The solution technically works, but there's some stack corruption going on somewhere that I can quite track down, even when calling a void function with no parameters. I'll have to look into it...

This commit is contained in:
ThePhD 2013-12-02 14:22:51 -05:00
parent cea7e9be64
commit f67b21b525
8 changed files with 614 additions and 241 deletions

View File

@ -1,41 +1,84 @@
#ifndef SOL_FUNCTION_HPP // The MIT License (MIT)
#define SOL_FUNCTION_HPP
// Copyright (c) 2013 Danny Y., Rapptz
#include "reference.hpp"
#include "tuple.hpp" // Permission is hereby granted, free of charge, to any person obtaining a copy of
#include "stack.hpp" // this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
namespace sol { // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
class function : virtual public reference { // the Software, and to permit persons to whom the Software is furnished to do so,
private: // subject to the following conditions:
template<typename... Args>
void push_args(Args&&... args) { // The above copyright notice and this permission notice shall be included in all
auto L = state(); // copies or substantial portions of the Software.
using swallow = char [];
void( swallow{ (stack::push(L, std::forward<Args>(args)), '\0')... } ); // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
} // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
public: // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
function() : reference() {} // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
function(lua_State* L, int index = -1) : reference(L, index) { // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
type_assert(L, index, type::function); // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
}
#ifndef SOL_FUNCTION_HPP
template<typename T, typename... Args> #define SOL_FUNCTION_HPP
T invoke(Args&&... args) {
push(); #include "reference.hpp"
push_args(std::forward<Args>(args)...); #include "tuple.hpp"
lua_pcall(state(), sizeof...(Args), 1, 0); #include "stack.hpp"
return stack::pop<T>(state());
} namespace sol {
class function : virtual public reference {
template<typename... Args> private:
void invoke(Args&&... args) { template<typename... Args>
push(); void push_args(Args&&... args) const {
push_args(std::forward<Args>(args)...); auto L = state();
lua_pcall(state(), sizeof...(Args), 0, 0); using swallow = char[ ];
} void(swallow{ (stack::push(L, std::forward<Args>(args)), '\0')... });
}; }
} // sol
template<typename... Ret>
struct invoker {
#endif // SOL_FUNCTION_HPP template<typename... Args>
static std::tuple<Ret...> call( const function& ref, Args&&... args ) {
ref.push( );
ref.push_args( std::forward<Args>( args )... );
lua_pcall( ref.state( ), sizeof...( Args ), sizeof...( Ret ), 0 );
return std::make_tuple( stack::pop<Ret>( ref.state( ) )... );
}
};
template<>
struct invoker<> {
template<typename... Args>
static void call( const function& ref, Args&&... args ) {
ref.push( );
ref.push_args( std::forward<Args>( args )... );
lua_pcall( ref.state( ), sizeof...( Args ), 0, 0 );
}
};
template<typename T>
struct invoker<T> {
template<typename... Args>
static T call( const function& ref, Args&&... args ) {
ref.push( );
ref.push_args( std::forward<Args>( args )... );
lua_pcall( ref.state( ), sizeof...( Args ), 1, 0 );
return stack::pop<T>( ref.state( ) );
}
};
public:
function() : reference() {}
function(lua_State* L, int index = -1) : reference(L, index) {
type_assert(L, index, type::function);
}
template<typename... Ret, typename... Args>
auto invoke( Args&&... args ) {
return invoker<Ret...>::call( *this, std::forward<Args>( args )... );
}
};
} // sol
#endif // SOL_FUNCTION_HPP

102
sol/functional.hpp Normal file
View File

@ -0,0 +1,102 @@
// The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "tuple.hpp"
#ifndef SOL_FUNCTIONAL_HPP
#define SOL_FUNCTIONAL_HPP
namespace sol {
namespace detail {
template<typename TFuncSignature>
struct function_traits;
template<typename T, typename R, typename... Tn>
struct function_traits<R( T::* )( Tn... )> {
static const std::size_t arity = sizeof...( Tn );
static const bool is_member_function = true;
typedef std::tuple<Tn...> arg_tuple_t;
typedef types<Tn...> args_t;
typedef R( T::* func_t )( Tn... );
typedef R( T::* func_pointer_t )( Tn... );
typedef R return_t;
template <std::size_t i>
using arg_n = std::tuple_element<i, arg_tuple_t>;
};
template<typename T, typename R, typename... Tn>
struct function_traits<R( T::* )( Tn... ) const> {
static const std::size_t arity = sizeof...( Tn );
static const bool is_member_function = true;
typedef std::tuple<Tn...> arg_tuple_t;
typedef types<Tn...> args_t;
typedef R( T::* func_t )( Tn... );
typedef R( T::* func_pointer_t )( Tn... );
typedef R return_t;
template <std::size_t i>
using arg_n = std::tuple_element<i, arg_tuple_t>;
};
template<typename R, typename... Tn>
struct function_traits<R( Tn... )> {
static const std::size_t arity = sizeof...( Tn );
static const bool is_member_function = false;
typedef std::tuple<Tn...> arg_tuple_t;
typedef types<Tn...> args_t;
typedef R( func_t )( Tn... );
typedef R( *func_pointer_t )( Tn... );
typedef R return_t;
template <std::size_t i>
using arg_n = std::tuple_element<i, arg_tuple_t>;
};
template<typename R, typename... Tn>
struct function_traits<R( *)( Tn... )> {
static const std::size_t arity = sizeof...( Tn );
static const bool is_member_function = false;
typedef std::tuple<Tn...> arg_tuple_t;
typedef types<Tn...> args_t;
typedef R( func_t )( Tn... );
typedef R( *func_pointer_t )( Tn... );
typedef R return_t;
template <std::size_t i>
using arg_n = std::tuple_element<i, arg_tuple_t>;
};
using std::get;
template<typename Function, typename Tuple, size_t... Indices>
inline auto call( Function f, const Tuple& t, indices<Indices...> ) -> decltype( f( get<Indices>( t )... ) ) {
return f( get<Indices>( t )... );
}
} // detail
template<typename Function, typename... Args>
inline auto call( Function f, const std::tuple<Args...>& t ) -> decltype( detail::call( f, t, detail::build_indices<sizeof...( Args )>{} ) ) {
return call( f, t, detail::build_indices<sizeof...( Args )>{} );
}
} // sol
#endif // SOL_FUNCTIONAL_HPP

138
sol/lua_function.hpp Normal file
View File

@ -0,0 +1,138 @@
// The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_LUA_FUNC_HPP
#define SOL_LUA_FUNC_HPP
#include "functional.hpp"
#include "stack.hpp"
namespace sol {
namespace detail {
struct lua_func {
virtual int operator () ( lua_State* L ) {
throw sol_error( "Failure to call specialized wrapped C++ function from lua" );
}
virtual ~lua_func( ) {};
};
template <typename TFx>
struct lambda_lua_func : public lua_func {
typedef decltype( &TFx::operator() ) fx_t;
typedef function_traits<fx_t> fx_traits;
TFx fx;
template <typename... TFxn>
lambda_lua_func( TFxn&&... fxn ) : fx( std::forward<TFxn>( fxn )... ) {
}
virtual int operator () ( lua_State* L ) override {
return ( *this )( tuple_types<fx_traits::return_t>( ), fx_traits::args_t( ), L );
}
template <typename... Tn>
int operator()( types<void>, types<Tn...> t, lua_State* L ) {
auto r = stack::pop_call( L, fx, t );
return 0;
}
template <typename... TRn, typename... Tn>
int operator()( types<TRn...>, types<Tn...> t, lua_State* L ) {
auto r = stack::pop_call( L, fx, t );
stack::push( L, r );
return sizeof...( TRn );
}
};
template <typename TFx, typename T = TFx, bool is_member_pointer = std::is_member_function_pointer<TFx>::value>
struct explicit_lua_func : public lua_func {
typedef typename std::remove_pointer<typename std::decay<TFx>::type>::type fx_t;
typedef function_traits<fx_t> fx_traits;
TFx fx;
template <typename... TFxn>
explicit_lua_func( TFxn&&... fxn ) : fx( std::forward<TFxn>( fxn )... ) {
}
virtual int operator () ( lua_State* L ) override {
return ( *this )( tuple_types<fx_traits::return_t>( ), fx_traits::args_t( ), L );
}
template <typename... Tn>
int operator () ( types<void>, types<Tn...> t, lua_State* L ) {
auto r = stack::pop_call( L, fx, t );
return 0;
}
template <typename... TRn, typename... Tn>
int operator () ( types<TRn...>, types<Tn...> t, lua_State* L ) {
auto r = stack::pop_call( L, fx, t );
stack::push( L, r );
return sizeof...( TRn );
}
};
template <typename TFx, typename T>
struct explicit_lua_func<TFx, T, true> : public lua_func {
typedef typename std::remove_pointer<typename std::decay<TFx>::type>::type fx_t;
typedef function_traits<fx_t> fx_traits;
T* member;
TFx fx;
template <typename... TFxn>
explicit_lua_func( T* m, TFxn&&... fxn ) : member(m), fx( std::forward<TFxn>( fxn )... ) {
}
virtual int operator () ( lua_State* L ) override {
return ( *this )( tuple_types<fx_traits::return_t>( ), fx_traits::args_t( ), L );
}
template <typename... Tn>
int operator () ( types<void>, types<Tn...>, lua_State* L ) {
auto r = stack::pop_call( L, fx, t );
return 0;
}
template <typename... TRn, typename... Tn>
int operator () ( types<TRn...>, types<Tn...> t, lua_State* L ) {
auto r = stack::pop_call( L, fx, t );
stack::push( L, r );
return sizeof...( TRn );
}
};
int lua_cfun( lua_State* L ) {
void* bridgedata = lua_touserdata( L, lua_upvalueindex( 1 ) );
auto* fx = static_cast<lua_func*>( bridgedata );
int r = fx->operator()( L );
return r;
}
} // detail
} // sol
#endif // SOL_LUA_FUNC_HPP

View File

@ -23,6 +23,7 @@
#define SOL_STACK_HPP #define SOL_STACK_HPP
#include "reference.hpp" #include "reference.hpp"
#include "tuple.hpp"
#include <utility> #include <utility>
#include <type_traits> #include <type_traits>
@ -35,6 +36,19 @@ using DisableIf = typename std::enable_if<!T::value, R>::type;
namespace stack { namespace stack {
namespace detail { namespace detail {
template<class T, class F, class... Vs>
auto ltr_pop( T&& extra, F f, types<>, Vs&&... vs )
-> decltype( f( std::forward<Vs>( vs )... ) ) {
return f( std::forward<Vs>( vs )... );
}
// take head, produce value from it, pass after other values
template<class F, class Head, class... Tail, class... Vs>
auto ltr_pop( lua_State* L, F f, types<Head, Tail...>, Vs&&... vs )
-> decltype( ltr_pop( L, f, types<Tail...>{}, std::forward<Vs>( vs )..., stack::pop<Head>( L ) ) ) {
return ltr_pop( L, f, types<Tail...>{}, std::forward<Vs>( vs )..., stack::pop<Head>( L ) );
}
template<typename T> template<typename T>
inline T get_unsigned(lua_State* L, std::true_type, int index = -1) { inline T get_unsigned(lua_State* L, std::true_type, int index = -1) {
return lua_tounsigned(L, index); return lua_tounsigned(L, index);
@ -150,6 +164,25 @@ inline void push(lua_State* L, const char (&str)[N]) {
inline void push(lua_State* L, const std::string& str) { inline void push(lua_State* L, const std::string& str) {
lua_pushlstring(L, str.c_str(), str.size()); lua_pushlstring(L, str.c_str(), str.size());
} }
namespace detail {
template<typename T, std::size_t... I>
inline void push( lua_State* L, indices<I...>, const T& tuplen ) {
using swallow = char [];
void( swallow{ ( push( L, std::get<I>( tuplen ) ), '\0' )... } );
}
} // detail
template<typename... Args>
inline void push(lua_State* L, const std::tuple<Args...>& tuplen) {
detail::push(L, sol::detail::build_indices<sizeof...( Args )>(), tuplen);
}
template<typename... Args, typename TFx>
inline auto pop_call( lua_State* L, TFx&& fx, types<Args...> t )->decltype( detail::ltr_pop( L, fx, t ) ) {
return detail::ltr_pop( L, fx, t );
}
} // stack } // stack
} // sol } // sol

View File

@ -1,186 +1,194 @@
// The MIT License (MIT) // The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz // Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of // Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in // this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to // the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so, // the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions: // subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all // The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software. // copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_STATE_HPP #ifndef SOL_STATE_HPP
#define SOL_STATE_HPP #define SOL_STATE_HPP
#include "error.hpp" #include "error.hpp"
#include "table.hpp" #include "table.hpp"
#include <memory> #include <memory>
namespace sol { namespace sol {
namespace detail { namespace detail {
template<class T, class...> template<class T, class...>
struct are_same : std::true_type {}; struct are_same : std::true_type {};
template<class T, class U, class... Args> template<class T, class U, class... Args>
struct are_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T,U>::value && are_same<T, Args...>::value> {}; struct are_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T,U>::value && are_same<T, Args...>::value> {};
int atpanic(lua_State* L) { int atpanic(lua_State* L) {
throw sol_error(lua_tostring(L, -1)); throw sol_error(lua_tostring(L, -1));
} }
} // detail } // detail
enum class lib : char { enum class lib : char {
base, base,
package, package,
coroutine, coroutine,
string, string,
os, os,
math, math,
table, table,
debug, debug,
bit32, bit32,
io, io,
count count
}; };
class state { class state {
private: private:
std::unique_ptr<lua_State, void(*)(lua_State*)> L; std::unique_ptr<lua_State, void(*)(lua_State*)> L;
table reg; table reg;
table global; table global;
public: std::unordered_map<std::string, std::unique_ptr<detail::lua_func>> funcs;
state():
L(luaL_newstate(), lua_close), public:
reg(L.get(), LUA_REGISTRYINDEX), state():
global(reg.get<table>(LUA_RIDX_GLOBALS)) { L(luaL_newstate(), lua_close),
lua_atpanic(L.get(), detail::atpanic); reg(L.get(), LUA_REGISTRYINDEX),
} global(reg.get<table>(LUA_RIDX_GLOBALS)) {
lua_atpanic(L.get(), detail::atpanic);
state(const std::string& filename): }
L(luaL_newstate(), lua_close),
reg(L.get(), LUA_REGISTRYINDEX), state(const std::string& filename):
global(reg.get<table>(LUA_RIDX_GLOBALS)) { L(luaL_newstate(), lua_close),
lua_atpanic(L.get(), detail::atpanic); reg(L.get(), LUA_REGISTRYINDEX),
open_file(filename); global(reg.get<table>(LUA_RIDX_GLOBALS)) {
} lua_atpanic(L.get(), detail::atpanic);
open_file(filename);
template<typename... Args> }
void open_libraries(Args&&... args) {
static_assert(detail::are_same<lib, Args...>{}, "all types must be libraries"); template<typename... Args>
if(sizeof...(args) == 0) { void open_libraries(Args&&... args) {
luaL_openlibs(L.get()); static_assert(detail::are_same<lib, Args...>{}, "all types must be libraries");
return; if(sizeof...(args) == 0) {
} luaL_openlibs(L.get());
return;
lib libraries[1 + sizeof...(args)] = { lib::count, std::forward<Args>(args)... }; }
for(auto&& library : libraries) { lib libraries[1 + sizeof...(args)] = { lib::count, std::forward<Args>(args)... };
switch(library) {
case lib::base: for(auto&& library : libraries) {
luaL_requiref(L.get(), "base", luaopen_base, 1); switch(library) {
break; case lib::base:
case lib::package: luaL_requiref(L.get(), "base", luaopen_base, 1);
luaL_requiref(L.get(), "package", luaopen_package, 1); break;
break; case lib::package:
case lib::coroutine: luaL_requiref(L.get(), "package", luaopen_package, 1);
luaL_requiref(L.get(), "coroutine", luaopen_coroutine, 1); break;
break; case lib::coroutine:
case lib::string: luaL_requiref(L.get(), "coroutine", luaopen_coroutine, 1);
luaL_requiref(L.get(), "string", luaopen_string, 1); break;
break; case lib::string:
case lib::table: luaL_requiref(L.get(), "string", luaopen_string, 1);
luaL_requiref(L.get(), "table", luaopen_table, 1); break;
break; case lib::table:
case lib::math: luaL_requiref(L.get(), "table", luaopen_table, 1);
luaL_requiref(L.get(), "math", luaopen_math, 1); break;
break; case lib::math:
case lib::bit32: luaL_requiref(L.get(), "math", luaopen_math, 1);
luaL_requiref(L.get(), "bit32", luaopen_bit32, 1); break;
break; case lib::bit32:
case lib::io: luaL_requiref(L.get(), "bit32", luaopen_bit32, 1);
luaL_requiref(L.get(), "io", luaopen_io, 1); break;
break; case lib::io:
case lib::os: luaL_requiref(L.get(), "io", luaopen_io, 1);
luaL_requiref(L.get(), "os", luaopen_os, 1); break;
break; case lib::os:
case lib::debug: luaL_requiref(L.get(), "os", luaopen_os, 1);
luaL_requiref(L.get(), "debug", luaopen_debug, 1); break;
break; case lib::debug:
case lib::count: luaL_requiref(L.get(), "debug", luaopen_debug, 1);
break; break;
} case lib::count:
} break;
} }
}
void script(const std::string& code) { }
if(luaL_dostring(L.get(), code.c_str())) {
lua_error(L.get()); void script(const std::string& code) {
} if(luaL_dostring(L.get(), code.c_str())) {
} lua_error(L.get());
}
void open_file(const std::string& filename) { }
if(luaL_dofile(L.get(), filename.c_str())) {
lua_error(L.get()); void open_file(const std::string& filename) {
} if(luaL_dofile(L.get(), filename.c_str())) {
} lua_error(L.get());
}
template<typename T, typename U> }
T get(U&& key) const {
return global.get<T>(std::forward<U>(key)); template<typename T, typename U>
} T get(U&& key) const {
return global.get<T>(std::forward<U>(key));
template<typename T, typename U> }
state& set(T&& key, U&& value) {
global.set(std::forward<T>(key), std::forward<U>(value)); template<typename T, typename U>
return *this; state& set(T&& key, U&& value) {
} global.set(std::forward<T>(key), std::forward<U>(value));
return *this;
template<typename T> }
table create_table(T&& key, int narr = 0, int nrec = 0) {
if(narr == 0 && nrec == 0) { template<typename T, typename TFx>
lua_newtable(L.get()); state& set_function( T&& key, TFx&& fx ) {
} global.set_function( std::forward<T>( key ), std::forward<TFx>( fx ) );
else { return *this;
lua_createtable(L.get(), narr, nrec); }
}
template<typename T>
table result(L.get()); table create_table(T&& key, int narr = 0, int nrec = 0) {
lua_pop(L.get(), 1); if(narr == 0 && nrec == 0) {
global.set(std::forward<T>(key), result); lua_newtable(L.get());
return result; }
} else {
lua_createtable(L.get(), narr, nrec);
table create_table(int narr = 0, int nrec = 0) { }
if(narr == 0 && nrec == 0) {
lua_newtable(L.get()); table result(L.get());
} lua_pop(L.get(), 1);
else { global.set(std::forward<T>(key), result);
lua_createtable(L.get(), narr, nrec); return result;
} }
table result(L.get()); table create_table(int narr = 0, int nrec = 0) {
lua_pop(L.get(), 1); if(narr == 0 && nrec == 0) {
return result; lua_newtable(L.get());
} }
else {
table global_table() const { lua_createtable(L.get(), narr, nrec);
return global; }
}
table result(L.get());
table registry() const { lua_pop(L.get(), 1);
return reg; return result;
} }
};
} // sol table global_table() const {
return global;
}
table registry() const {
return reg;
}
};
} // sol
#endif // SOL_STATE_HPP #endif // SOL_STATE_HPP

View File

@ -23,9 +23,14 @@
#define SOL_TABLE_HPP #define SOL_TABLE_HPP
#include "stack.hpp" #include "stack.hpp"
#include "lua_function.hpp"
#include <unordered_map>
#include <memory>
namespace sol { namespace sol {
class table : virtual public reference { class table : virtual public reference {
private:
std::unordered_map<std::string, std::shared_ptr<detail::lua_func>> funcs;
public: public:
table() noexcept: reference{} {} table() noexcept: reference{} {}
table(lua_State* L, int index = -1): reference(L, index) { table(lua_State* L, int index = -1): reference(L, index) {
@ -53,10 +58,55 @@ public:
return *this; return *this;
} }
template<typename T, typename TFx>
table& set_function( T&& key, TFx&& fx ) {
typedef typename std::remove_pointer<typename std::decay<TFx>::type>::type clean_fx;
const static bool isfunction = std::is_function<clean_fx>::value;
return set_function( std::integral_constant<bool, !isfunction>( ),
std::forward<T>( key ), std::forward<TFx>( fx ) );
}
template<typename T, typename TFx>
table& set_function( std::true_type, T&& key, TFx&& fx ) {
typedef typename std::decay<TFx>::type clean_fx;
std::string fkey( key );
lua_CFunction freefunc = &detail::lua_cfun;
auto hint = funcs.find( fkey );
detail::lua_func* target = nullptr;
if ( hint == funcs.end( ) ) {
std::shared_ptr<detail::lua_func> sptr( new detail::lambda_lua_func<clean_fx>( std::forward<TFx>( fx ) ) );
hint = funcs.emplace_hint( hint, fkey, std::move( sptr ) );
}
target = hint->second.get( );
lua_pushlightuserdata( state( ), static_cast<void*>( target ) );
lua_pushcclosure( state( ), freefunc, 1 );
lua_setglobal( state( ), fkey.c_str( ) );
return *this;
}
template <typename T, typename TFx>
table& set_function( std::false_type, T&& key, TFx&& fx ) {
typedef typename std::decay<TFx>::type clean_fx;
std::string fkey( key );
lua_CFunction freefunc = &detail::lua_cfun;
auto hint = funcs.find( fkey );
detail::lua_func* target = nullptr;
if ( hint == funcs.end( ) ) {
std::shared_ptr<detail::lua_func> sptr( new detail::explicit_lua_func<TFx>( std::forward<TFx>( fx ) ) );
hint = funcs.emplace_hint( hint, fkey, std::move( sptr ) );
}
target = hint->second.get( );
lua_pushlightuserdata( state( ), static_cast<void*>( target ) );
lua_pushcclosure( state( ), freefunc, 1 );
lua_setglobal( state( ), fkey.c_str( ) );
return *this;
}
size_t size() const { size_t size() const {
push(); push();
return lua_rawlen(state(), -1); return lua_rawlen(state(), -1);
} }
}; };
} // sol } // sol

View File

@ -26,28 +26,25 @@
#include <cstddef> #include <cstddef>
namespace sol { namespace sol {
namespace detail {
template<size_t... Ns> template<size_t... Ns>
struct indices {}; struct indices { };
template<size_t N, size_t... Ns> template<size_t N, size_t... Ns>
struct build_indices : build_indices<N-1, N-1, Ns...> {}; struct build_indices : build_indices<N - 1, N - 1, Ns...> { };
template<size_t... Ns> template<size_t... Ns>
struct build_indices<0, Ns...> : indices<Ns...> {}; struct build_indices<0, Ns...> : indices<Ns...>{ };
using std::get; template<typename... Args>
struct types : build_indices<sizeof...( Args )> { };
template<typename Function, typename Tuple, size_t... Indices> template<typename... Args>
inline auto call(Function f, const Tuple& t, indices<Indices...>) -> decltype(f(get<Indices>(t)...)) { struct tuple_types : types<Args...>, std::false_type { };
return f(get<Indices>(t)...);
} template <typename... Args>
} // detail struct tuple_types<std::tuple<Args...>> : types<Args...>, std::true_type{ };
template<typename Function, typename... Args>
inline auto call(Function f, const std::tuple<Args...>& t) -> decltype(detail::call(f, t, detail::build_indices<sizeof...(Args)>{})) {
return call(f, t, detail::build_indices<sizeof...(Args)>{});
}
} // sol } // sol
#endif // SOL_TUPLE_HPP #endif // SOL_TUPLE_HPP

View File

@ -28,7 +28,9 @@
namespace sol { namespace sol {
struct nil_t {}; struct nil_t {};
const nil_t nil{}; const nil_t nil{ };
struct Void_t { };
const Void_t Void{};
enum class type : int { enum class type : int {
none = LUA_TNONE, none = LUA_TNONE,