// The MIT License (MIT) // Copyright (c) 2013-2015 Danny Y., Rapptz // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_FUNCTION_HPP #define SOL_FUNCTION_HPP #include "reference.hpp" #include "tuple.hpp" #include "stack.hpp" #include "function_types.hpp" #include "usertype_traits.hpp" #include "resolve.hpp" #include #include #include namespace sol { class function_result { private: lua_State* L; int index; int returncount; call_error error; template stack::get_return get(types, indices) const { return stack::get(L, index); } template stack::get_return get(types, indices) const { auto r = std::make_tuple(stack::get(L, index + I)...); return r; } public: function_result() = default; function_result(lua_State* L, int index = -1, int returncount = 0, call_error error = call_error::ok): L(L), index(index), returncount(returncount), error(error) { } function_result(const function_result&) = default; function_result& operator=(const function_result&) = default; function_result(function_result&& o) : L(o.L), index(o.index), returncount(o.returncount), error(o.error) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but will be thorough o.L = nullptr; o.index = 0; o.returncount = 0; o.error = call_error::runtime; } function_result& operator=(function_result&& o) { L = o.L; index = o.index; returncount = o.returncount; error = o.error; // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but will be thorough o.L = nullptr; o.index = 0; o.returncount = 0; o.error = call_error::runtime; } bool valid() const { return error == call_error::ok; } template T get() const { tuple_types> tr; return get(tr, tr); } operator const char* () const { return get(); } template, const char*>>, Not, char>>, Not, std::string>>, Not, std::initializer_list>>> = 0> operator T () const { return get(); } ~function_result() { stack::remove(L, index, error == call_error::ok ? returncount : 1); } }; class function : public reference { public: static reference default_handler; private: struct handler { const reference& target; int stack; handler(const reference& target) : target(target), stack(0) { if (target.valid()) { stack = lua_gettop(target.state()) + 1; target.push(); } } ~handler() { if (target.valid()) { lua_remove(target.state(), stack); } } }; int luacodecall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, const handler& h) const { return lua_pcallk(state(), static_cast(argcount), static_cast(resultcount), h.stack, 0, nullptr); } void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, const handler& h) const { lua_callk(state(), static_cast(argcount), static_cast(resultcount), 0, nullptr); } template std::tuple invoke(indices, types, std::ptrdiff_t n, const handler& h) const { luacall(n, sizeof...(Ret), h); const int nreturns = static_cast(sizeof...(Ret)); const int stacksize = lua_gettop(state()); const int firstreturn = std::max(0, stacksize - nreturns) + 1; auto r = std::make_tuple(stack::get(state(), firstreturn + I)...); lua_pop(state(), nreturns); return r; } template Ret invoke(indices, types, std::ptrdiff_t n, const handler& h) const { luacall(n, 1, h); return stack::pop(state()); } template void invoke(indices, types, std::ptrdiff_t n, const handler& h) const { luacall(n, 0, h); } function_result invoke(indices<>, types<>, std::ptrdiff_t n, const handler& h) const { const int stacksize = lua_gettop(state()); const int firstreturn = std::max(0, stacksize - static_cast(n) - 1); int code = LUA_OK; try { code = luacodecall(n, LUA_MULTRET, h); } // Handle C++ errors thrown from C++ functions bound inside of lua catch (const std::exception& error) { code = LUA_ERRRUN; stack::push(state(), error.what()); } // TODO: handle idiots? /*catch (const char* error) { code = LUA_ERRRUN; stack::push(state(), error); } catch (const std::string& error) { code = LUA_ERRRUN; stack::push(state(), error); } catch (...) { code = LUA_ERRRUN; stack::push( state(), "[sol] an unknownable runtime exception occurred" ); }*/ catch (...) { throw; } const int poststacksize = lua_gettop(state()); const int returncount = poststacksize - firstreturn; return function_result(state(), firstreturn + ( error_handler.valid() ? 0 : 1 ), returncount, static_cast(code)); } public: sol::reference error_handler; function() = default; function(lua_State* L, int index = -1): reference(L, index), error_handler(default_handler) { type_assert(L, index, type::function); } function(const function&) = default; function& operator=(const function&) = default; function( function&& ) = default; function& operator=( function&& ) = default; template function_result operator()(Args&&... args) const { return call<>(std::forward(args)...); } template auto operator()(types, Args&&... args) const -> decltype(call(std::forward(args)...)) { return call(std::forward(args)...); } template auto call(Args&&... args) const -> decltype(invoke(types(), types(), 0, std::declval())) { handler h(error_handler); push(); int pushcount = stack::push_args(state(), std::forward(args)...); auto tr = types(); return invoke(tr, tr, pushcount, h); } }; sol::reference function::default_handler; namespace stack { template struct pusher> { template::type> static void set_memfx(types t, lua_State* L, Fx&& fx) { typedef Decay> raw_fx_t; typedef R(* fx_ptr_t)(Args...); typedef std::is_convertible is_convertible; set_isconvertible_fx(is_convertible(), t, L, std::forward(fx)); } template static void set_memfx(types<>, lua_State* L, Fx&& fx) { typedef Unqualified> fx_t; typedef decltype(&fx_t::operator()) Sig; set_memfx(types>(), L, std::forward(fx)); } template static void set(lua_State* L, R fxptr(Args...)){ set_fx(std::false_type(), L, fxptr); } template static void set(lua_State* L, Sig* fxptr){ set_fx(std::false_type(), L, fxptr); } template static void set(lua_State* L, R (C::*memfxptr)(Args...), T&& obj) { typedef Bool::value || std::is_pointer::value> is_reference; set_reference_fx(is_reference(), L, memfxptr, std::forward(obj)); } template static void set(lua_State* L, Sig C::* memfxptr, T&& obj) { typedef Bool::value || std::is_pointer::value> is_reference; set_reference_fx(is_reference(), L, memfxptr, std::forward(obj)); } template static void set(lua_State* L, Fx&& fx) { set_memfx(types(), L, std::forward(fx)); } template static void set_isconvertible_fx(std::true_type, types, lua_State* L, Fx&& fx) { typedef R(* fx_ptr_t)(Args...); fx_ptr_t fxptr = unwrapper(std::forward(fx)); set(L, fxptr); } template static void set_isconvertible_fx(std::false_type, types, lua_State* L, Fx&& fx) { typedef Decay> fx_t; std::unique_ptr sptr(new functor_function(std::forward(fx))); set_fx(L, std::move(sptr)); } template static void set_reference_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) { set_fx(std::true_type(), L, std::forward(fx), std::forward(obj)); } template static void set_reference_fx(std::false_type, lua_State* L, Fx&& fx, T&& obj) { typedef typename std::remove_pointer>::type clean_fx; std::unique_ptr sptr(new member_function(std::forward(obj), std::forward(fx))); return set_fx(L, std::move(sptr)); } template static void set_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) { // Layout: // idx 1...n: verbatim data of member function pointer // idx n + 1: is the object's void pointer // We don't need to store the size, because the other side is templated // with the same member function pointer type typedef Decay dFx; typedef Unqualified uFx; dFx memfxptr(std::forward(fx)); auto userptr = sol::detail::get_ptr(obj); void* userobjdata = static_cast(userptr); lua_CFunction freefunc = &static_member_function, uFx>::call; int upvalues = stack::detail::push_as_upvalues(L, memfxptr); upvalues += stack::push(L, userobjdata); stack::push(L, freefunc, upvalues); } template static void set_fx(std::false_type, lua_State* L, Fx&& fx) { Decay target(std::forward(fx)); lua_CFunction freefunc = &static_function::call; int upvalues = stack::detail::push_as_upvalues(L, target); stack::push(L, freefunc, upvalues); } template static void set_fx(lua_State* L, std::unique_ptr luafunc) { auto&& metakey = usertype_traits>::metatable; const char* metatablename = std::addressof(metakey[0]); base_function* target = luafunc.release(); void* userdata = reinterpret_cast(target); lua_CFunction freefunc = &base_function::call; int metapushed = luaL_newmetatable(L, metatablename); if(metapushed == 1) { lua_pushstring(L, "__gc"); stack::push(L, &base_function::gc); lua_settable(L, -3); lua_pop(L, 1); } stack::detail::push_userdata(L, metatablename, userdata); stack::push(L, freefunc, 1); } template static int push(lua_State* L, Args&&... args) { // Set will always place one thing (function) on the stack set(L, std::forward(args)...); return 1; } }; template struct pusher> { static int push(lua_State* L, std::function fx) { return pusher{}.push(L, std::move(fx)); } }; template struct getter> { typedef function_traits fx_t; typedef typename fx_t::args_type args_t; typedef typename tuple_types::type ret_t; template static std::function get_std_func(types, types, lua_State* L, int index = -1) { typedef typename function_traits::return_type return_t; sol::function f(L, index); auto fx = [f, L, index](FxArgs&&... args) -> return_t { return f(types(), std::forward(args)...); }; return std::move(fx); } template static std::function get_std_func(types, types, lua_State* L, int index = -1) { sol::function f(L, index); auto fx = [f, L, index](FxArgs&&... args) -> void { f(std::forward(args)...); }; return std::move(fx); } template static std::function get_std_func(types t, types<>, lua_State* L, int index = -1) { return get_std_func(std::move(t), types(), L, index); } static std::function get(lua_State* L, int index) { return get_std_func(args_t(), ret_t(), L, index); } }; } // stack } // sol #endif // SOL_FUNCTION_HPP