#define CATCH_CONFIG_MAIN #define SOL_CHECK_ARGUMENTS #include #include #include #include void test_free_func(std::function f) { f(); } void test_free_func2(std::function f, int arg1) { int val = f(arg1); if(val != arg1) throw sol::error("failed function call!"); } std::function makefn() { auto fx = []() -> int { return 0x1456789; }; return fx; } void takefn(std::function purr) { if (purr() != 0x1456789) throw 0; } std::string free_function() { std::cout << "free_function()" << std::endl; return "test"; } int overloaded(int x) { std::cout << x << std::endl; return 3; } int overloaded(int x, int y) { std::cout << x << " " << y << std::endl; return 7; } int overloaded(int x, int y, int z) { std::cout << x << " " << y << " " << z << std::endl; return 11; } int non_overloaded(int x, int y, int z) { std::cout << x << " " << y << " " << z << std::endl; return 13; } std::vector test_table_return_one() { return { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; } std::vector> test_table_return_two() { return {{ "one", 1 }, { "two", 2 }, { "three", 3 }}; } std::map test_table_return_three() { return {{ "name", "Rapptz" }, { "friend", "ThePhD" }, { "project", "sol" }}; } struct self_test { int bark; self_test() : bark(100) { } void g(const std::string& str) { std::cout << str << '\n'; bark += 1; } void f(const self_test& t) { std::cout << "got test" << '\n'; if (t.bark != bark) throw sol::error("bark values are not the same for self_test f function"); if (&t != this) throw sol::error("call does not reference self for self_test f function"); } }; struct vars { vars () { } int boop = 0; ~vars () { } }; struct object { std::string operator() () { std::cout << "member_test()" << std::endl; return "test"; } }; struct fuser { int x; fuser() : x(0) {} fuser(int x) : x(x) {} int add(int y) { return x + y; } int add2(int y) { return x + y + 2; } }; namespace crapola { struct fuser { int x; fuser() : x(0) {} fuser(int x) : x(x) {} fuser(int x, int x2) : x(x * x2) {} int add(int y) { return x + y; } int add2(int y) { return x + y + 2; } }; } // crapola int plop_xyz(int x, int y, std::string z) { std::cout << x << " " << y << " " << z << std::endl; return 11; } class Base { public: Base(int a_num) : m_num(a_num) { } int get_num() { return m_num; } protected: int m_num; }; class Derived : public Base { public: Derived(int a_num) : Base(a_num) { } int get_num_10() { return 10 * m_num; } }; struct Vec { float x, y, z; Vec(float x, float y, float z) : x{x}, y{y}, z{z} {} float length() { return sqrtf(x*x + y*y + z*z); } Vec normalized() { float invS = 1 / length(); return {x * invS, y * invS, z * invS}; } }; struct giver { int a = 0; giver () { } void gief () { a = 1; } static void stuff () { } static void gief_stuff (giver& t, int a) { t.a = a; } ~giver () { } }; TEST_CASE("simple/set", "Check if the set works properly.") { sol::state lua; lua.set("a", 9); REQUIRE_NOTHROW(lua.script("if a ~= 9 then error('wrong value') end")); lua.set("d", "hello"); REQUIRE_NOTHROW(lua.script("if d ~= 'hello' then error('expected \\'hello\\', got '.. tostring(d)) end")); lua.set("e", std::string("hello"), "f", true); REQUIRE_NOTHROW(lua.script("if d ~= 'hello' then error('expected \\'hello\\', got '.. tostring(d)) end")); REQUIRE_NOTHROW(lua.script("if f ~= true then error('wrong value') end")); } TEST_CASE("simple/get", "Tests if the get function works properly.") { sol::state lua; lua.script("a = 9"); auto a = lua.get("a"); REQUIRE(a == 9.0); lua.script("b = nil"); REQUIRE_NOTHROW(lua.get("b")); lua.script("d = 'hello'"); lua.script("e = true"); std::string d; bool e; std::tie( d, e ) = lua.get("d", "e"); REQUIRE(d == "hello"); REQUIRE(e == true); } TEST_CASE("simple/addition", "check if addition works and can be gotten through lua.get and lua.set") { sol::state lua; lua.set("b", 0.2); lua.script("c = 9 + b"); auto c = lua.get("c"); REQUIRE(c == 9.2); } TEST_CASE("simple/if", "check if if statements work through lua") { sol::state lua; std::string program = "if true then f = 0.1 else f = 'test' end"; lua.script(program); auto f = lua.get("f"); REQUIRE(f == 0.1); REQUIRE((f == lua["f"])); } TEST_CASE("simple/call_with_parameters", "Lua function is called with a few parameters from C++") { sol::state lua; REQUIRE_NOTHROW(lua.script("function my_add(i, j, k) return i + j + k end")); auto f = lua.get("my_add"); REQUIRE_NOTHROW(lua.script("function my_nothing(i, j, k) end")); auto fvoid = lua.get("my_nothing"); int a; REQUIRE_NOTHROW(fvoid(1, 2, 3)); REQUIRE_NOTHROW(a = f.call(1, 2, 3)); REQUIRE(a == 6); REQUIRE_THROWS(a = f(1, 2, "arf")); } TEST_CASE("simple/call_c++_function", "C++ function is called from lua") { sol::state lua; lua.set_function("plop_xyz", plop_xyz); lua.script("x = plop_xyz(2, 6, 'hello')"); REQUIRE(lua.get("x") == 11); } TEST_CASE("simple/call_lambda", "A C++ lambda is exposed to lua and called") { sol::state lua; int x = 0; lua.set_function("foo", [&x] { x = 1; }); lua.script("foo()"); REQUIRE(x == 1); } TEST_CASE("advanced/get_and_call", "Checks for lambdas returning values after a get operation") { const static std::string lol = "lol", str = "str"; const static std::tuple heh_tuple = std::make_tuple(1, 6.28f, 3.14, std::string("heh")); sol::state lua; REQUIRE_NOTHROW(lua.set_function("a", [] { return 42; })); REQUIRE(lua.get("a").call() == 42); REQUIRE_NOTHROW(lua.set_function("b", [] { return 42u; })); REQUIRE(lua.get("b").call() == 42u); REQUIRE_NOTHROW(lua.set_function("c", [] { return 3.14; })); REQUIRE(lua.get("c").call() == 3.14); REQUIRE_NOTHROW(lua.set_function("d", [] { return 6.28f; })); REQUIRE(lua.get("d").call() == 6.28f); REQUIRE_NOTHROW(lua.set_function("e", [] { return "lol"; })); REQUIRE(lua.get("e").call() == lol); REQUIRE_NOTHROW(lua.set_function("f", [] { return true; })); REQUIRE(lua.get("f").call()); REQUIRE_NOTHROW(lua.set_function("g", [] { return std::string("str"); })); REQUIRE(lua.get("g").call() == str); REQUIRE_NOTHROW(lua.set_function("h", [] { })); REQUIRE_NOTHROW(lua.get("h").call()); REQUIRE_NOTHROW(lua.set_function("i", [] { return sol::nil; })); REQUIRE(lua.get("i").call() == sol::nil); REQUIRE_NOTHROW(lua.set_function("j", [] { return std::make_tuple(1, 6.28f, 3.14, std::string("heh")); })); REQUIRE((lua.get("j").call() == heh_tuple)); } TEST_CASE("advanced/operator[]_calls", "Checks for lambdas returning values using operator[]") { const static std::string lol = "lol", str = "str"; const static std::tuple heh_tuple = std::make_tuple(1, 6.28f, 3.14, std::string("heh")); sol::state lua; REQUIRE_NOTHROW(lua.set_function("a", [] { return 42; })); REQUIRE(lua["a"].call() == 42); REQUIRE_NOTHROW(lua.set_function("b", [] { return 42u; })); REQUIRE(lua["b"].call() == 42u); REQUIRE_NOTHROW(lua.set_function("c", [] { return 3.14; })); REQUIRE(lua["c"].call() == 3.14); REQUIRE_NOTHROW(lua.set_function("d", [] { return 6.28f; })); REQUIRE(lua["d"].call() == 6.28f); REQUIRE_NOTHROW(lua.set_function("e", [] { return "lol"; })); REQUIRE(lua["e"].call() == lol); REQUIRE_NOTHROW(lua.set_function("f", [] { return true; })); REQUIRE(lua["f"].call()); REQUIRE_NOTHROW(lua.set_function("g", [] { return std::string("str"); })); REQUIRE(lua["g"].call() == str); REQUIRE_NOTHROW(lua.set_function("h", [] { })); REQUIRE_NOTHROW(lua["h"].call()); REQUIRE_NOTHROW(lua.set_function("i", [] { return sol::nil; })); REQUIRE(lua["i"].call() == sol::nil); REQUIRE_NOTHROW(lua.set_function("j", [] { return std::make_tuple(1, 6.28f, 3.14, std::string("heh")); })); REQUIRE((lua["j"].call() == heh_tuple)); } TEST_CASE("advanced/call_lambdas", "A C++ lambda is exposed to lua and called") { sol::state lua; int x = 0; lua.set_function("set_x", [&] (int new_x) { x = new_x; return 0; }); lua.script("set_x(9)"); REQUIRE(x == 9); } TEST_CASE("negative/basic_errors", "Check if error handling works correctly") { sol::state lua; REQUIRE_THROWS(lua.script("nil[5]")); } TEST_CASE("libraries", "Check if we can open libraries") { sol::state lua; REQUIRE_NOTHROW(lua.open_libraries(sol::lib::base, sol::lib::os)); } TEST_CASE("tables/variables", "Check if tables and variables work as intended") { sol::state lua; lua.open_libraries(sol::lib::base, sol::lib::os); lua.get("os").set("name", "windows"); REQUIRE_NOTHROW(lua.script("assert(os.name == \"windows\")")); } TEST_CASE("tables/functions_variables", "Check if tables and function calls work as intended") { sol::state lua; lua.open_libraries(sol::lib::base, sol::lib::os); auto run_script = [] (sol::state& lua) -> void { lua.script("assert(os.fun() == \"test\")"); }; lua.get("os").set_function("fun", [] () { std::cout << "stateless lambda()" << std::endl; return "test"; } ); REQUIRE_NOTHROW(run_script(lua)); lua.get("os").set_function("fun", &free_function); REQUIRE_NOTHROW(run_script(lua)); // l-value, canNOT optimise // prefer value semantics unless wrapped with std::reference_wrapper { auto lval = object(); lua.get("os").set_function("fun", &object::operator(), lval); } REQUIRE_NOTHROW(run_script(lua)); auto reflval = object(); lua.get("os").set_function("fun", &object::operator(), std::ref(reflval)); REQUIRE_NOTHROW(run_script(lua)); // stateful lambda: non-convertible, cannot be optimised int breakit = 50; lua.get("os").set_function("fun", [&breakit] () { std::cout << "stateful lambda()" << std::endl; return "test"; } ); REQUIRE_NOTHROW(run_script(lua)); // r-value, cannot optimise lua.get("os").set_function("fun", &object::operator(), object()); REQUIRE_NOTHROW(run_script(lua)); // r-value, cannot optimise auto rval = object(); lua.get("os").set_function("fun", &object::operator(), std::move(rval)); REQUIRE_NOTHROW(run_script(lua)); } TEST_CASE("functions/overloaded", "Check if overloaded function resolution templates compile/work") { sol::state lua; lua.open_libraries(sol::lib::base); lua.set_function("non_overloaded", non_overloaded); REQUIRE_NOTHROW(lua.script("x = non_overloaded(1, 2, 3)\nprint(x)")); /* // Cannot reasonably support: clang++ refuses to try enough // deductions to make this work lua.set_function("overloaded", overloaded); REQUIRE_NOTHROW(lua.script("print(overloaded(1))")); lua.set_function("overloaded", overloaded); REQUIRE_NOTHROW(lua.script("print(overloaded(1, 2))")); lua.set_function("overloaded", overloaded); REQUIRE_NOTHROW(lua.script("print(overloaded(1, 2, 3))")); */ lua.set_function("overloaded", overloaded); REQUIRE_NOTHROW(lua.script("print(overloaded(1))")); lua.set_function("overloaded", overloaded); REQUIRE_NOTHROW(lua.script("print(overloaded(1, 2))")); lua.set_function("overloaded", overloaded); REQUIRE_NOTHROW(lua.script("print(overloaded(1, 2, 3))")); } TEST_CASE("functions/return_order_and_multi_get", "Check if return order is in the same reading order specified in Lua") { const static std::tuple triple = std::make_tuple(10, 11, 12); const static std::tuple paired = std::make_tuple(10, 10.f); sol::state lua; lua.set_function("f", [] { return std::make_tuple(10, 11, 12); } ); int a = 0; lua.set_function( "h", []() { return std::make_tuple( 10, 10.0f ); } ); lua.script("function g() return 10, 11, 12 end\nx,y,z = g()"); auto tcpp = lua.get("f").call(); auto tlua = lua.get( "g" ).call(); auto tcpp2 = lua.get( "h" ).call(); auto tluaget = lua.get( "x", "y", "z" ); REQUIRE(tcpp == triple); REQUIRE(tlua == triple); REQUIRE(tluaget == triple); REQUIRE(tcpp2 == paired); } TEST_CASE("functions/deducing_return_order_and_multi_get", "Check if return order is in the same reading order specified in Lua, with regular deducing calls") { const static std::tuple triple = std::make_tuple(10, 11, 12); sol::state lua; lua.set_function( "f_string", []() { return "this is a string!"; } ); sol::function f_string = lua[ "f_string" ]; // Make sure there are no overload collisions / compiler errors for automatic string conversions std::string f_string_result = f_string(); REQUIRE(f_string_result == "this is a string!"); f_string_result = f_string(); REQUIRE(f_string_result == "this is a string!"); lua.set_function("f", [] { return std::make_tuple(10, 11, 12); }); lua.script("function g() return 10, 11, 12 end\nx,y,z = g()"); std::tuple tcpp = lua.get("f")(); std::tuple tlua = lua.get("g")(); std::tuple tluaget = lua.get("x", "y", "z"); std::cout << "cpp: " << std::get<0>(tcpp) << ',' << std::get<1>(tcpp) << ',' << std::get<2>(tcpp) << std::endl; std::cout << "lua: " << std::get<0>(tlua) << ',' << std::get<1>(tlua) << ',' << std::get<2>(tlua) << std::endl; std::cout << "lua xyz: " << lua.get("x") << ',' << lua.get("y") << ',' << lua.get("z") << std::endl; REQUIRE(tcpp == triple); REQUIRE(tlua == triple); REQUIRE(tluaget == triple); } TEST_CASE("functions/sol::function to std::function", "check if conversion to std::function works properly and calls with correct arguments") { sol::state lua; lua.open_libraries(sol::lib::base); lua.set_function("testFunc", test_free_func); lua.set_function("testFunc2", test_free_func2); lua.script( "testFunc(function() print(\"hello std::function\") end)" ); lua.script( "function m(a)\n" " print(\"hello std::function with arg \", a)\n" " return a\n" "end\n" "\n" "testFunc2(m, 1)" ); } TEST_CASE("functions/returning functions from C++ and getting in lua", "check to see if returning a functor and getting a functor from lua is possible") { sol::state lua; lua.open_libraries(sol::lib::base); lua.set_function("makefn", makefn); lua.set_function("takefn", takefn); lua.script("afx = makefn()\n" "print(afx())\n" "takefn(afx)\n"); } TEST_CASE("tables/operator[]", "Check if operator[] retrieval and setting works properly") { sol::state lua; lua.open_libraries(sol::lib::base); lua.script("foo = 20\nbar = \"hello world\""); // basic retrieval std::string bar = lua["bar"]; int foo = lua["foo"]; REQUIRE(bar == "hello world"); REQUIRE(foo == 20); // test operator= for stringification // errors due to ambiguous operators bar = lua["bar"]; // basic setting lua["bar"] = 20.4; lua["foo"] = "goodbye"; // doesn't modify the actual values obviously. REQUIRE(bar == "hello world"); REQUIRE(foo == 20); // function setting lua["test"] = plop_xyz; REQUIRE_NOTHROW(lua.script("assert(test(10, 11, \"hello\") == 11)")); // function retrieval sol::function test = lua["test"]; REQUIRE(test.call(10, 11, "hello") == 11); // setting a lambda lua["lamb"] = [](int x) { return x * 2; }; REQUIRE_NOTHROW(lua.script("assert(lamb(220) == 440)")); // function retrieval of a lambda sol::function lamb = lua["lamb"]; REQUIRE(lamb.call(220) == 440); // test const table retrieval auto assert1 = [](const sol::table& t) { std::string a = t["foo"]; int b = t["bar"]; std::cout << a << ',' << b << '\n'; }; REQUIRE_NOTHROW(assert1(lua.global())); } TEST_CASE("tables/usertype", "Show that we can create classes from usertype and use them") { sol::state lua; sol::usertype lc{ "add", &fuser::add, "add2", &fuser::add2 }; lua.set_usertype(lc); lua.script("a = fuser:new()\n" "b = a:add(1)\n" "c = a:add2(1)\n"); sol::object a = lua.get("a"); sol::object b = lua.get("b"); sol::object c = lua.get("c"); REQUIRE((a.is())); auto atype = a.get_type(); auto btype = b.get_type(); auto ctype = c.get_type(); REQUIRE((atype == sol::type::userdata)); REQUIRE((btype == sol::type::number)); REQUIRE((ctype == sol::type::number)); int bresult = b.as(); int cresult = c.as(); REQUIRE(bresult == 1); REQUIRE(cresult == 3); } TEST_CASE("tables/usertype constructors", "Show that we can create classes from usertype and use them with multiple constructors") { sol::state lua; sol::constructors, sol::types, sol::types> con; sol::usertype lc(con, "add", &crapola::fuser::add, "add2", &crapola::fuser::add2); lua.set_usertype(lc); lua.script( "a = crapola_fuser.new(2)\n" "u = a:add(1)\n" "v = a:add2(1)\n" "b = crapola_fuser:new()\n" "w = b:add(1)\n" "x = b:add2(1)\n" "c = crapola_fuser.new(2, 3)\n" "y = c:add(1)\n" "z = c:add2(1)\n"); sol::object a = lua.get("a"); auto atype = a.get_type(); REQUIRE((atype == sol::type::userdata)); sol::object u = lua.get("u"); sol::object v = lua.get("v"); REQUIRE((u.as() == 3)); REQUIRE((v.as() == 5)); sol::object b = lua.get("b"); auto btype = b.get_type(); REQUIRE((btype == sol::type::userdata)); sol::object w = lua.get("w"); sol::object x = lua.get("x"); REQUIRE((w.as() == 1)); REQUIRE((x.as() == 3)); sol::object c = lua.get("c"); auto ctype = c.get_type(); REQUIRE((ctype == sol::type::userdata)); sol::object y = lua.get("y"); sol::object z = lua.get("z"); REQUIRE((y.as() == 7)); REQUIRE((z.as() == 9)); } TEST_CASE("tables/usertype utility", "Show internal management of classes registered through new_usertype") { sol::state lua; lua.new_usertype("fuser", "add", &fuser::add, "add2", &fuser::add2); lua.script("a = fuser.new()\n" "b = a:add(1)\n" "c = a:add2(1)\n"); sol::object a = lua.get("a"); sol::object b = lua.get("b"); sol::object c = lua.get("c"); REQUIRE((a.is())); auto atype = a.get_type(); auto btype = b.get_type(); auto ctype = c.get_type(); REQUIRE((atype == sol::type::userdata)); REQUIRE((btype == sol::type::number)); REQUIRE((ctype == sol::type::number)); int bresult = b.as(); int cresult = c.as(); REQUIRE(bresult == 1); REQUIRE(cresult == 3); } TEST_CASE("tables/usertype utility derived", "usertype classes must play nice when a derived class does not overload a publically visible base function") { sol::state lua; lua.open_libraries(sol::lib::base); sol::constructors> basector; sol::usertype baseusertype(basector, "get_num", &Base::get_num); lua.set_usertype(baseusertype); lua.script("base = Base.new(5)"); REQUIRE_NOTHROW(lua.script("print(base:get_num())")); /*sol::constructors> derivedctor; sol::usertype derivedusertype(derivedctor, "get_num_10", &Derived::get_num_10, "get_num", &Derived::get_num ); lua.set_usertype(derivedusertype); lua.script("derived = Derived.new(7)"); Derived& derived = lua["derived"]; lua.script("dgn = derived:get_num()\n" "print(dgn)"); lua.script("dgn10 = derived:get_num_10()\n" "print(dgn10)"); REQUIRE((lua.get("dgn10") == 70)); REQUIRE((lua.get("dgn") == 7));*/ } TEST_CASE("tables/self-referential usertype", "usertype classes must play nice when C++ object types are requested for C++ code") { sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("test", "g", &self_test::g, "f", &self_test::f); lua.script( "local a = test.new()\n" "a:g(\"woof\")\n" "a:f(a)\n" ); } TEST_CASE("tables/arbitrary-creation", "tables should be created from standard containers") { sol::state lua; lua.open_libraries(sol::lib::base); lua.set_function("test_one", test_table_return_one); lua.set_function("test_two", test_table_return_two); lua.set_function("test_three", test_table_return_three); REQUIRE_NOTHROW(lua.script("a = test_one()")); REQUIRE_NOTHROW(lua.script("b = test_two()")); REQUIRE_NOTHROW(lua.script("c = test_three()")); REQUIRE_NOTHROW(lua.script("assert(#a == 10, 'error')")); REQUIRE_NOTHROW(lua.script("assert(a[3] == 3, 'error')")); REQUIRE_NOTHROW(lua.script("assert(b.one == 1, 'error')")); REQUIRE_NOTHROW(lua.script("assert(b.three == 3, 'error')")); REQUIRE_NOTHROW(lua.script("assert(c.name == 'Rapptz', 'error')")); REQUIRE_NOTHROW(lua.script("assert(c.project == 'sol', 'error')")); auto&& a = lua.get("a"); auto&& b = lua.get("b"); auto&& c = lua.get("c"); REQUIRE(a.size() == 10ULL); REQUIRE(a.get(3) == 3); REQUIRE(b.get("one") == 1); REQUIRE(b.get("three") == 3); REQUIRE(c.get("name") == "Rapptz"); REQUIRE(c.get("project") == "sol"); } TEST_CASE("tables/for_each", "Testing the use of for_each to get values from a lua table") { sol::state lua; lua.open_libraries(sol::lib::base); lua.script("arr = {\n" "[0] = \"Hi\",\n" "[1] = 123.45,\n" "[2] = \"String value\",\n" // Does nothing //"[3] = nil,\n" //"[nil] = 3,\n" "[\"WOOF\"] = 123,\n" "}"); sol::table tbl = lua[ "arr" ]; std::size_t tablesize = 4; std::size_t iterations = 0; tbl.for_each( [&iterations](sol::object key, sol::object value) { ++iterations; sol::type keytype = key.get_type(); switch (keytype) { case sol::type::number: switch (key.as()) { case 0: REQUIRE((value.as() == "Hi")); break; case 1: REQUIRE((value.as() == 123.45)); break; case 2: REQUIRE((value.as() == "String value")); break; case 3: REQUIRE((value.is())); break; } break; case sol::type::string: if (key.as() == "WOOF") { REQUIRE((value.as() == 123)); } break; case sol::type::nil: REQUIRE((value.as() == 3)); break; default: break; } } ); REQUIRE(iterations == tablesize); } TEST_CASE("tables/issue-number-twenty-five", "Using pointers and references from C++ classes in Lua") { struct test { int x = 0; test& set() { x = 10; return *this; } int get() { return x; } test* pget() { return this; } test create_get() { return *this; } int fun(int xa) { return xa * 10; } }; sol::state lua; lua.open_libraries(sol::lib::base); lua.new_usertype("test", "set", &test::set, "get", &test::get, "pointer_get", &test::pget, "fun", &test::fun, "create_get", &test::create_get); REQUIRE_NOTHROW(lua.script("x = test.new()")); REQUIRE_NOTHROW(lua.script("assert(x:set():get() == 10)")); REQUIRE_NOTHROW(lua.script("y = x:pointer_get()")); REQUIRE_NOTHROW(lua.script("y:set():get()")); REQUIRE_NOTHROW(lua.script("y:fun(10)")); REQUIRE_NOTHROW(lua.script("x:fun(10)")); REQUIRE_NOTHROW(lua.script("assert(y:fun(10) == x:fun(10), '...')")); REQUIRE_NOTHROW(lua.script("assert(y:fun(10) == 100, '...')")); REQUIRE_NOTHROW(lua.script("assert(y:set():get() == y:set():get(), '...')")); REQUIRE_NOTHROW(lua.script("assert(y:set():get() == 10, '...')")); } TEST_CASE("usertype/issue-number-thirty-five", "using value types created from lua-called C++ code, fixing user-defined types with constructors") { sol::state lua; lua.open_libraries(sol::lib::base); sol::constructors> ctor; sol::usertype udata(ctor, "normalized", &Vec::normalized, "length", &Vec::length); lua.set_usertype(udata); REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n" "print(v:length())")); REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n" "print(v:normalized():length())" )); } TEST_CASE("usertype/lua-stored-usertype", "ensure usertype values can be stored without keeping usertype object alive") { sol::state lua; lua.open_libraries(sol::lib::base); { sol::constructors> ctor; sol::usertype udata(ctor, "normalized", &Vec::normalized, "length", &Vec::length); lua.set_usertype(udata); // usertype dies, but still usable in lua! } REQUIRE_NOTHROW(lua.script("collectgarbage()\n" "v = Vec.new(1, 2, 3)\n" "print(v:length())")); REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n" "print(v:normalized():length())" )); } TEST_CASE("usertype/member-variables", "allow table-like accessors to behave as member variables for usertype") { sol::state lua; lua.open_libraries(sol::lib::base); sol::constructors> ctor; sol::usertype udata(ctor, "x", &Vec::x, "y", &Vec::y, "z", &Vec::z, "normalized", &Vec::normalized, "length", &Vec::length); lua.set_usertype(udata); REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n" "v2 = Vec.new(0, 1, 0)\n" "print(v:length())\n" "v.x = 2\n" "v2.y = 2\n" "print(v.x, v.y, v.z)\n" "print(v2.x, v2.y, v2.z)\n" "assert(v.x == 2)\n" "assert(v2.x == 0)\n" "assert(v2.y == 2)\n" "v.x = 3\n" "local x = v.x\n" "assert(x == 3)\n" )); } TEST_CASE("usertype/nonmember functions implement functionality", "let users set non-member functions that take unqualified T as first parameter to usertype") { sol::state lua; lua.open_libraries( sol::lib::base ); lua.new_usertype( "giver", "gief_stuff", giver::gief_stuff, "gief", &giver::gief, "__tostring", [](const giver& t) { return std::to_string(t.a) + ": giving value"; } ).get( "giver" ) .set_function( "stuff", giver::stuff ); REQUIRE_NOTHROW(lua.script("giver.stuff()")); REQUIRE_NOTHROW(lua.script("t = giver.new()\n" "print(tostring(t))\n" "t:gief()\n" "t:gief_stuff(20)\n")); REQUIRE((lua.get("t").a == 20)); } TEST_CASE("regressions/one", "issue number 48") { sol::state lua; lua.new_usertype("vars", "boop", &vars::boop); REQUIRE_NOTHROW(lua.script("beep = vars.new()\n" "beep.boop = 1")); // test for segfault auto my_var = lua.get("beep"); REQUIRE(my_var.boop == 1); auto* ptr = &my_var; REQUIRE(ptr->boop == 1); } TEST_CASE("references/get-set", "properly get and set with std::ref semantics. Note that to get, we must not use Unqualified on the type...") { sol::state lua; lua.new_usertype("vars", "boop", &vars::boop); vars var{}; vars rvar{}; lua.set("beep", var); lua.set("rbeep", std::ref(rvar)); auto& my_var = lua.get("beep"); auto& ref_var = lua.get>("rbeep"); vars& proxy_my_var = lua["beep"]; std::reference_wrapper proxy_ref_var = lua["rbeep"]; var.boop = 2; rvar.boop = 5; // Was return as a value: var must be diferent from "beep" REQUIRE_FALSE(std::addressof(var) == std::addressof(my_var)); REQUIRE_FALSE(std::addressof(proxy_my_var) == std::addressof(var)); REQUIRE((my_var.boop == 0)); REQUIRE(var.boop != my_var.boop); REQUIRE(std::addressof(ref_var) == std::addressof(rvar)); //REQUIRE(std::addressof(proxy_ref_var.get()) == std::addressof(rvar)); REQUIRE(rvar.boop == 5); REQUIRE(rvar.boop == ref_var.boop); } TEST_CASE("interop/null-to-nil-and-back", "nil should be the given type when a pointer from C++ is returned as nullptr, and nil should result in nullptr in connected C++ code") { sol::state lua; lua.open_libraries(sol::lib::base); lua.set_function("lol", []() -> int* { return nullptr; }); lua.set_function("rofl", [](int* x) { std::cout << x << std::endl; }); REQUIRE_NOTHROW(lua.script("x = lol()\n" "rofl(x)\n" "assert(x == nil)")); } TEST_CASE( "functions/function_result-protected_function", "Function result should be the beefy return type for sol::function that allows for error checking and error handlers" ) { sol::state lua; lua.open_libraries( sol::lib::base, sol::lib::debug ); static const char errormessage1[] = "true error message"; static const char errormessage2[] = "doodle"; // Some function; just using a lambda to be cheap auto doom = []() { // Bypasses handler function: puts information directly into lua error throw std::runtime_error( errormessage1 ); }; auto luadoom = [&lua]() { // Does not bypass error function, will call it luaL_error( lua.lua_state(), "BIG ERROR MESSAGES!" ); }; auto specialhandler = []( std::string message ) { return errormessage2; }; lua.set_function( "doom", doom ); lua.set_function( "luadoom", luadoom ); lua.set_function( "cpphandler", specialhandler ); lua.script( std::string( "function handler ( message )" ) + " return '" + errormessage2 + "'" + "end" ); sol::protected_function func = lua[ "doom" ]; sol::protected_function luafunc = lua[ "luadoom" ]; sol::function luahandler = lua[ "handler" ]; sol::function cpphandler = lua[ "cpphandler" ]; func.error_handler = luahandler; luafunc.error_handler = cpphandler; sol::function_result result1 = func(); int test = lua_gettop(lua.lua_state()); REQUIRE(!result1.valid()); std::string errorstring = result1; REQUIRE(errorstring == errormessage1); sol::function_result result2 = luafunc(); REQUIRE(!result2.valid()); errorstring = result2; REQUIRE(errorstring == errormessage2); } TEST_CASE("functions/destructor-tests", "Show that proper copies / destruction happens") { static int created = 0; static int destroyed = 0; static void* last_call = nullptr; static void* static_call = reinterpret_cast(0x01); typedef void(* fptr)(); struct x { x() {++created;} x(const x&) {++created;} x(x&&) {++created;} x& operator=(const x&) {++created; return *this;} x& operator=(x&&) {++created; return *this;} void func() {last_call = static_cast(this);}; ~x () {++destroyed;} }; struct y { y() {++created;} y(const x&) {++created;} y(x&&) {++created;} y& operator=(const x&) {return *this;} y& operator=(x&&) {return *this;} static void func() {last_call = static_call;}; void operator()() {func();} operator fptr () { return func; } ~y () {++destroyed;} }; // stateful functors/member functions should always copy unless specified { created = 0; destroyed = 0; last_call = nullptr; { sol::state lua; x x1; lua.set_function("x1copy", &x::func, x1); lua.script("x1copy()"); REQUIRE(created == 2); REQUIRE(destroyed == 0); REQUIRE_FALSE(last_call == &x1); lua.set_function("x1ref", &x::func, std::ref(x1)); lua.script("x1ref()"); REQUIRE(created == 2); REQUIRE(destroyed == 0); REQUIRE(last_call == &x1); } REQUIRE(created == 2); REQUIRE(destroyed == 2); REQUIRE(created == destroyed); } // things convertible to a static function should _never_ be forced to make copies // therefore, pass through untouched { created = 0; destroyed = 0; last_call = nullptr; { sol::state lua; y y1; lua.set_function("y1copy", y1); lua.script("y1copy()"); REQUIRE(created == 1); REQUIRE(destroyed == 0); REQUIRE(last_call == static_call); last_call = nullptr; lua.set_function("y1ref", std::ref(y1)); lua.script("y1ref()"); REQUIRE(created == 1); REQUIRE(destroyed == 0); REQUIRE(last_call == static_call); } REQUIRE(created == 1); REQUIRE(destroyed == 1); REQUIRE(created == destroyed); } } TEST_CASE("usertype/destructor-tests", "Show that proper copies / destruction happens") { static int created = 0; static int destroyed = 0; static void* last_call = nullptr; struct x { x() {++created;} ~x () {++destroyed;} }; { sol::state lua; x x1; x x2; lua.set("x1copy", x1, "x2copy", x2, "x1ref", std::ref(x1)); x& x1copyref = lua["x1copy"]; x& x2copyref = lua["x2copy"]; x& x1ref = lua["x1ref"]; REQUIRE(created == 4); REQUIRE(destroyed == 0); REQUIRE_FALSE(last_call == &x1); REQUIRE(std::addressof(x1) == std::addressof(x1ref)); } REQUIRE(created == 4); REQUIRE(destroyed == 4); REQUIRE(created == destroyed); }