// sol2 // The MIT License (MIT) // Copyright (c) 2013-2018 Rapptz, ThePhD and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_STACK_PUSH_HPP #define SOL_STACK_PUSH_HPP #include "stack_core.hpp" #include "raii.hpp" #include "optional.hpp" #include "usertype_traits.hpp" #include "filters.hpp" #include "unicode.hpp" #include #include #include #include #ifdef SOL_CXX17_FEATURES #include #include #endif // C++17 namespace sol { namespace stack { inline int push_environment_of(lua_State* L, int index = -1) { #if SOL_LUA_VERSION < 502 // Use lua_getfenv lua_getfenv(L, index); return 1; #else // Use upvalues as explained in Lua 5.2 and beyond's manual if (lua_getupvalue(L, index, 1) == nullptr) { push(L, lua_nil); return 1; } #endif return 1; } template int push_environment_of(const T& target) { target.push(); return push_environment_of(target.lua_state(), -1) + 1; } template struct pusher> { template static int push_fx(lua_State* L, F&& f, Args&&... args) { // Basically, we store all user-data like this: // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new // data in the first sizeof(T*) bytes, and then however many bytes it takes to // do the actual object. Things that are std::ref or plain T* are stored as // just the sizeof(T*), and nothing else. T* obj = detail::usertype_allocate(L); std::allocator alloc{}; std::allocator_traits>::construct(alloc, obj, std::forward(args)...); f(); return 1; } template static int push_keyed(lua_State* L, K&& k, Args&&... args) { stack_detail::undefined_metatable fx(L, &k[0]); return push_fx(L, fx, std::forward(args)...); } template static int push(lua_State* L, Args&&... args) { return push_keyed(L, usertype_traits::metatable(), std::forward(args)...); } }; template struct pusher> { typedef meta::unqualified_t U; template static int push_fx(lua_State* L, F&& f, T* obj) { if (obj == nullptr) return stack::push(L, lua_nil); T** pref = detail::usertype_allocate_pointer(L); *pref = obj; f(); return 1; } template static int push_keyed(lua_State* L, K&& k, T* obj) { stack_detail::undefined_metatable fx(L, &k[0]); return push_fx(L, fx, obj); } static int push(lua_State* L, T* obj) { return push_keyed(L, usertype_traits::metatable(), obj); } }; template <> struct pusher { template static int push(lua_State* L, T&& obj) { return stack::push(L, detail::ptr(obj)); } }; template struct pusher { template static int push(lua_State* L, Args&&... args) { return pusher>{}.push(L, std::forward(args)...); } }; template struct pusher>, std::is_function>, is_lua_reference>>::value>> { template static int push(lua_State* L, Args&&... args) { return pusher>{}.push(L, std::forward(args)...); } }; template struct pusher::value>> { typedef typename unique_usertype_traits::type P; typedef typename unique_usertype_traits::actual_type Real; template >> = meta::enabler> static int push(lua_State* L, Arg&& arg) { if (unique_usertype_traits::is_null(arg)) { return stack::push(L, lua_nil); } return push_deep(L, std::forward(arg)); } template static int push(lua_State* L, Arg0&& arg0, Arg0&& arg1, Args&&... args) { return push_deep(L, std::forward(arg0), std::forward(arg1), std::forward(args)...); } template static int push_deep(lua_State* L, Args&&... args) { P** pref = nullptr; detail::unique_destructor* fx = nullptr; Real* mem = detail::usertype_unique_allocate(L, pref, fx); *fx = detail::usertype_unique_alloc_destroy; detail::default_construct::construct(mem, std::forward(args)...); *pref = unique_usertype_traits::get(*mem); if (luaL_newmetatable(L, &usertype_traits>::metatable()[0]) == 1) { luaL_Reg l[32]{}; int index = 0; auto prop_fx = [](meta_function) { return true; }; usertype_detail::insert_default_registrations

(l, index, prop_fx); usertype_detail::make_destructor(l, index); luaL_setfuncs(L, l, 0); } lua_setmetatable(L, -2); return 1; } }; template struct pusher> { static int push(lua_State* L, const std::reference_wrapper& t) { return stack::push(L, std::addressof(detail::deref(t.get()))); } }; template struct pusher::value>> { static int push(lua_State* L, const T& value) { lua_pushnumber(L, value); return 1; } }; template struct pusher::value>> { static int push(lua_State* L, const T& value) { #if SOL_LUA_VERSION >= 503 static auto integer_value_fits = [](T const& value) { if (sizeof(T) < sizeof(lua_Integer) || (std::is_signed::value && sizeof(T) == sizeof(lua_Integer))) { return true; } auto u_min = static_cast((std::numeric_limits::min)()); auto u_max = static_cast((std::numeric_limits::max)()); auto t_min = static_cast((std::numeric_limits::min)()); auto t_max = static_cast((std::numeric_limits::max)()); return (u_min <= t_min || value >= static_cast(u_min)) && (u_max >= t_max || value <= static_cast(u_max)); }; if (integer_value_fits(value)) { lua_pushinteger(L, static_cast(value)); return 1; } #endif #if defined(SOL_SAFE_NUMERICS) && !defined(SOL_NO_CHECK_NUMBER_PRECISION) if (static_cast(llround(static_cast(value))) != value) { #ifdef SOL_NO_EXCEPTIONS // Is this really worth it? assert(false && "integer value will be misrepresented in lua"); lua_pushnumber(L, static_cast(value)); return 1; #else throw error(detail::direct_error, "integer value will be misrepresented in lua"); #endif } #endif lua_pushnumber(L, static_cast(value)); return 1; } }; template struct pusher::value>> { static int push(lua_State* L, const T& value) { if (std::is_same>::value) { return stack::push(L, static_cast(value)); } return stack::push(L, static_cast>(value)); } }; template struct pusher> { static int push(lua_State* L, const T& tablecont) { typedef meta::has_key_value_pair>> has_kvp; return push(has_kvp(), L, tablecont); } static int push(std::true_type, lua_State* L, const T& tablecont) { auto& cont = detail::deref(detail::unwrap(tablecont)); lua_createtable(L, static_cast(cont.size()), 0); int tableindex = lua_gettop(L); for (const auto& pair : cont) { set_field(L, pair.first, pair.second, tableindex); } return 1; } static int push(std::false_type, lua_State* L, const T& tablecont) { auto& cont = detail::deref(detail::unwrap(tablecont)); lua_createtable(L, stack_detail::get_size_hint(cont), 0); int tableindex = lua_gettop(L); std::size_t index = 1; for (const auto& i : cont) { #if SOL_LUA_VERSION >= 503 int p = stack::push(L, i); for (int pi = 0; pi < p; ++pi) { lua_seti(L, tableindex, static_cast(index++)); } #else lua_pushinteger(L, static_cast(index)); int p = stack::push(L, i); if (p == 1) { ++index; lua_settable(L, tableindex); } else { int firstindex = tableindex + 1 + 1; for (int pi = 0; pi < p; ++pi) { stack::push(L, index); lua_pushvalue(L, firstindex); lua_settable(L, tableindex); ++index; ++firstindex; } lua_pop(L, 1 + p); } #endif } // TODO: figure out a better way to do this...? //set_field(L, -1, cont.size()); return 1; } }; template struct pusher, std::enable_if_t>>::value>> { static int push(lua_State* L, const T& tablecont) { return stack::push>(L, tablecont); } }; template struct pusher, std::enable_if_t>>::value>> { static int push(lua_State* L, const T& v) { return stack::push(L, v); } }; template struct pusher> { static int push(lua_State* L, const T& tablecont) { pusher> p{}; // silence annoying VC++ warning (void)p; return p.push(L, tablecont); } }; template struct pusher> { static int push(lua_State* L, const std::initializer_list& il) { pusher>> p{}; // silence annoying VC++ warning (void)p; return p.push(L, il); } }; template struct pusher::value>> { static int push(lua_State* L, const T& ref) { return ref.push(L); } static int push(lua_State* L, T&& ref) { return ref.push(L); } }; template <> struct pusher { static int push(lua_State* L, bool b) { lua_pushboolean(L, b); return 1; } }; template <> struct pusher { static int push(lua_State* L, lua_nil_t) { lua_pushnil(L); return 1; } }; template <> struct pusher { static int push(lua_State*, stack_count st) { return st.count; } }; template <> struct pusher { static int push(lua_State* L, metatable_t) { lua_pushlstring(L, "__mt", 4); return 1; } }; template <> struct pusher> { static int push(lua_State* L, lua_CFunction func, int n = 0) { lua_pushcclosure(L, func, n); return 1; } }; template <> struct pusher { static int push(lua_State* L, lua_CFunction func, int n = 0) { lua_pushcclosure(L, func, n); return 1; } }; #ifdef SOL_NOEXCEPT_FUNCTION_TYPE template <> struct pusher> { static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { lua_pushcclosure(L, func, n); return 1; } }; template <> struct pusher { static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { lua_pushcclosure(L, func, n); return 1; } }; #endif // noexcept function type template <> struct pusher { static int push(lua_State* L, c_closure cc) { lua_pushcclosure(L, cc.c_function, cc.upvalues); return 1; } }; template struct pusher> { template static int push(std::index_sequence, lua_State* L, T&& c) { int pushcount = multi_push(L, detail::forward_get(c.upvalues)...); return stack::push(L, c_closure(c.c_function, pushcount)); } template static int push(lua_State* L, T&& c) { return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward(c)); } }; template <> struct pusher { static int push(lua_State* L, void* userdata) { lua_pushlightuserdata(L, userdata); return 1; } }; template <> struct pusher { static int push(lua_State* L, lightuserdata_value userdata) { lua_pushlightuserdata(L, userdata); return 1; } }; template struct pusher> { static int push(lua_State* L, light l) { lua_pushlightuserdata(L, static_cast(l.value)); return 1; } }; template struct pusher> { template static int push_with(lua_State* L, Key&& name, Args&&... args) { // A dumb pusher T* data = detail::user_allocate(L); std::allocator alloc{}; std::allocator_traits>::construct(alloc, data, std::forward(args)...); if (with_meta) { // Make sure we have a plain GC set for this data if (luaL_newmetatable(L, name) != 0) { lua_CFunction cdel = detail::user_alloc_destruct; lua_pushcclosure(L, cdel, 0); lua_setfield(L, -2, "__gc"); } lua_setmetatable(L, -2); } return 1; } template , no_metatable_t, metatable_t>> = meta::enabler> static int push(lua_State* L, Arg&& arg, Args&&... args) { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, std::forward(arg), std::forward(args)...); } template static int push(lua_State* L, no_metatable_t, Args&&... args) { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, std::forward(args)...); } template static int push(lua_State* L, metatable_t, Key&& key, Args&&... args) { const auto name = &key[0]; return push_with(L, name, std::forward(args)...); } static int push(lua_State* L, const user& u) { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, u.value); } static int push(lua_State* L, user&& u) { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, std::move(u.value)); } static int push(lua_State* L, no_metatable_t, const user& u) { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, u.value); } static int push(lua_State* L, no_metatable_t, user&& u) { const auto name = &usertype_traits>::user_gc_metatable()[0]; return push_with(L, name, std::move(u.value)); } }; template <> struct pusher { static int push(lua_State* L, userdata_value data) { void** ud = detail::usertype_allocate_pointer(L); *ud = data.value; return 1; } }; template <> struct pusher { static int push_sized(lua_State* L, const char* str, std::size_t len) { lua_pushlstring(L, str, len); return 1; } static int push(lua_State* L, const char* str) { if (str == nullptr) return stack::push(L, lua_nil); return push_sized(L, str, std::char_traits::length(str)); } static int push(lua_State* L, const char* strb, const char* stre) { return push_sized(L, strb, stre - strb); } static int push(lua_State* L, const char* str, std::size_t len) { return push_sized(L, str, len); } }; template <> struct pusher { static int push_sized(lua_State* L, const char* str, std::size_t len) { pusher p{}; (void)p; return p.push_sized(L, str, len); } static int push(lua_State* L, const char* str) { pusher p{}; (void)p; return p.push(L, str); } static int push(lua_State* L, const char* strb, const char* stre) { pusher p{}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const char* str, std::size_t len) { pusher p{}; (void)p; return p.push(L, str, len); } }; template struct pusher { static int push(lua_State* L, const char (&str)[N]) { lua_pushlstring(L, str, N - 1); return 1; } static int push(lua_State* L, const char (&str)[N], std::size_t sz) { lua_pushlstring(L, str, sz); return 1; } }; template <> struct pusher { static int push(lua_State* L, char c) { const char str[2] = { c, '\0' }; return stack::push(L, str, 1); } }; template struct pusher> { static int push(lua_State* L, const std::basic_string& str) { lua_pushlstring(L, str.c_str(), str.size()); return 1; } static int push(lua_State* L, const std::basic_string& str, std::size_t sz) { lua_pushlstring(L, str.c_str(), sz); return 1; } }; template struct pusher> { static int push(lua_State* L, const basic_string_view& sv) { return stack::push(L, sv.data(), sv.length()); } static int push(lua_State* L, const basic_string_view& sv, std::size_t n) { return stack::push(L, sv.data(), n); } }; template <> struct pusher { static int push(lua_State* L, meta_function m) { const std::string& str = to_string(m); lua_pushlstring(L, str.c_str(), str.size()); return 1; } }; template <> struct pusher { static int push(lua_State* L, absolute_index ai) { lua_pushvalue(L, ai); return 1; } }; template <> struct pusher { static int push(lua_State* L, raw_index ri) { lua_pushvalue(L, ri); return 1; } }; template <> struct pusher { static int push(lua_State* L, ref_index ri) { lua_rawgeti(L, LUA_REGISTRYINDEX, ri); return 1; } }; template <> struct pusher { static int push(lua_State* L, const wchar_t* wstr) { return push(L, wstr, std::char_traits::length(wstr)); } static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) { return push(L, wstr, wstr + sz); } static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { if (sizeof(wchar_t) == 2) { const char16_t* sb = reinterpret_cast(strb); const char16_t* se = reinterpret_cast(stre); return stack::push(L, sb, se); } const char32_t* sb = reinterpret_cast(strb); const char32_t* se = reinterpret_cast(stre); return stack::push(L, sb, se); } }; template <> struct pusher { static int push(lua_State* L, const wchar_t* str) { pusher p{}; (void)p; return p.push(L, str); } static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { pusher p{}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const wchar_t* str, std::size_t len) { pusher p{}; (void)p; return p.push(L, str, len); } }; template <> struct pusher { static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) { char* target = start; char32_t cp = 0; for (const char16_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf16_to_code_point(strtarget, stre); if (dr.error != unicode::error_code::ok) { cp = unicode::unicode_detail::replacement; } else { cp = dr.codepoint; } auto er = unicode::code_point_to_utf8(cp); const char* utf8data = er.code_units.data(); std::memcpy(target, utf8data, er.code_units_size); target += er.code_units_size; strtarget = dr.next; } return stack::push(L, start, target); } static int push(lua_State* L, const char16_t* u16str) { return push(L, u16str, std::char_traits::length(u16str)); } static int push(lua_State* L, const char16_t* u16str, std::size_t sz) { return push(L, u16str, u16str + sz); } static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { // TODO: use new unicode methods // TODO: use new unicode methods char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE]; // if our max string space is small enough, use SBO // right off the bat std::size_t max_possible_code_units = (stre - strb) * 4; if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) { return convert_into(L, sbo, max_possible_code_units, strb, stre); } // otherwise, we must manually count/check size std::size_t needed_size = 0; for (const char16_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf16_to_code_point(strtarget, stre); auto er = unicode::code_point_to_utf8(dr.codepoint); needed_size += er.code_units_size; strtarget = dr.next; } if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) { return convert_into(L, sbo, needed_size, strb, stre); } std::string u8str("", 0); u8str.resize(needed_size); char* target = &u8str[0]; return convert_into(L, target, needed_size, strb, stre); } }; template <> struct pusher { static int push(lua_State* L, const char16_t* str) { pusher p{}; (void)p; return p.push(L, str); } static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { pusher p{}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const char16_t* str, std::size_t len) { pusher p{}; (void)p; return p.push(L, str, len); } }; template <> struct pusher { static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) { char* target = start; char32_t cp = 0; for (const char32_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf32_to_code_point(strtarget, stre); if (dr.error != unicode::error_code::ok) { cp = unicode::unicode_detail::replacement; } else { cp = dr.codepoint; } auto er = unicode::code_point_to_utf8(cp); const char* data = er.code_units.data(); std::memcpy(target, data, er.code_units_size); target += er.code_units_size; strtarget = dr.next; } return stack::push(L, start, target); } static int push(lua_State* L, const char32_t* u32str) { return push(L, u32str, u32str + std::char_traits::length(u32str)); } static int push(lua_State* L, const char32_t* u32str, std::size_t sz) { return push(L, u32str, u32str + sz); } static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { // TODO: use new unicode methods char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE]; // if our max string space is small enough, use SBO // right off the bat std::size_t max_possible_code_units = (stre - strb) * 4; if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) { return convert_into(L, sbo, max_possible_code_units, strb, stre); } // otherwise, we must manually count/check size std::size_t needed_size = 0; for (const char32_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf32_to_code_point(strtarget, stre); auto er = unicode::code_point_to_utf8(dr.codepoint); needed_size += er.code_units_size; strtarget = dr.next; } if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) { return convert_into(L, sbo, needed_size, strb, stre); } std::string u8str("", 0); u8str.resize(needed_size); char* target = &u8str[0]; return convert_into(L, target, needed_size, strb, stre); } }; template <> struct pusher { static int push(lua_State* L, const char32_t* str) { pusher p{}; (void)p; return p.push(L, str); } static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { pusher p{}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const char32_t* str, std::size_t len) { pusher p{}; (void)p; return p.push(L, str, len); } }; template struct pusher { static int push(lua_State* L, const wchar_t (&str)[N]) { return push(L, str, N - 1); } static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) { return stack::push(L, str, str + sz); } }; template struct pusher { static int push(lua_State* L, const char16_t (&str)[N]) { return push(L, str, N - 1); } static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) { return stack::push(L, str, str + sz); } }; template struct pusher { static int push(lua_State* L, const char32_t (&str)[N]) { return push(L, str, N - 1); } static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) { return stack::push(L, str, str + sz); } }; template <> struct pusher { static int push(lua_State* L, wchar_t c) { const wchar_t str[2] = { c, '\0' }; return stack::push(L, &str[0], 1); } }; template <> struct pusher { static int push(lua_State* L, char16_t c) { const char16_t str[2] = { c, '\0' }; return stack::push(L, &str[0], 1); } }; template <> struct pusher { static int push(lua_State* L, char32_t c) { const char32_t str[2] = { c, '\0' }; return stack::push(L, &str[0], 1); } }; template struct pusher, std::enable_if_t::value>> { static int push(lua_State* L, const std::basic_string& wstr) { return push(L, wstr, wstr.size()); } static int push(lua_State* L, const std::basic_string& wstr, std::size_t sz) { return stack::push(L, wstr.data(), wstr.data() + sz); } }; template struct pusher> { template static int push(std::index_sequence, lua_State* L, T&& t) { int pushcount = 0; (void)detail::swallow{ 0, (pushcount += stack::push(L, detail::forward_get(t)), 0)... }; return pushcount; } template static int push(lua_State* L, T&& t) { return push(std::index_sequence_for(), L, std::forward(t)); } }; template struct pusher> { template static int push(lua_State* L, T&& t) { int pushcount = stack::push(L, detail::forward_get<0>(t)); pushcount += stack::push(L, detail::forward_get<1>(t)); return pushcount; } }; template struct pusher> { template static int push(lua_State* L, T&& t) { if (t == nullopt) { return stack::push(L, nullopt); } return stack::push(L, static_cast::value, O&, O&&>>(t.value())); } }; template <> struct pusher { static int push(lua_State* L, nullopt_t) { return stack::push(L, lua_nil); } }; template <> struct pusher { static int push(lua_State* L, std::nullptr_t) { return stack::push(L, lua_nil); } }; template <> struct pusher { static int push(lua_State*, const this_state&) { return 0; } }; template <> struct pusher { static int push(lua_State*, const this_main_state&) { return 0; } }; template <> struct pusher { static int push(lua_State* L, const new_table& nt) { lua_createtable(L, nt.sequence_hint, nt.map_hint); return 1; } }; #ifdef SOL_CXX17_FEATURES namespace stack_detail { struct push_function { lua_State* L; push_function(lua_State* L) : L(L) { } template int operator()(T&& value) const { return stack::push(L, std::forward(value)); } }; } // namespace stack_detail template struct pusher> { static int push(lua_State* L, const std::variant& v) { return std::visit(stack_detail::push_function(L), v); } static int push(lua_State* L, std::variant&& v) { return std::visit(stack_detail::push_function(L), std::move(v)); } }; #endif // C++17 Support } } // namespace sol::stack #endif // SOL_STACK_PUSH_HPP