// The MIT License (MIT) // Copyright (c) 2013-2016 Rapptz, ThePhD and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_USERTYPE_HPP #define SOL_USERTYPE_HPP #include "state.hpp" #include "function_types.hpp" #include "usertype_traits.hpp" #include "inheritance.hpp" #include "raii.hpp" #include "deprecate.hpp" #include #include #include #include namespace sol { const std::array meta_variable_names = { { "__index", "__newindex", } }; const std::array meta_function_names = { { "new", "__index", "__newindex", "__mode", "__call", "__metatable", "__tostring", "__len", "__unm", "__add", "__sub", "__mul", "__div", "__mod", "__pow", "__concat", "__eq", "__lt", "__le", "__gc", "__call", } }; enum class meta_function { construct, index, new_index, mode, call, metatable, to_string, length, unary_minus, addition, subtraction, multiplication, division, modulus, power_of, involution = power_of, concatenation, equal_to, less_than, less_than_or_equal_to, garbage_collect, call_function, }; namespace usertype_detail { struct add_destructor_tag {}; struct check_destructor_tag {}; struct verified_tag {} const verified {}; template struct is_constructor : std::false_type {}; template struct is_constructor> : std::true_type {}; template struct is_constructor> : std::true_type {}; template using has_constructor = meta::Or>...>; template struct is_destructor : std::false_type {}; template struct is_destructor> : std::true_type {}; template using has_destructor = meta::Or>...>; enum class stage { normalmeta, refmeta, uniquemeta, }; template inline void push_metatable(lua_State* L, bool needsindexfunction, std::vector>& funcs, std::vector& functable, std::vector& metafunctable, void* baseclasscheck, void* baseclasscast) { static const auto& gcname = meta_function_names[static_cast(meta_function::garbage_collect)]; luaL_newmetatable(L, &usertype_traits::metatable[0]); int metatableindex = lua_gettop(L); if (baseclasscheck != nullptr) { stack::push(L, light_userdata_value(baseclasscheck)); lua_setfield(L, metatableindex, &detail::base_class_check_key[0]); } if (baseclasscast != nullptr) { stack::push(L, light_userdata_value(baseclasscast)); lua_setfield(L, metatableindex, &detail::base_class_cast_key[0]); } if (funcs.size() < 1 && metafunctable.size() < 2) { return; } // Metamethods directly on the metatable itself int metaup = stack::stack_detail::push_upvalues(L, funcs); switch (metastage) { case stage::uniquemeta: { if (gcname != metafunctable.back().name) { metafunctable.push_back({ "__gc", nullptr }); } luaL_Reg& target = metafunctable.back(); luaL_Reg old = target; target.func = detail::unique_destruct; metafunctable.push_back({nullptr, nullptr}); luaL_setfuncs(L, metafunctable.data(), metaup); metafunctable.pop_back(); target = old; break; } case stage::refmeta: if (gcname == metafunctable.back().name) { // We can just "clip" out the __gc function, // which we always put as the last entry in the meta function table. luaL_Reg& target = metafunctable.back(); luaL_Reg old = target; target = { nullptr, nullptr }; luaL_setfuncs(L, metafunctable.data(), metaup); target = old; } break; case stage::normalmeta: default: metafunctable.push_back({nullptr, nullptr}); luaL_setfuncs(L, metafunctable.data(), metaup); metafunctable.pop_back(); break; } if (needsindexfunction) { // We don't need to do anything more // since we've already bound the __index field using // setfuncs above... return; } // Otherwise, we use quick, fast table indexing for methods // gives us performance boost in calling them lua_createtable(L, 0, static_cast(functable.size())); int up = stack::stack_detail::push_upvalues(L, funcs); functable.push_back({nullptr, nullptr}); luaL_setfuncs(L, functable.data(), up); functable.pop_back(); lua_setfield(L, metatableindex, "__index"); return; } template inline void set_global_deleter(lua_State* L, lua_CFunction cleanup, Functions&& functions) { // Automatic deleter table -- stays alive until lua VM dies // even if the user calls collectgarbage(), weirdly enough lua_createtable(L, 0, 0); // global table that sits at toplevel lua_createtable(L, 0, 1); // metatable for the global table int up = stack::stack_detail::push_upvalues(L, functions); stack::set_field(L, "__gc", c_closure(cleanup, up)); lua_setmetatable(L, -2); // gctable name by default has ♻ part of it lua_setglobal(L, &usertype_traits::gc_table[0]); } } // usertype_detail template class usertype { private: typedef std::map> function_map_t; std::vector functionnames; std::vector> functions; std::vector functiontable; std::vector metafunctiontable; function_detail::base_function* indexfunc; function_detail::base_function* newindexfunc; function_map_t indexwrapper, newindexwrapper; lua_CFunction constructfunc; const char* destructfuncname; lua_CFunction destructfunc; lua_CFunction functiongcfunc; bool needsindexfunction; void* baseclasscheck; void* baseclasscast; template std::unique_ptr make_function(const std::string&, overload_set func) { return std::make_unique>(std::move(func.set)); } template std::unique_ptr make_function(const std::string&, constructor_wrapper func) { return std::make_unique>(std::move(func.set)); } template std::unique_ptr make_function(const std::string&, Ret(*func)(Arg, Args...)) { typedef meta::Unqualified> Argu; static_assert(std::is_base_of::value, "Any non-member-function must have a first argument which is covariant with the desired userdata type."); typedef std::decay_t function_type; return std::make_unique>(func); } template std::unique_ptr make_variable_function(std::true_type, const std::string&, Ret Base::* func) { static_assert(std::is_base_of::value, "Any registered function must be part of the class"); typedef std::decay_t function_type; return std::make_unique>(func); } template std::unique_ptr make_variable_function(std::false_type, const std::string&, Ret Base::* func) { static_assert(std::is_base_of::value, "Any registered function must be part of the class"); typedef std::decay_t function_type; return std::make_unique>(func); } template std::unique_ptr make_function(const std::string& name, Ret Base::* func) { typedef std::decay_t function_type; return make_variable_function(std::is_member_object_pointer(), name, func); } template std::unique_ptr make_function(const std::string&, Fx&& func) { typedef meta::Unqualified Fxu; typedef meta::tuple_element_t<0, typename meta::function_traits::args_tuple_type> Arg0; typedef meta::Unqualified> Argu; static_assert(std::is_base_of::value, "Any non-member-function must have a first argument which is covariant with the desired usertype."); typedef std::decay_t function_type; return std::make_unique>(func); } template void build_function(std::string funcname, constructors) { functionnames.push_back(std::move(funcname)); std::string& name = functionnames.back(); // Insert bubble to keep with compile-time argument count (simpler and cheaper to do) functions.push_back(nullptr); constructfunc = function_detail::construct; metafunctiontable.push_back({ name.c_str(), constructfunc }); } template void build_function(std::string funcname, destructor_wrapper) { auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), funcname); if (metamethodfind == meta_function_names.end()) throw error("cannot set destructor to anything but the metamethod \"__gc\""); meta_function metafunction = static_cast(metamethodfind - meta_function_names.begin()); if (metafunction != meta_function::garbage_collect) throw error("cannot set destructor to anything but the metamethod \"__gc\""); functionnames.push_back(std::move(funcname)); std::string& name = functionnames.back(); destructfunc = function_detail::destruct; destructfuncname = name.c_str(); // Insert bubble to stay with the compile-time count functions.push_back(nullptr); } template void build_function(std::string funcname, destructor_wrapper dx) { auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), funcname); if (metamethodfind == meta_function_names.end()) throw error("cannot set destructor to anything but the metamethod \"__gc\""); meta_function metafunction = static_cast(metamethodfind - meta_function_names.begin()); if (metafunction != meta_function::garbage_collect) throw error("cannot set destructor to anything but the metamethod \"__gc\""); functionnames.push_back(std::move(funcname)); std::string& name = functionnames.back(); auto baseptr = make_function(name, std::move(dx.fx)); functions.emplace_back(std::move(baseptr)); destructfunc = function_detail::usertype_call; destructfuncname = name.c_str(); } template void build_function(std::string funcname, Fx&& func) { typedef std::is_member_object_pointer> is_variable; functionnames.push_back(std::move(funcname)); std::string& name = functionnames.back(); auto baseptr = make_function(name, std::forward(func)); functions.emplace_back(std::move(baseptr)); auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), name); if (metamethodfind != meta_function_names.end()) { metafunctiontable.push_back({ name.c_str(), function_detail::usertype_call }); meta_function metafunction = static_cast(metamethodfind - meta_function_names.begin()); switch (metafunction) { case meta_function::garbage_collect: destructfuncname = name.c_str(); destructfunc = function_detail::usertype_call; return; case meta_function::index: indexfunc = functions.back().get(); needsindexfunction = true; break; case meta_function::new_index: newindexfunc = functions.back().get(); break; case meta_function::construct: constructfunc = function_detail::usertype_call; break; default: break; } return; } if (is_variable::value) { needsindexfunction = true; indexwrapper.insert({ name, { false, functions.back().get() } }); newindexwrapper.insert({ name, { false, functions.back().get() } }); return; } indexwrapper.insert({ name, { true, functions.back().get() } }); functiontable.push_back({ name.c_str(), function_detail::usertype_call }); } template void build_function_tables(std::string funcname, Fx&& func, Args&&... args) { build_function(std::move(funcname), std::forward(func)); build_function_tables(std::forward(args)...); } template void build_function_tables(meta_function metafunc, Fx&& func, Args&&... args) { std::size_t idx = static_cast(metafunc); const std::string& funcname = meta_function_names[idx]; build_function_tables(funcname, std::forward(func), std::forward(args)...); } template void build_function_tables(base_classes_tag, bases, Args&&... args) { build_function_tables(std::forward(args)...); if (sizeof...(Bases) < 1) return; #ifndef SOL_NO_EXCEPTIONS static_assert(sizeof(void*) <= sizeof(detail::throw_cast), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report."); baseclasscast = (void*)&detail::throw_as; #elif !defined(SOL_NO_RTTI) static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report."); static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report."); baseclasscheck = (void*)&detail::inheritance::check; baseclasscast = (void*)&detail::inheritance::cast; #else static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report."); static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report."); baseclasscheck = (void*)&detail::inheritance::check; baseclasscast = (void*)&detail::inheritance::cast; #endif // No Runtime Type Information vs. Throw-Style Inheritance } template void build_function_tables() { int variableend = 0; if (!indexwrapper.empty()) { functions.push_back(std::make_unique("__index", indexfunc, std::move(indexwrapper))); metafunctiontable.push_back({ "__index", function_detail::usertype_call }); ++variableend; } if (!newindexwrapper.empty()) { functions.push_back(std::make_unique("__newindex", newindexfunc, std::move(newindexwrapper))); metafunctiontable.push_back({ "__newindex", indexwrapper.empty() ? function_detail::usertype_call : function_detail::usertype_call }); ++variableend; } if (destructfunc != nullptr) { metafunctiontable.push_back({ destructfuncname, destructfunc }); } switch (variableend) { case 2: functiongcfunc = function_detail::usertype_gc; break; case 1: functiongcfunc = function_detail::usertype_gc; break; case 0: functiongcfunc = function_detail::usertype_gc; break; } } template usertype(usertype_detail::verified_tag, Args&&... args) : indexfunc(nullptr), newindexfunc(nullptr), constructfunc(nullptr), destructfunc(nullptr), functiongcfunc(nullptr), needsindexfunction(false), baseclasscheck(nullptr), baseclasscast(nullptr) { functionnames.reserve(sizeof...(args)+3); functiontable.reserve(sizeof...(args)+3); metafunctiontable.reserve(sizeof...(args)+3); build_function_tables<0>(std::forward(args)...); } template usertype(usertype_detail::add_destructor_tag, Args&&... args) : usertype(usertype_detail::verified, "__gc", default_destructor, std::forward(args)...) {} template usertype(usertype_detail::check_destructor_tag, Args&&... args) : usertype(meta::If, meta::Not>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward(args)...) {} public: template usertype(Args&&... args) : usertype(meta::If, meta::Not>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward(args)...) {} template usertype(constructors constructorlist, Args&&... args) : usertype(usertype_detail::verified, "new", constructorlist, "__gc", default_destructor, std::forward(args)...) { } int push(lua_State* L) { // push pointer tables first, usertype_detail::push_metatable(L, needsindexfunction, functions, functiontable, metafunctiontable, baseclasscheck, baseclasscast); lua_pop(L, 1); usertype_detail::push_metatable, usertype_detail::stage::uniquemeta>(L, needsindexfunction, functions, functiontable, metafunctiontable, baseclasscheck, baseclasscast); lua_pop(L, 1); // but leave the regular T table on last // so it can be linked to a type for usage with `.new(...)` or `:new(...)` usertype_detail::push_metatable(L, needsindexfunction, functions, functiontable, metafunctiontable, baseclasscheck, baseclasscast); // Make sure to drop a table in the global namespace to properly destroy the pushed functions // at some later point in life usertype_detail::set_global_deleter(L, functiongcfunc, functions); return 1; } }; namespace stack { template struct pusher> { static int push(lua_State* L, usertype& user) { return user.push(L); } }; } // stack } // sol #endif // SOL_USERTYPE_HPP