[ci-skip] documentation updates as per Nava2 and Bulgat's requests.

This commit is contained in:
ThePhD 2016-04-23 21:20:45 -04:00
parent 201f81a6ef
commit e9ed1a62e1

View File

@ -3,7 +3,7 @@ tutorial: quick 'n' dirty
These are all the things. Use your browser's search to find things you want.
Compile with ``-std=c++14`` or better / VS 2015 or better.
You'll need to ``#include <sol.hpp>``/``#include "sol.hpp"`` somewhere in your code. Sol is header-only, so you don't need to compile anything.
opening a state
---------------
@ -50,15 +50,21 @@ running lua code
script2(); //execute
set and get stuff
-----------------
set and get variables
---------------------
You can set/get everything.
.. code-block:: cpp
struct some_class {
bool some_variable = false;
};
sol::lua_state lua;
lua.open_libraries(sol::lib::base);
// integer types
lua.set("number", 24);
// floating point numbers
@ -66,6 +72,7 @@ You can set/get everything.
// string types
lua["important_string"] = "woof woof";
// non-recognized types is stored as userdata
// this moves the type in (or copies, depending on class semantics)
lua["myuserdata"] = some_class();
// is callable, therefore gets stored as a function
lua["a_function"] = [](){ return 100; };
@ -79,9 +86,10 @@ You can set/get everything.
// returns a plain reference
some_class& myuserdata = lua["myuserdata"];
// myuserdata.some_variable = 20 WILL (!!) modify
// data inside of lua VM as well, if you get a pointer or a reference
// Modifies this in LUA VM AS WELL
// its a reference, not a copy!
myuserdata.some_variable = true;
// get a function
sol::function a_function = lua["a_function"];
int value_is_100 = a_function();
@ -91,7 +99,7 @@ You can set/get everything.
int value_is_still_100 = a_std_function();
Some classes that have stuff to make it easier to look at lua semantics / be safe.
Retrieve Lua types using ``object`` and other ``sol::`` types.
.. code-block:: cpp
@ -100,10 +108,12 @@ Some classes that have stuff to make it easier to look at lua semantics / be saf
// ... everything from before
sol::object number_obj = lua.get<sol::object>( "number" );
sol::type t1 = number_obj.get_type(); // sol::type::number
// sol::type::number
sol::type t1 = number_obj.get_type();
sol::object function_obj = lua[ "a_function" ];
sol::type t2 = function_obj.get_type(); // sol::type::function
// sol::type::function
sol::type t2 = function_obj.get_type();
bool is_it_really = function_obj.is<std::function<int()>(); // true
// will not contain data
@ -120,11 +130,21 @@ They're great. Use them:
sol::state lua;
lua.script("function f (a, b, c, d) return 1 end");
std::function<int()> stdfx = lua["f"];
lua.script("function g (a, b) a + b end");
// fixed signature std::function<...>
std::function<int(int, double, int, std::string)> stdfx = lua["f"];
// sol::function is often easier: takes a variable number/types of arguments...
sol::function fx = lua["f"];
int is_one = stdfx(1, 34.5, 3, "bark");
int is_also_one = fx();
int is_also_one = fx(1, "boop", 3, "bark");
// call through operator[]
int is_three = lua["g"](1, 2);
// is_three == 3
double is_2_8 = lua["g"](2.4, 2.4);
// is_2_8 == 2.8
You can bind member variables as functions too:
@ -168,7 +188,7 @@ You can bind member variables as functions too:
print(m2()) -- 24.5
)");
// binds just the membver variable as a function
// binds just the member variable as a function
lua["v1"] = &some_class::variable;
// binds class with member variable as function
lua.set_function("v2", &some_class::variable, some_class{});
@ -191,8 +211,8 @@ You can bind member variables as functions too:
Can use ``sol::readonly( &some_class::variable )`` to make a variable readonly and error if someone tries to write to it.
multiple returns
----------------
multiple returns from lua
-------------------------
.. code-block:: cpp
@ -210,6 +230,31 @@ multiple returns
// c == "bark"
multiple returns to lua
-----------------------
.. code-block:: cpp
sol::state lua;
lua["f"] = [](int a, int b, sol::object c) {
// sol::object can be anything here: just pass it through
return std::make_tuple( 100, 200, c );
};
std::tuple<int, int, int> result = lua["f"](100, 200, 300);
// result == { 100, 200, 300 }
lua[]
// result == { 100, 200, 300 }
int a, int b;
std::string c;
sol::bond( a, b, c ) = lua["f"](100, 200, "bark");
// a == 100
// b == 200
// c == "bark"
tables
------
@ -232,15 +277,24 @@ tables
);
sol::table abc = lua["abc"];
sol::state def = lua["def"];
sol::table ghi = lua["def"]["ghi"];
int bark1 = def["y"]["bark"]; // 24
int bark2 = lua["def"]["ghi"]["bark"]; // 24
bool bark_equal = bark1 == bark2; // true
int bark1 = def["ghi"]["bark"];
// bark1 == 50
int bark2 = lua["def"]["ghi"]["bark"];
// bark2 == 50
bool bark_equal = bark1 == bark2;
// true
int abcval1 = abc[0]; // 24
int abcval2 = ghi["woof"][0]; // 24
bool abcval_equal = abcval1 == abcval2; // true
int abcval1 = abc[0];
// abcval2 == 24
int abcval2 = ghi["woof"][0];
// abcval2 == 24
bool abcval_equal = abcval1 == abcval2;
// true
If you're going deep, be safe:
@ -369,7 +423,7 @@ Because there's a LOT you can do with Sol:
int speed;
player()
: player(500, 100) {
: player(3, 100) {
}
@ -413,7 +467,13 @@ Bind all the things:
sol::state lua;
// just stuff a userdata in there
// note that you can set a userdata before you register a usertype,
// and it will still carry the right metatable if you register it later
lua.set("p2", player(0));
// p2 has no ammo
// make usertype metatable
lua.new_usertype<player>( "player",
// 3 constructors
@ -442,6 +502,11 @@ And the script:
-- call single argument integer constructor
p1 = player.new(2)
-- p2 is still here from being set with lua.set(...) above
local p2shoots = p2:shoot()
assert(not p2shoots)
-- had 0 ammo
-- set variable property setter
p1.hp = 545;
@ -467,7 +532,40 @@ And the script:
Even more stuff :doc:`you can do<../api/usertype>` described elsewhere, like initializer functions (private constructors / destructors support), "static" functions callable with ``name.my_function( ... )``, and overloaded member functions.
Advanced
pointers
--------
Sol will not take ownership of raw pointers: raw pointers do not own anything.
.. code-block:: cpp
// AAAHHH BAD
// dangling pointer!
lua["my_func"] = []() -> my_type* {
return new my_type();
};
Return a ``unique_ptr`` or ``shared_ptr`` instead or just return a value:
.. code-block:: cpp
// :ok:
lua["my_func"] = []() -> std::unique_ptr<my_type> {
return std::make_unique<my_type>();
};
// :ok:
lua["my_func"] = []() -> std::shared_ptr<my_type> {
return std::make_shared<my_type>();
};
// :ok:
lua["my_func"] = []() -> my_type {
return my_type();
};
advanced
--------
Some more advanced things you can do: