(), "print", sol::overload(static_cast(&overloading_test::print), static_cast(&overloading_test::print)), "print2", sol::overload(static_cast(&overloading_test::print), static_cast(&overloading_test::print)) ); lua.set("test", overloading_test()); sol::function f0_0 = lua.load("return test:print()"); sol::function f0_1 = lua.load("return test:print2()"); sol::function f1_0 = lua.load("return test:print(24)"); sol::function f1_1 = lua.load("return test:print2(24)"); int res = f0_0(); int res2 = f0_1(); int res3 = f1_0(); int res4 = f1_1(); REQUIRE(res == 500); REQUIRE(res2 == 500); REQUIRE(res3 == 524); REQUIRE(res4 == 524); } TEST_CASE("usertype/reference-and-constness", "Make sure constness compiles properly and errors out at runtime") { struct bark { int var = 50; }; struct woof { bark b; }; struct nested { const int f = 25; }; struct outer { nested n; }; sol::state lua; lua.new_usertype("woof", "b", &woof::b); lua.new_usertype("bark", "var", &bark::var); lua.new_usertype("outer", "n", &outer::n); lua.set("w", woof()); lua.set("n", nested()); lua.set("o", outer()); lua.set("f", sol::c_call); lua.script(R"( x = w.b x.var = 20 val = w.b.var == x.var v = f(n); )"); woof& w = lua["w"]; bark& x = lua["x"]; nested& n = lua["n"]; int v = lua["v"]; bool val = lua["val"]; // enforce reference semantics REQUIRE(std::addressof(w.b) == std::addressof(x)); REQUIRE(n.f == 25); REQUIRE(v == 25); REQUIRE(val); REQUIRE_THROWS(lua.script("f(n, 50)")); REQUIRE_THROWS(lua.script("o.n = 25")); } TEST_CASE("usertype/readonly-and-static-functions", "Check if static functions can be called on userdata and from their originating (meta)tables") { struct bark { int var = 50; void func() {} static void oh_boy() {} static int oh_boy(std::string name) { return static_cast(name.length()); } int operator()(int x) { return x; } }; sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("bark", "var", &bark::var, "var2", sol::readonly(&bark::var), "something", something, "something2", [](int x, int y) { return x + y; }, "func", &bark::func, "oh_boy", sol::overload(sol::resolve(&bark::oh_boy), sol::resolve(&bark::oh_boy)), sol::meta_function::call_function, &bark::operator() ); REQUIRE_NOTHROW(lua.script("assert(bark.oh_boy('woo') == 3)")); REQUIRE_NOTHROW(lua.script("bark.oh_boy()")); bark b; lua.set("b", &b); sol::table b_table = lua["b"]; sol::function member_func = b_table["func"]; sol::function s = b_table["something"]; sol::function s2 = b_table["something2"]; sol::table b_metatable = b_table[sol::metatable_key]; bool isvalidmt = b_metatable.valid(); REQUIRE(isvalidmt); sol::function b_call = b_metatable["__call"]; sol::function b_as_function = lua["b"]; int x = b_as_function(1); int y = b_call(b, 1); bool z = s(); int w = s2(2, 3); REQUIRE(x == 1); REQUIRE(y == 1); REQUIRE(z); REQUIRE(w == 5); lua.script(R"( lx = b(1) ly = getmetatable(b).__call(b, 1) lz = b.something() lz2 = bark.something() lw = b.something2(2, 3) lw2 = bark.something2(2, 3) )"); int lx = lua["lx"]; int ly = lua["ly"]; bool lz = lua["lz"]; int lw = lua["lw"]; bool lz2 = lua["lz2"]; int lw2 = lua["lw2"]; REQUIRE(lx == 1); REQUIRE(ly == 1); REQUIRE(lz); REQUIRE(lz2); REQUIRE(lw == 5); REQUIRE(lw2 == 5); REQUIRE(lx == ly); REQUIRE(lz == lz2); REQUIRE(lw == lw2); REQUIRE_THROWS(lua.script("b.var2 = 2")); } TEST_CASE("usertype/properties", "Check if member properties/variables work") { struct bark { int var = 50; int var2 = 25; int get_var2() const { return var2; } int get_var3() { return var2; } void set_var2(int x) { var2 = x; } }; sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("bark", "var", &bark::var, "var2", sol::readonly(&bark::var2), "a", sol::property(&bark::get_var2, &bark::set_var2), "b", sol::property(&bark::get_var2), "c", sol::property(&bark::get_var3), "d", sol::property(&bark::set_var2) ); bark b; lua.set("b", &b); lua.script("b.a = 59"); lua.script("var2_0 = b.a"); lua.script("var2_1 = b.b"); lua.script("b.d = 1568"); lua.script("var2_2 = b.c"); int var2_0 = lua["var2_0"]; int var2_1 = lua["var2_1"]; int var2_2 = lua["var2_2"]; REQUIRE(var2_0 == 59); REQUIRE(var2_1 == 59); REQUIRE(var2_2 == 1568); REQUIRE_THROWS(lua.script("b.var2 = 24")); REQUIRE_THROWS(lua.script("r = b.d")); REQUIRE_THROWS(lua.script("r = b.d")); REQUIRE_THROWS(lua.script("b.b = 25")); REQUIRE_THROWS(lua.script("b.c = 11")); } TEST_CASE("usertype/safety", "crash with an exception -- not a segfault -- on bad userdata calls") { class Test { public: void sayHello() { std::cout << "Hey\n"; } }; sol::state lua; lua.new_usertype("Test", "sayHello", &Test::sayHello); static const std::string code = R"( local t = Test.new() t:sayHello() --Works fine t.sayHello() --Uh oh. )"; REQUIRE_THROWS(lua.script(code)); } TEST_CASE("usertype/call_constructor", "make sure lua types can be constructed with function call constructors") { sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("thing", "v", &thing::v , sol::call_constructor, sol::constructors, sol::types>() ); lua.script(R"( t = thing(256) )"); thing& y = lua["t"]; INFO(y.v); REQUIRE(y.v == 256); } TEST_CASE("usertype/call_constructor_2", "prevent metatable regression") { class class01 { public: int x = 57; class01() {} }; class class02 { public: int x = 50; class02() {} class02(const class01& other) : x(other.x) {} }; sol::state lua; lua.new_usertype("class01", sol::call_constructor, sol::constructors, sol::types>() ); lua.new_usertype("class02", sol::call_constructor, sol::constructors, sol::types, sol::types>() ); REQUIRE_NOTHROW(lua.script(R"( x = class01() y = class02(x) )")); class02& y = lua["y"]; REQUIRE(y.x == 57); } TEST_CASE("usertype/blank_constructor", "make sure lua types cannot be constructed if a blank / empty constructor is provided") { sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("thing", "v", &thing::v , sol::call_constructor, sol::constructors<>() ); REQUIRE_THROWS(lua.script("t = thing(256)")); } TEST_CASE("usertype/no_constructor", "make sure lua types cannot be constructed if a blank / empty constructor is provided") { sol::state lua; lua.open_libraries(sol::lib::base); SECTION("order1") { lua.new_usertype("thing", "v", &thing::v , sol::call_constructor, sol::no_constructor ); REQUIRE_THROWS(lua.script("t = thing.new()")); } SECTION("order2") { lua.new_usertype("thing" , sol::call_constructor, sol::no_constructor , "v", &thing::v ); REQUIRE_THROWS(lua.script("t = thing.new()")); } REQUIRE_THROWS(lua.script("t = thing.new()")); } TEST_CASE("usertype/coverage", "try all the things") { sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("ext_getset", sol::call_constructor, sol::constructors, sol::types>(), sol::meta_function::garbage_collect, sol::destructor(des), "x", sol::overload(&ext_getset::x, &ext_getset::x2, [](ext_getset& m, std::string x, int y) { return m.meow + 50 + y + x.length(); }), "bark", &ext_getset::bark, "meow", &ext_getset::meow, "readonlybark", sol::readonly(&ext_getset::bark), "set", &ext_getset::set, "get", &ext_getset::get, "sset", &ext_getset::s_set, "sget", &ext_getset::s_get, "propbark", sol::property(&ext_getset::set, &ext_getset::get), "readonlypropbark", sol::property(&ext_getset::get), "writeonlypropbark", sol::property(&ext_getset::set) ); INFO("usertype created"); lua.script(R"( e = ext_getset() w = e:x(e:x(), e:x(e:x())) print(w) )"); int w = lua["w"]; REQUIRE(w == (56 + 50 + 14 + 14)); INFO("REQUIRE(w) successful"); lua.script(R"( e:set(500) e.sset(24) x = e:get() y = e.sget(20) )"); int x = lua["x"]; int y = lua["y"]; REQUIRE(x == 500); REQUIRE(y == 40); INFO("REQUIRE(x, y) successful"); lua.script(R"( e.bark = 5001 a = e:get() print(e.bark) print(a) e.propbark = 9700 b = e:get() print(e.propbark) print(b) )"); int a = lua["a"]; int b = lua["b"]; REQUIRE(a == 5001); REQUIRE(b == 9700); INFO("REQUIRE(a, b) successful"); lua.script(R"( c = e.readonlybark d = e.meow print(e.readonlybark) print(c) print(e.meow) print(d) )"); int c = lua["c"]; int d = lua["d"]; REQUIRE(c == 9700); REQUIRE(d == 56); INFO("REQUIRE(c, d) successful"); lua.script(R"( e.writeonlypropbark = 500 z = e.readonlypropbark print(e.readonlybark) print(e.bark) )"); int z = lua["z"]; REQUIRE(z == 500); INFO("REQUIRE(z) successful"); REQUIRE_THROWS(lua.script("e.readonlybark = 24")); INFO("REQUIRE_THROWS 1 successful"); REQUIRE_THROWS(lua.script("e.readonlypropbark = 500")); INFO("REQUIRE_THROWS 2 successful"); REQUIRE_THROWS(lua.script("y = e.writeonlypropbark")); INFO("REQUIRE_THROWS 3 successful"); } TEST_CASE("usertype/copyability", "make sure user can write to a class variable even if the class itself isn't copy-safe") { struct NoCopy { int get() const { return _you_can_copy_me; } void set(int val) { _you_can_copy_me = val; } int _you_can_copy_me; std::mutex _haha_you_cant_copy_me; }; sol::state lua; lua.new_usertype("NoCopy", "val", sol::property(&NoCopy::get, &NoCopy::set)); REQUIRE_NOTHROW( lua.script(R"__( nocopy = NoCopy.new() nocopy.val = 5 )__") ); } TEST_CASE("usertype/protect", "users should be allowed to manually protect a function") { struct protect_me { int gen(int x) { return x; } }; sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("protect_me", "gen", sol::protect( &protect_me::gen ) ); REQUIRE_NOTHROW( lua.script(R"__( pm = protect_me.new() value = pcall(pm.gen,pm) )__"); ); bool value = lua["value"]; REQUIRE_FALSE(value); } TEST_CASE("usertype/shared-ptr-regression", "usertype metatables should not screw over unique usertype metatables") { static int created = 0; static int destroyed = 0; struct test { test() { ++created; } ~test() { ++destroyed; } }; { std::list> tests; sol::state lua; lua.open_libraries(); lua.new_usertype("test", "create", [&]() -> std::shared_ptr { tests.push_back(std::make_shared()); return tests.back(); } ); REQUIRE(created == 0); REQUIRE(destroyed == 0); lua.script("x = test.create()"); REQUIRE(created == 1); REQUIRE(destroyed == 0); REQUIRE_FALSE(tests.empty()); std::shared_ptr& x = lua["x"]; std::size_t xuse = x.use_count(); std::size_t tuse = tests.back().use_count(); REQUIRE(xuse == tuse); } REQUIRE(created == 1); REQUIRE(destroyed == 1); } TEST_CASE("usertype/double-deleter-guards", "usertype metatables internally must not rely on internal ") { struct c_a { int x; }; struct c_b { int y; }; REQUIRE_NOTHROW( { sol::state lua; lua.new_usertype("c_a", "x", &c_a::x); lua.new_usertype("c_b", "y", &c_b::y); lua = sol::state(); lua.new_usertype("c_a", "x", &c_a::x); lua.new_usertype("c_b", "y", &c_b::y); lua = sol::state(); }); } TEST_CASE("usertype/vars", "usertype vars can bind various class items") { static int muh_variable = 25; static int through_variable = 10; sol::state lua; lua.open_libraries(); struct test {}; lua.new_usertype("test", "straight", sol::var(2), "global", sol::var(muh_variable), "ref_global", sol::var(std::ref(muh_variable)), "global2", sol::var(through_variable), "ref_global2", sol::var(std::ref(through_variable)) ); int prets = lua["test"]["straight"]; int pretg = lua["test"]["global"]; int pretrg = lua["test"]["ref_global"]; int pretg2 = lua["test"]["global2"]; int pretrg2 = lua["test"]["ref_global2"]; REQUIRE(prets == 2); REQUIRE(pretg == 25); REQUIRE(pretrg == 25); REQUIRE(pretg2 == 10); REQUIRE(pretrg2 == 10); lua.script(R"( print(test.straight) test.straight = 50 print(test.straight) )"); int s = lua["test"]["straight"]; REQUIRE(s == 50); lua.script(R"( t = test.new() print(t.global) t.global = 50 print(t.global) )"); int mv = lua["test"]["global"]; REQUIRE(mv == 50); REQUIRE(muh_variable == 25); lua.script(R"( print(t.ref_global) t.ref_global = 50 print(t.ref_global) )"); int rmv = lua["test"]["ref_global"]; REQUIRE(rmv == 50); REQUIRE(muh_variable == 50); REQUIRE(through_variable == 10); lua.script(R"( print(test.global2) test.global2 = 35 print(test.global2) )"); int tv = lua["test"]["global2"]; REQUIRE(through_variable == 10); REQUIRE(tv == 35); lua.script(R"( print(test.ref_global2) test.ref_global2 = 35 print(test.ref_global2) )"); int rtv = lua["test"]["ref_global2"]; REQUIRE(rtv == 35); REQUIRE(through_variable == 35); } TEST_CASE("usertypes/var-and-property", "make sure const vars are readonly and properties can handle lambdas") { const static int arf = 20; struct test { int value = 10; }; sol::state lua; lua.open_libraries(); lua.new_usertype("test", "prop", sol::property( [](test& t) { return t.value; }, [](test& t, int x) { t.value = x; } ), "global", sol::var(std::ref(arf)) ); lua.script(R"( t = test.new() print(t.prop) t.prop = 50 print(t.prop) )"); test& t = lua["t"]; REQUIRE(t.value == 50); REQUIRE_THROWS( lua.script(R"( t = test.new() print(t.global) t.global = 20 print(t.global) )")); } TEST_CASE("usertype/unique_usertype-check", "make sure unique usertypes don't get pushed as references with function calls and the like") { class Entity { public: std::string GetName() { return "Charmander"; } }; sol::state lua; lua.open_libraries(sol::lib::base, sol::lib::math, sol::lib::string, sol::lib::io); lua.new_usertype("Entity", "new", sol::no_constructor, "get_name", &Entity::GetName ); lua.script(R"( function my_func(entity) print("INSIDE LUA") print(entity:get_name()) end )"); sol::function my_func = lua["my_func"]; REQUIRE_NOTHROW({ auto ent = std::make_shared(); my_func(ent); Entity ent2; my_func(ent2); my_func(std::make_shared()); }); } TEST_CASE("usertype/abstract-base-class", "Ensure that abstract base classes and such can be registered") { sol::state lua; lua.new_usertype("A", "a", &abstract_A::a); lua.new_usertype("B", sol::base_classes, sol::bases()); lua.script(R"(local b = B.new() b:a() )"); } TEST_CASE("usertype/as_function", "Ensure that variables can be turned into functions by as_function") { class B { public: int bvar = 24; }; sol::state lua; lua.open_libraries(); lua.new_usertype("B", "b", &B::bvar, "f", sol::as_function(&B::bvar)); B b; lua.set("b", &b); lua.script("x = b:f()"); lua.script("y = b.b"); int x = lua["x"]; int y = lua["y"]; REQUIRE(x == 24); REQUIRE(y == 24); } TEST_CASE("usertype/destruction-test", "make sure usertypes are properly destructed and don't double-delete memory or segfault") { sol::state lua; class CrashClass { public: CrashClass() { } ~CrashClass() { a = 10; // This will cause a crash. } private: int a; }; lua.new_usertype("CrashClass", sol::call_constructor, sol::constructors>() ); lua.script(R"( function testCrash() local x = CrashClass() end )"); for (int i = 0; i < 1000; ++i) { lua["testCrash"](); } }