Who would have thought Lua's API between versions would be so... inconsistent.

This commit is contained in:
ThePhD 2016-05-20 04:20:22 -04:00
parent 1506d282f9
commit 7be09d0781
7 changed files with 1003 additions and 955 deletions

View File

@ -170,7 +170,7 @@ struct pusher<function_sig<Sigs...>> {
lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx>::call; lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, target); int upvalues = stack::stack_detail::push_as_upvalues(L, target);
stack::push(L, freefunc, upvalues); stack::push(L, c_closure(freefunc, upvalues));
} }
static void select_function(std::true_type, lua_State* L, lua_CFunction f) { static void select_function(std::true_type, lua_State* L, lua_CFunction f) {
@ -190,7 +190,7 @@ struct pusher<function_sig<Sigs...>> {
stack::push(L, userdata_value(targetdata)); stack::push(L, userdata_value(targetdata));
function_detail::free_function_cleanup(L); function_detail::free_function_cleanup(L);
lua_setmetatable(L, -2); lua_setmetatable(L, -2);
stack::push(L, freefunc, 1); stack::push(L, c_closure(freefunc, 1));
} }
template<typename... Args> template<typename... Args>

View File

@ -98,14 +98,14 @@ namespace function_detail {
} }
template <typename F, F fx> template <typename F, F fx>
inline int call_wrapper_entry(lua_State* L) { int call_wrapper_entry(lua_State* L) {
return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L); return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L);
} }
} // function_detail } // function_detail
template <typename F, F fx> template <typename F, F fx>
inline int c_call(lua_State* L) { inline int c_call(lua_State* L) {
return detail::c_trampoline(L, function_detail::call_wrapper_entry<F, fx>); return detail::static_trampoline<(&function_detail::call_wrapper_entry<F, fx>)>(L);
} }
} // sol } // sol

View File

@ -50,23 +50,38 @@ private:
table reg; table reg;
global_table global; global_table global;
optional<object> is_loaded_package(const std::string& key) {
auto loaded = reg.traverse_get<optional<object>>("_LOADED", key);
bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>());
if (is53mod)
return loaded;
return nullopt;
}
template <typename T> template <typename T>
void ensure_package(const std::string& key, T&& sr) { void ensure_package(const std::string& key, T&& sr) {
auto pkg = (*this)["package"]; auto loaded = reg["_LOADED"];
if (!pkg.valid()) { if (!loaded.valid()) {
pkg = create_table_with("loaded", create_table_with(key, sr)); loaded = create_table_with(key, sr);
} }
else { else {
auto ld = pkg["loaded"]; loaded[key] = sr;
if (!ld.valid()) {
ld = create_table_with(key, sr);
}
else {
ld[key] = sr;
}
} }
} }
template <typename Fx>
object require_core(const std::string& key, Fx&& action, bool create_global = true) {
optional<object> loaded = is_loaded_package(key);
if (loaded)
return std::move(*loaded);
action();
auto sr = stack::get<stack_reference>(L);
if (create_global)
set(key, sr);
ensure_package(key, sr);
return stack::pop<object>(L);
}
public: public:
typedef global_table::iterator iterator; typedef global_table::iterator iterator;
typedef global_table::const_iterator const_iterator; typedef global_table::const_iterator const_iterator;
@ -166,42 +181,17 @@ public:
} }
} }
template <typename Fx> object require(const std::string& key, lua_CFunction open_function, bool create_global = true) {
object require(const std::string& key, Fx&& open_function, bool is_global_library = true) { luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0);
auto openfx = [fx = std::forward<Fx>(open_function)](lua_State* L){ return stack::pop<object>(L);
typedef lua_bind_traits<meta::unqualified_t<Fx>> traits;
return stack::call(typename traits::return_type(), typename traits::args_type(), L, fx);
};
stack::push(L, function_args<function_sig<>>(std::forward<Fx>(openfx)));
lua_CFunction openf = stack::pop<lua_CFunction>(L);
luaL_requiref(L, key.c_str(), openf, is_global_library ? 1 : 0);
object r = stack::pop<object>(L);
lua_pop(L, 1);
return r;
} }
object require_script(const std::string& key, const std::string& code) { object require_script(const std::string& key, const std::string& code, bool create_global = true) {
optional<object> loaded = global.traverse_get<optional<object>>("package", "loaded", key); return require_core(key, [this, &code]() {this->script(code); }, create_global);
bool ismod = loaded && !(loaded->is<bool>() && !loaded->as<bool>());
if (ismod)
return std::move(*loaded);
script(code);
auto sr = stack::get<stack_reference>(L);
set(key, sr);
ensure_package(key, sr);
return stack::pop<object>(L);
} }
object require_file(const std::string& key, const std::string& file) { object require_file(const std::string& key, const std::string& file, bool create_global = true) {
auto loaded = global.traverse_get<optional<object>>("package", "loaded", key); return require_core(key, [this, &file]() {this->script_file(file); }, create_global);
bool ismod = loaded && !(loaded->is<bool>() && !loaded->as<bool>());
if (loaded)
return std::move(*loaded);
script_file(file);
auto sr = stack::get<stack_reference>(L);
set(key, sr);
ensure_package(key, sr);
return stack::pop<object>(L);
} }
void script(const std::string& code) { void script(const std::string& code) {

View File

@ -62,6 +62,22 @@ int plop_xyz(int x, int y, std::string z) {
} }
} }
int func_1(int) {
return 1;
}
std::string func_1s(std::string a) {
return "string: " + a;
}
int func_2(int, int) {
return 2;
}
void func_3(int, int, int) {
}
TEST_CASE("functions/overload-resolution", "Check if overloaded function resolution templates compile/work") { TEST_CASE("functions/overload-resolution", "Check if overloaded function resolution templates compile/work") {
sol::state lua; sol::state lua;
lua.open_libraries(sol::lib::base); lua.open_libraries(sol::lib::base);
@ -792,3 +808,27 @@ TEST_CASE("functions/required_and_variadic_args", "Check if a certain number of
REQUIRE_NOTHROW(lua.script("v(20, 25)")); REQUIRE_NOTHROW(lua.script("v(20, 25)"));
REQUIRE_THROWS(lua.script("v(20)")); REQUIRE_THROWS(lua.script("v(20)"));
} }
TEST_CASE("functions/overloading", "Check if overloading works properly for regular set function syntax") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.set_function("func_1", func_1);
lua.set_function("func", sol::overload(func_1, func_1s, func_2, func_3));
const std::string string_bark = "string: bark";
REQUIRE_NOTHROW(lua.script(
"a = func(1)\n"
"b = func('bark')\n"
"c = func(1,2)\n"
"func(1,2,3)\n"
));
REQUIRE((lua["a"] == 1));
REQUIRE((lua["b"] == string_bark));
REQUIRE((lua["c"] == 2));
REQUIRE_THROWS(lua.script("func(1,2,'meow')"));
}

View File

@ -69,19 +69,3 @@ TEST_CASE("stack/strings", "test that strings can be roundtripped") {
REQUIRE(wide_to_char32 == utf32str[0]); REQUIRE(wide_to_char32 == utf32str[0]);
} }
#endif // Shit C++ #endif // Shit C++
TEST_CASE("state/strings", "opening strings as 'requires' clauses") {
std::string code = "return { modfunc = function () return 221 end }";
sol::state lua;
sol::table thingy1 = lua.require_script("thingy", code);
sol::table thingy2 = lua.require_script("thingy", code);
int val1 = thingy1["modfunc"]();
int val2 = thingy2["modfunc"]();
REQUIRE(val1 == 221);
REQUIRE(val2 == 221);
// must have loaded the same table
REQUIRE(thingy1 == thingy2);
}

866
test_usertypes.cpp Normal file
View File

@ -0,0 +1,866 @@
#define SOL_CHECK_ARGUMENTS
#include <sol.hpp>
#include <catch.hpp>
#include <iostream>
struct vars {
vars () {
}
int boop = 0;
~vars () {
}
};
struct fuser {
int x;
fuser() : x(0) {}
fuser(int x) : x(x) {}
int add(int y) {
return x + y;
}
int add2(int y) {
return x + y + 2;
}
};
namespace crapola {
struct fuser {
int x;
fuser() : x(0) {}
fuser(int x) : x(x) {}
fuser(int x, int x2) : x(x * x2) {}
int add(int y) {
return x + y;
}
int add2(int y) {
return x + y + 2;
}
};
} // crapola
class Base {
public:
Base(int a_num) : m_num(a_num) { }
int get_num() {
return m_num;
}
protected:
int m_num;
};
class Derived : public Base {
public:
Derived(int a_num) : Base(a_num) { }
int get_num_10() {
return 10 * m_num;
}
};
struct Vec {
float x, y, z;
Vec(float x, float y, float z) : x{x}, y{y}, z{z} {}
float length() {
return sqrtf(x*x + y*y + z*z);
}
Vec normalized() {
float invS = 1 / length();
return {x * invS, y * invS, z * invS};
}
};
struct giver {
int a = 0;
giver () {
}
void gief () {
a = 1;
}
static void stuff () {
}
static void gief_stuff (giver& t, int a) {
t.a = a;
}
~giver () {
}
};
struct factory_test {
private:
factory_test() { a = true_a; }
~factory_test() { a = 0; }
public:
static int num_saved;
static int num_killed;
struct deleter {
void operator()(factory_test* f) {
f->~factory_test();
}
};
static const int true_a;
int a;
static std::unique_ptr<factory_test, deleter> make() {
return std::unique_ptr<factory_test, deleter>( new factory_test(), deleter());
}
static void save(factory_test& f) {
new(&f)factory_test();
++num_saved;
}
static void kill(factory_test& f) {
f.~factory_test();
++num_killed;
}
};
int factory_test::num_saved = 0;
int factory_test::num_killed = 0;
const int factory_test::true_a = 156;
bool something() {
return true;
}
struct thing {
int v = 100;
thing() {}
thing(int x) : v(x) {}
};
struct self_test {
int bark;
self_test() : bark(100) {
}
void g(const std::string& str) {
std::cout << str << '\n';
bark += 1;
}
void f(const self_test& t) {
std::cout << "got test" << '\n';
if (t.bark != bark)
throw sol::error("bark values are not the same for self_test f function");
if (&t != this)
throw sol::error("call does not reference self for self_test f function");
}
};
TEST_CASE("usertype/usertype", "Show that we can create classes from usertype and use them") {
sol::state lua;
sol::usertype<fuser> lc{ "add", &fuser::add, "add2", &fuser::add2 };
lua.set_usertype(lc);
lua.script("a = fuser:new()\n"
"b = a:add(1)\n"
"c = a:add2(1)\n");
sol::object a = lua.get<sol::object>("a");
sol::object b = lua.get<sol::object>("b");
sol::object c = lua.get<sol::object>("c");
REQUIRE((a.is<sol::userdata_value>()));
auto atype = a.get_type();
auto btype = b.get_type();
auto ctype = c.get_type();
REQUIRE((atype == sol::type::userdata));
REQUIRE((btype == sol::type::number));
REQUIRE((ctype == sol::type::number));
int bresult = b.as<int>();
int cresult = c.as<int>();
REQUIRE(bresult == 1);
REQUIRE(cresult == 3);
}
TEST_CASE("usertype/usertype-constructors", "Show that we can create classes from usertype and use them with multiple constructors") {
sol::state lua;
sol::constructors<sol::types<>, sol::types<int>, sol::types<int, int>> con;
sol::usertype<crapola::fuser> lc(con, "add", &crapola::fuser::add, "add2", &crapola::fuser::add2);
lua.set_usertype(lc);
lua.script(
"a = fuser.new(2)\n"
"u = a:add(1)\n"
"v = a:add2(1)\n"
"b = fuser:new()\n"
"w = b:add(1)\n"
"x = b:add2(1)\n"
"c = fuser.new(2, 3)\n"
"y = c:add(1)\n"
"z = c:add2(1)\n");
sol::object a = lua.get<sol::object>("a");
auto atype = a.get_type();
REQUIRE((atype == sol::type::userdata));
sol::object u = lua.get<sol::object>("u");
sol::object v = lua.get<sol::object>("v");
REQUIRE((u.as<int>() == 3));
REQUIRE((v.as<int>() == 5));
sol::object b = lua.get<sol::object>("b");
auto btype = b.get_type();
REQUIRE((btype == sol::type::userdata));
sol::object w = lua.get<sol::object>("w");
sol::object x = lua.get<sol::object>("x");
REQUIRE((w.as<int>() == 1));
REQUIRE((x.as<int>() == 3));
sol::object c = lua.get<sol::object>("c");
auto ctype = c.get_type();
REQUIRE((ctype == sol::type::userdata));
sol::object y = lua.get<sol::object>("y");
sol::object z = lua.get<sol::object>("z");
REQUIRE((y.as<int>() == 7));
REQUIRE((z.as<int>() == 9));
}
TEST_CASE("usertype/usertype-utility", "Show internal management of classes registered through new_usertype") {
sol::state lua;
lua.new_usertype<fuser>("fuser", "add", &fuser::add, "add2", &fuser::add2);
lua.script("a = fuser.new()\n"
"b = a:add(1)\n"
"c = a:add2(1)\n");
sol::object a = lua.get<sol::object>("a");
sol::object b = lua.get<sol::object>("b");
sol::object c = lua.get<sol::object>("c");
REQUIRE((a.is<sol::userdata_value>()));
auto atype = a.get_type();
auto btype = b.get_type();
auto ctype = c.get_type();
REQUIRE((atype == sol::type::userdata));
REQUIRE((btype == sol::type::number));
REQUIRE((ctype == sol::type::number));
int bresult = b.as<int>();
int cresult = c.as<int>();
REQUIRE(bresult == 1);
REQUIRE(cresult == 3);
}
TEST_CASE("usertype/usertype-utility-derived", "usertype classes must play nice when a derived class does not overload a publically visible base function") {
sol::state lua;
lua.open_libraries(sol::lib::base);
sol::constructors<sol::types<int>> basector;
sol::usertype<Base> baseusertype(basector, "get_num", &Base::get_num);
lua.set_usertype(baseusertype);
lua.script("base = Base.new(5)");
REQUIRE_NOTHROW(lua.script("print(base:get_num())"));
sol::constructors<sol::types<int>> derivedctor;
sol::usertype<Derived> derivedusertype(derivedctor,
"get_num_10", &Derived::get_num_10,
"get_num", &Derived::get_num
);
lua.set_usertype(derivedusertype);
lua.script("derived = Derived.new(7)");
Derived& derived = lua["derived"];
lua.script("dgn = derived:get_num()\n"
"print(dgn)");
lua.script("dgn10 = derived:get_num_10()\n"
"print(dgn10)");
REQUIRE((lua.get<int>("dgn10") == 70));
REQUIRE((lua.get<int>("dgn") == 7));
}
TEST_CASE("usertype/self-referential usertype", "usertype classes must play nice when C++ object types are requested for C++ code") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<self_test>("test", "g", &self_test::g, "f", &self_test::f);
lua.script(
"local a = test.new()\n"
"a:g(\"woof\")\n"
"a:f(a)\n"
);
}
TEST_CASE("usertype/issue-number-twenty-five", "Using pointers and references from C++ classes in Lua") {
struct test {
int x = 0;
test& set() {
x = 10;
return *this;
}
int get() {
return x;
}
test* pget() {
return this;
}
test create_get() {
return *this;
}
int fun(int xa) {
return xa * 10;
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<test>("test", "set", &test::set, "get", &test::get, "pointer_get", &test::pget, "fun", &test::fun, "create_get", &test::create_get);
REQUIRE_NOTHROW(lua.script("x = test.new()"));
REQUIRE_NOTHROW(lua.script("assert(x:set():get() == 10)"));
REQUIRE_NOTHROW(lua.script("y = x:pointer_get()"));
REQUIRE_NOTHROW(lua.script("y:set():get()"));
REQUIRE_NOTHROW(lua.script("y:fun(10)"));
REQUIRE_NOTHROW(lua.script("x:fun(10)"));
REQUIRE_NOTHROW(lua.script("assert(y:fun(10) == x:fun(10), '...')"));
REQUIRE_NOTHROW(lua.script("assert(y:fun(10) == 100, '...')"));
REQUIRE_NOTHROW(lua.script("assert(y:set():get() == y:set():get(), '...')"));
REQUIRE_NOTHROW(lua.script("assert(y:set():get() == 10, '...')"));
}
TEST_CASE("usertype/issue-number-thirty-five", "using value types created from lua-called C++ code, fixing user-defined types with constructors") {
sol::state lua;
lua.open_libraries(sol::lib::base);
sol::constructors<sol::types<float, float, float>> ctor;
sol::usertype<Vec> udata(ctor, "normalized", &Vec::normalized, "length", &Vec::length);
lua.set_usertype(udata);
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"print(v:length())"));
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"print(v:normalized():length())" ));
}
TEST_CASE("usertype/lua-stored-usertype", "ensure usertype values can be stored without keeping usertype object alive") {
sol::state lua;
lua.open_libraries(sol::lib::base);
{
sol::constructors<sol::types<float, float, float>> ctor;
sol::usertype<Vec> udata(ctor,
"normalized", &Vec::normalized,
"length", &Vec::length);
lua.set_usertype(udata);
// usertype dies, but still usable in lua!
}
REQUIRE_NOTHROW(lua.script("collectgarbage()\n"
"v = Vec.new(1, 2, 3)\n"
"print(v:length())"));
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"print(v:normalized():length())" ));
}
TEST_CASE("usertype/member-variables", "allow table-like accessors to behave as member variables for usertype") {
sol::state lua;
lua.open_libraries(sol::lib::base);
sol::constructors<sol::types<float, float, float>> ctor;
sol::usertype<Vec> udata(ctor,
"x", &Vec::x,
"y", &Vec::y,
"z", &Vec::z,
"normalized", &Vec::normalized,
"length", &Vec::length);
lua.set_usertype(udata);
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"v2 = Vec.new(0, 1, 0)\n"
"print(v:length())\n"
));
REQUIRE_NOTHROW(lua.script("v.x = 2\n"
"v2.y = 2\n"
"print(v.x, v.y, v.z)\n"
"print(v2.x, v2.y, v2.z)\n"
));
REQUIRE_NOTHROW(lua.script("assert(v.x == 2)\n"
"assert(v2.x == 0)\n"
"assert(v2.y == 2)\n"
));
REQUIRE_NOTHROW(lua.script("v.x = 3\n"
"local x = v.x\n"
"assert(x == 3)\n"
));
struct breaks {
sol::function f;
};
lua.open_libraries(sol::lib::base);
lua.set("b", breaks());
lua.new_usertype<breaks>("breaks",
"f", &breaks::f
);
breaks& b = lua["b"];
REQUIRE_NOTHROW(lua.script("b.f = function () print('BARK!') end"));
REQUIRE_NOTHROW(lua.script("b.f()"));
REQUIRE_NOTHROW(b.f());
}
TEST_CASE("usertype/nonmember-functions", "let users set non-member functions that take unqualified T as first parameter to usertype") {
sol::state lua;
lua.open_libraries( sol::lib::base );
lua.new_usertype<giver>( "giver",
"gief_stuff", giver::gief_stuff,
"gief", &giver::gief,
"__tostring", [](const giver& t) {
return std::to_string(t.a) + ": giving value";
}
).get<sol::table>( "giver" )
.set_function( "stuff", giver::stuff );
REQUIRE_NOTHROW(lua.script("giver.stuff()"));
REQUIRE_NOTHROW(lua.script("t = giver.new()\n"
"print(tostring(t))\n"
"t:gief()\n"
"t:gief_stuff(20)\n"));
REQUIRE((lua.get<giver>("t").a == 20));
}
TEST_CASE("usertype/unique-shared-ptr", "manage the conversion and use of unique and shared pointers ('unique usertypes')") {
const int64_t unique_value = 0x7125679355635963;
auto uniqueint = std::make_unique<int64_t>(unique_value);
auto sharedint = std::make_shared<int64_t>(unique_value);
long preusecount = sharedint.use_count();
{ sol::state lua;
lua.open_libraries(sol::lib::base);
lua.set("uniqueint", std::move(uniqueint));
lua.set("sharedint", sharedint);
std::unique_ptr<int64_t>& uniqueintref = lua["uniqueint"];
std::shared_ptr<int64_t>& sharedintref = lua["sharedint"];
int64_t* rawuniqueintref = lua["uniqueint"];
int64_t* rawsharedintref = lua["sharedint"];
int siusecount = sharedintref.use_count();
REQUIRE((uniqueintref.get() == rawuniqueintref && sharedintref.get() == rawsharedintref));
REQUIRE((uniqueintref != nullptr && sharedintref != nullptr && rawuniqueintref != nullptr && rawsharedintref != nullptr));
REQUIRE((unique_value == *uniqueintref.get() && unique_value == *sharedintref.get()));
REQUIRE((unique_value == *rawuniqueintref && unique_value == *rawsharedintref));
REQUIRE(siusecount == sharedint.use_count());
std::shared_ptr<int64_t> moreref = sharedint;
REQUIRE(unique_value == *moreref.get());
REQUIRE(moreref.use_count() == sharedint.use_count());
REQUIRE(moreref.use_count() == sharedintref.use_count());
}
REQUIRE(preusecount == sharedint.use_count());
}
TEST_CASE("regressions/one", "issue number 48") {
sol::state lua;
lua.new_usertype<vars>("vars",
"boop", &vars::boop);
REQUIRE_NOTHROW(lua.script("beep = vars.new()\n"
"beep.boop = 1"));
// test for segfault
auto my_var = lua.get<vars>("beep");
REQUIRE(my_var.boop == 1);
auto* ptr = &my_var;
REQUIRE(ptr->boop == 1);
}
TEST_CASE("usertype/get-set-references", "properly get and set with std::ref semantics. Note that to get, we must not use Unqualified<T> on the type...") {
sol::state lua;
lua.new_usertype<vars>("vars",
"boop", &vars::boop);
vars var{};
vars rvar{};
lua.set("beep", var);
lua.set("rbeep", std::ref(rvar));
auto& my_var = lua.get<vars>("beep");
auto& ref_var = lua.get<std::reference_wrapper<vars>>("rbeep");
vars& proxy_my_var = lua["beep"];
std::reference_wrapper<vars> proxy_ref_var = lua["rbeep"];
var.boop = 2;
rvar.boop = 5;
// Was return as a value: var must be diferent from "beep"
REQUIRE_FALSE(std::addressof(var) == std::addressof(my_var));
REQUIRE_FALSE(std::addressof(proxy_my_var) == std::addressof(var));
REQUIRE((my_var.boop == 0));
REQUIRE(var.boop != my_var.boop);
REQUIRE(std::addressof(ref_var) == std::addressof(rvar));
REQUIRE(std::addressof(proxy_ref_var.get()) == std::addressof(rvar));
REQUIRE(rvar.boop == 5);
REQUIRE(rvar.boop == ref_var.boop);
}
TEST_CASE("usertype/destructor-tests", "Show that proper copies / destruction happens") {
static int created = 0;
static int destroyed = 0;
static void* last_call = nullptr;
struct x {
x() {++created;}
x(const x&) {++created;}
x(x&&) {++created;}
x& operator=(const x&) {return *this;}
x& operator=(x&&) {return *this;}
~x () {++destroyed;}
};
{
sol::state lua;
lua.new_usertype<x>("x");
x x1;
x x2;
lua.set("x1copy", x1, "x2copy", x2, "x1ref", std::ref(x1));
x& x1copyref = lua["x1copy"];
x& x2copyref = lua["x2copy"];
x& x1ref = lua["x1ref"];
REQUIRE(created == 4);
REQUIRE(destroyed == 0);
REQUIRE(std::addressof(x1) == std::addressof(x1ref));
}
REQUIRE(created == 4);
REQUIRE(destroyed == 4);
}
TEST_CASE("usertype/private-constructible", "Check to make sure special snowflake types from Enterprise thingamahjongs work properly.") {
int numsaved = factory_test::num_saved;
int numkilled = factory_test::num_killed;
{
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<factory_test>("factory_test",
"new", sol::initializers(factory_test::save),
"__gc", sol::destructor(factory_test::kill),
"a", &factory_test::a
);
std::unique_ptr<factory_test, factory_test::deleter> f = factory_test::make();
lua.set("true_a", factory_test::true_a, "f", f.get());
REQUIRE_NOTHROW(lua.script("assert(f.a == true_a)"));
REQUIRE_NOTHROW(lua.script(
"local fresh_f = factory_test:new()\n"
"assert(fresh_f.a == true_a)\n"));
}
int expectednumsaved = numsaved + 1;
int expectednumkilled = numkilled + 1;
REQUIRE(expectednumsaved == factory_test::num_saved);
REQUIRE(expectednumkilled == factory_test::num_killed);
}
TEST_CASE("usertype/overloading", "Check if overloading works properly for usertypes") {
struct woof {
int var;
int func(int x) {
return var + x;
}
double func2(int x, int y) {
return var + x + y + 0.5;
}
std::string func2s(int x, std::string y) {
return y + " " + std::to_string(x);
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<woof>("woof",
"var", &woof::var,
"func", sol::overload(&woof::func, &woof::func2, &woof::func2s)
);
const std::string bark_58 = "bark 58";
REQUIRE_NOTHROW(lua.script(
"r = woof:new()\n"
"a = r:func(1)\n"
"b = r:func(1, 2)\n"
"c = r:func(58, 'bark')\n"
));
REQUIRE((lua["a"] == 1));
REQUIRE((lua["b"] == 3.5));
REQUIRE((lua["c"] == bark_58));
REQUIRE_THROWS(lua.script("r:func(1,2,'meow')"));
}
TEST_CASE("usertype/reference-and-constness", "Make sure constness compiles properly and errors out at runtime") {
struct bark {
int var = 50;
};
struct woof {
bark b;
};
struct nested {
const int f = 25;
};
struct outer {
nested n;
};
bool caughterror = false;
std::string msg;
sol::state lua;
lua.new_usertype<woof>("woof",
"b", &woof::b);
lua.new_usertype<bark>("bark",
"var", &bark::var);
lua.new_usertype<outer>("outer",
"n", &outer::n);
lua.set("w", woof());
lua.set("n", nested());
lua.set("o", outer());
lua.set("f", sol::c_call<decltype(&nested::f), &nested::f>);
lua.script(R"(
x = w.b
x.var = 20
val = w.b.var == x.var
v = f(n);
)");
woof& w = lua["w"];
bark& x = lua["x"];
nested& n = lua["n"];
int v = lua["v"];
bool val = lua["val"];
// enforce reference semantics
REQUIRE(std::addressof(w.b) == std::addressof(x));
REQUIRE(n.f == 25);
REQUIRE(v == 25);
REQUIRE(val);
REQUIRE_THROWS(lua.script("f(n, 50)"));
REQUIRE_THROWS(lua.script("o.n = 25"));
}
TEST_CASE("usertype/readonly-and-static-functions", "Check if static functions can be called on userdata and from their originating (meta)tables") {
struct bark {
int var = 50;
void func() {}
static void oh_boy() {}
static int oh_boy(std::string name) {
return static_cast<int>(name.length());
}
int operator()(int x) {
return x;
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<bark>("bark",
"var", &bark::var,
"var2", sol::readonly( &bark::var ),
"something", something,
"something2", [](int x, int y) { return x + y; },
"func", &bark::func,
"oh_boy", sol::overload(sol::resolve<void()>(&bark::oh_boy), sol::resolve<int(std::string)>(&bark::oh_boy)),
sol::meta_function::call_function, &bark::operator()
);
REQUIRE_NOTHROW(lua.script("assert(bark.oh_boy('woo') == 3)"));
REQUIRE_NOTHROW(lua.script("bark.oh_boy()"));
bark b;
lua.set("b", &b);
sol::table b_table = lua["b"];
sol::function member_func = b_table["func"];
sol::function s = b_table["something"];
sol::function s2 = b_table["something2"];
sol::table b_metatable = b_table[sol::metatable_key];
bool isvalidmt = b_metatable.valid();
REQUIRE(isvalidmt);
sol::function b_call = b_metatable["__call"];
sol::function b_as_function = lua["b"];
int x = b_as_function(1);
int y = b_call(b, 1);
bool z = s();
int w = s2(2, 3);
REQUIRE(x == 1);
REQUIRE(y == 1);
REQUIRE(z);
REQUIRE(w == 5);
lua.script(R"(
lx = b(1)
ly = getmetatable(b).__call(b, 1)
lz = b.something()
lz2 = bark.something()
lw = b.something2(2, 3)
lw2 = bark.something2(2, 3)
)");
int lx = lua["lx"];
int ly = lua["ly"];
bool lz = lua["lz"];
int lw = lua["lw"];
bool lz2 = lua["lz2"];
int lw2 = lua["lw2"];
REQUIRE(lx == 1);
REQUIRE(ly == 1);
REQUIRE(lz);
REQUIRE(lz2);
REQUIRE(lw == 5);
REQUIRE(lw2 == 5);
REQUIRE(lx == ly);
REQUIRE(lz == lz2);
REQUIRE(lw == lw2);
REQUIRE_THROWS(lua.script("b.var2 = 2"));
}
TEST_CASE("usertype/properties", "Check if member properties/variables work") {
struct bark {
int var = 50;
int var2 = 25;
int get_var2() const {
return var2;
}
int get_var3() {
return var2;
}
void set_var2( int x ) {
var2 = x;
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<bark>("bark",
"var", &bark::var,
"var2", sol::readonly( &bark::var2 ),
"a", sol::property(&bark::get_var2, &bark::set_var2),
"b", sol::property(&bark::get_var2),
"c", sol::property(&bark::get_var3),
"d", sol::property(&bark::set_var2)
);
bark b;
lua.set("b", &b);
lua.script("b.a = 59");
lua.script("var2_0 = b.a");
lua.script("var2_1 = b.b");
lua.script("b.d = 1568");
lua.script("var2_2 = b.c");
int var2_0 = lua["var2_0"];
int var2_1 = lua["var2_1"];
int var2_2 = lua["var2_2"];
REQUIRE(var2_0 == 59);
REQUIRE(var2_1 == 59);
REQUIRE(var2_2 == 1568);
REQUIRE_THROWS(lua.script("b.var2 = 24"));
REQUIRE_THROWS(lua.script("r = b.d"));
REQUIRE_THROWS(lua.script("r = b.d"));
REQUIRE_THROWS(lua.script("b.b = 25"));
REQUIRE_THROWS(lua.script("b.c = 11"));
}
TEST_CASE("usertype/safety", "crash with an exception -- not a segfault -- on bad userdata calls") {
class Test {
public:
void sayHello() { std::cout << "Hey\n"; }
};
sol::state lua;
lua.new_usertype<Test>("Test", "sayHello", &Test::sayHello);
static const std::string code = R"(
local t = Test.new()
t:sayHello() --Works fine
t.sayHello() --Uh oh.
)";
REQUIRE_THROWS(lua.script(code));
}
TEST_CASE("usertype/call_constructor", "make sure lua types can be constructed with function call constructors") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<thing>("thing",
"v", &thing::v
, sol::call_constructor, sol::constructors<sol::types<>, sol::types<int>>()
);
lua.script(R"(
t = thing(256)
)");
thing& y = lua["t"];
std::cout << y.v << std::endl;
REQUIRE(y.v == 256);
}
TEST_CASE("usertype/blank_constructor", "make sure lua types cannot be constructed if a blank / empty constructor is provided") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<thing>("thing",
"v", &thing::v
, sol::call_constructor, sol::constructors<>()
);
REQUIRE_THROWS(lua.script("t = thing(256)"));
}
TEST_CASE("usertype/no_constructor", "make sure lua types cannot be constructed if a blank / empty constructor is provided") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<thing>("thing",
"v", &thing::v
, sol::call_constructor, sol::no_constructor
);
REQUIRE_THROWS(lua.script("t = thing.new()"));
}

954
tests.cpp
View File

@ -8,191 +8,6 @@
#include <iostream> #include <iostream>
#include "test_stack_guard.hpp" #include "test_stack_guard.hpp"
struct self_test {
int bark;
self_test() : bark(100) {
}
void g(const std::string& str) {
std::cout << str << '\n';
bark += 1;
}
void f(const self_test& t) {
std::cout << "got test" << '\n';
if (t.bark != bark)
throw sol::error("bark values are not the same for self_test f function");
if (&t != this)
throw sol::error("call does not reference self for self_test f function");
}
};
int func_1(int) {
return 1;
}
std::string func_1s(std::string a) {
return "string: " + a;
}
int func_2(int, int) {
return 2;
}
void func_3(int, int, int) {
}
struct vars {
vars () {
}
int boop = 0;
~vars () {
}
};
struct fuser {
int x;
fuser() : x(0) {}
fuser(int x) : x(x) {}
int add(int y) {
return x + y;
}
int add2(int y) {
return x + y + 2;
}
};
namespace crapola {
struct fuser {
int x;
fuser() : x(0) {}
fuser(int x) : x(x) {}
fuser(int x, int x2) : x(x * x2) {}
int add(int y) {
return x + y;
}
int add2(int y) {
return x + y + 2;
}
};
} // crapola
class Base {
public:
Base(int a_num) : m_num(a_num) { }
int get_num() {
return m_num;
}
protected:
int m_num;
};
class Derived : public Base {
public:
Derived(int a_num) : Base(a_num) { }
int get_num_10() {
return 10 * m_num;
}
};
struct Vec {
float x, y, z;
Vec(float x, float y, float z) : x{x}, y{y}, z{z} {}
float length() {
return sqrtf(x*x + y*y + z*z);
}
Vec normalized() {
float invS = 1 / length();
return {x * invS, y * invS, z * invS};
}
};
struct giver {
int a = 0;
giver () {
}
void gief () {
a = 1;
}
static void stuff () {
}
static void gief_stuff (giver& t, int a) {
t.a = a;
}
~giver () {
}
};
struct factory_test {
private:
factory_test() { a = true_a; }
~factory_test() { a = 0; }
public:
static int num_saved;
static int num_killed;
struct deleter {
void operator()(factory_test* f) {
f->~factory_test();
}
};
static const int true_a;
int a;
static std::unique_ptr<factory_test, deleter> make() {
return std::unique_ptr<factory_test, deleter>( new factory_test(), deleter());
}
static void save(factory_test& f) {
new(&f)factory_test();
++num_saved;
}
static void kill(factory_test& f) {
f.~factory_test();
++num_killed;
}
};
int factory_test::num_saved = 0;
int factory_test::num_killed = 0;
const int factory_test::true_a = 156;
bool something() {
return true;
}
struct thing {
int v = 100;
thing() {}
thing(int x) : v(x) {}
};
TEST_CASE("table/traversal", "ensure that we can chain requests and tunnel down into a value if we desire") { TEST_CASE("table/traversal", "ensure that we can chain requests and tunnel down into a value if we desire") {
sol::state lua; sol::state lua;
@ -381,354 +196,6 @@ TEST_CASE("libraries2", "Check if we can open ALL the libraries") {
sol::lib::table)); sol::lib::table));
} }
TEST_CASE("usertype/usertype", "Show that we can create classes from usertype and use them") {
sol::state lua;
sol::usertype<fuser> lc{ "add", &fuser::add, "add2", &fuser::add2 };
lua.set_usertype(lc);
lua.script("a = fuser:new()\n"
"b = a:add(1)\n"
"c = a:add2(1)\n");
sol::object a = lua.get<sol::object>("a");
sol::object b = lua.get<sol::object>("b");
sol::object c = lua.get<sol::object>("c");
REQUIRE((a.is<sol::userdata_value>()));
auto atype = a.get_type();
auto btype = b.get_type();
auto ctype = c.get_type();
REQUIRE((atype == sol::type::userdata));
REQUIRE((btype == sol::type::number));
REQUIRE((ctype == sol::type::number));
int bresult = b.as<int>();
int cresult = c.as<int>();
REQUIRE(bresult == 1);
REQUIRE(cresult == 3);
}
TEST_CASE("usertype/usertype-constructors", "Show that we can create classes from usertype and use them with multiple constructors") {
sol::state lua;
sol::constructors<sol::types<>, sol::types<int>, sol::types<int, int>> con;
sol::usertype<crapola::fuser> lc(con, "add", &crapola::fuser::add, "add2", &crapola::fuser::add2);
lua.set_usertype(lc);
lua.script(
"a = fuser.new(2)\n"
"u = a:add(1)\n"
"v = a:add2(1)\n"
"b = fuser:new()\n"
"w = b:add(1)\n"
"x = b:add2(1)\n"
"c = fuser.new(2, 3)\n"
"y = c:add(1)\n"
"z = c:add2(1)\n");
sol::object a = lua.get<sol::object>("a");
auto atype = a.get_type();
REQUIRE((atype == sol::type::userdata));
sol::object u = lua.get<sol::object>("u");
sol::object v = lua.get<sol::object>("v");
REQUIRE((u.as<int>() == 3));
REQUIRE((v.as<int>() == 5));
sol::object b = lua.get<sol::object>("b");
auto btype = b.get_type();
REQUIRE((btype == sol::type::userdata));
sol::object w = lua.get<sol::object>("w");
sol::object x = lua.get<sol::object>("x");
REQUIRE((w.as<int>() == 1));
REQUIRE((x.as<int>() == 3));
sol::object c = lua.get<sol::object>("c");
auto ctype = c.get_type();
REQUIRE((ctype == sol::type::userdata));
sol::object y = lua.get<sol::object>("y");
sol::object z = lua.get<sol::object>("z");
REQUIRE((y.as<int>() == 7));
REQUIRE((z.as<int>() == 9));
}
TEST_CASE("usertype/usertype-utility", "Show internal management of classes registered through new_usertype") {
sol::state lua;
lua.new_usertype<fuser>("fuser", "add", &fuser::add, "add2", &fuser::add2);
lua.script("a = fuser.new()\n"
"b = a:add(1)\n"
"c = a:add2(1)\n");
sol::object a = lua.get<sol::object>("a");
sol::object b = lua.get<sol::object>("b");
sol::object c = lua.get<sol::object>("c");
REQUIRE((a.is<sol::userdata_value>()));
auto atype = a.get_type();
auto btype = b.get_type();
auto ctype = c.get_type();
REQUIRE((atype == sol::type::userdata));
REQUIRE((btype == sol::type::number));
REQUIRE((ctype == sol::type::number));
int bresult = b.as<int>();
int cresult = c.as<int>();
REQUIRE(bresult == 1);
REQUIRE(cresult == 3);
}
TEST_CASE("usertype/usertype-utility-derived", "usertype classes must play nice when a derived class does not overload a publically visible base function") {
sol::state lua;
lua.open_libraries(sol::lib::base);
sol::constructors<sol::types<int>> basector;
sol::usertype<Base> baseusertype(basector, "get_num", &Base::get_num);
lua.set_usertype(baseusertype);
lua.script("base = Base.new(5)");
REQUIRE_NOTHROW(lua.script("print(base:get_num())"));
sol::constructors<sol::types<int>> derivedctor;
sol::usertype<Derived> derivedusertype(derivedctor,
"get_num_10", &Derived::get_num_10,
"get_num", &Derived::get_num
);
lua.set_usertype(derivedusertype);
lua.script("derived = Derived.new(7)");
Derived& derived = lua["derived"];
lua.script("dgn = derived:get_num()\n"
"print(dgn)");
lua.script("dgn10 = derived:get_num_10()\n"
"print(dgn10)");
REQUIRE((lua.get<int>("dgn10") == 70));
REQUIRE((lua.get<int>("dgn") == 7));
}
TEST_CASE("usertype/self-referential usertype", "usertype classes must play nice when C++ object types are requested for C++ code") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<self_test>("test", "g", &self_test::g, "f", &self_test::f);
lua.script(
"local a = test.new()\n"
"a:g(\"woof\")\n"
"a:f(a)\n"
);
}
TEST_CASE("usertype/issue-number-twenty-five", "Using pointers and references from C++ classes in Lua") {
struct test {
int x = 0;
test& set() {
x = 10;
return *this;
}
int get() {
return x;
}
test* pget() {
return this;
}
test create_get() {
return *this;
}
int fun(int xa) {
return xa * 10;
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<test>("test", "set", &test::set, "get", &test::get, "pointer_get", &test::pget, "fun", &test::fun, "create_get", &test::create_get);
REQUIRE_NOTHROW(lua.script("x = test.new()"));
REQUIRE_NOTHROW(lua.script("assert(x:set():get() == 10)"));
REQUIRE_NOTHROW(lua.script("y = x:pointer_get()"));
REQUIRE_NOTHROW(lua.script("y:set():get()"));
REQUIRE_NOTHROW(lua.script("y:fun(10)"));
REQUIRE_NOTHROW(lua.script("x:fun(10)"));
REQUIRE_NOTHROW(lua.script("assert(y:fun(10) == x:fun(10), '...')"));
REQUIRE_NOTHROW(lua.script("assert(y:fun(10) == 100, '...')"));
REQUIRE_NOTHROW(lua.script("assert(y:set():get() == y:set():get(), '...')"));
REQUIRE_NOTHROW(lua.script("assert(y:set():get() == 10, '...')"));
}
TEST_CASE("usertype/issue-number-thirty-five", "using value types created from lua-called C++ code, fixing user-defined types with constructors") {
sol::state lua;
lua.open_libraries(sol::lib::base);
sol::constructors<sol::types<float, float, float>> ctor;
sol::usertype<Vec> udata(ctor, "normalized", &Vec::normalized, "length", &Vec::length);
lua.set_usertype(udata);
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"print(v:length())"));
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"print(v:normalized():length())" ));
}
TEST_CASE("usertype/lua-stored-usertype", "ensure usertype values can be stored without keeping usertype object alive") {
sol::state lua;
lua.open_libraries(sol::lib::base);
{
sol::constructors<sol::types<float, float, float>> ctor;
sol::usertype<Vec> udata(ctor,
"normalized", &Vec::normalized,
"length", &Vec::length);
lua.set_usertype(udata);
// usertype dies, but still usable in lua!
}
REQUIRE_NOTHROW(lua.script("collectgarbage()\n"
"v = Vec.new(1, 2, 3)\n"
"print(v:length())"));
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"print(v:normalized():length())" ));
}
TEST_CASE("usertype/member-variables", "allow table-like accessors to behave as member variables for usertype") {
sol::state lua;
lua.open_libraries(sol::lib::base);
sol::constructors<sol::types<float, float, float>> ctor;
sol::usertype<Vec> udata(ctor,
"x", &Vec::x,
"y", &Vec::y,
"z", &Vec::z,
"normalized", &Vec::normalized,
"length", &Vec::length);
lua.set_usertype(udata);
REQUIRE_NOTHROW(lua.script("v = Vec.new(1, 2, 3)\n"
"v2 = Vec.new(0, 1, 0)\n"
"print(v:length())\n"
));
REQUIRE_NOTHROW(lua.script("v.x = 2\n"
"v2.y = 2\n"
"print(v.x, v.y, v.z)\n"
"print(v2.x, v2.y, v2.z)\n"
));
REQUIRE_NOTHROW(lua.script("assert(v.x == 2)\n"
"assert(v2.x == 0)\n"
"assert(v2.y == 2)\n"
));
REQUIRE_NOTHROW(lua.script("v.x = 3\n"
"local x = v.x\n"
"assert(x == 3)\n"
));
struct breaks {
sol::function f;
};
lua.open_libraries(sol::lib::base);
lua.set("b", breaks());
lua.new_usertype<breaks>("breaks",
"f", &breaks::f
);
breaks& b = lua["b"];
REQUIRE_NOTHROW(lua.script("b.f = function () print('BARK!') end"));
REQUIRE_NOTHROW(lua.script("b.f()"));
REQUIRE_NOTHROW(b.f());
}
TEST_CASE("usertype/nonmember-functions", "let users set non-member functions that take unqualified T as first parameter to usertype") {
sol::state lua;
lua.open_libraries( sol::lib::base );
lua.new_usertype<giver>( "giver",
"gief_stuff", giver::gief_stuff,
"gief", &giver::gief,
"__tostring", [](const giver& t) {
return std::to_string(t.a) + ": giving value";
}
).get<sol::table>( "giver" )
.set_function( "stuff", giver::stuff );
REQUIRE_NOTHROW(lua.script("giver.stuff()"));
REQUIRE_NOTHROW(lua.script("t = giver.new()\n"
"print(tostring(t))\n"
"t:gief()\n"
"t:gief_stuff(20)\n"));
REQUIRE((lua.get<giver>("t").a == 20));
}
TEST_CASE("usertype/unique-shared-ptr", "manage the conversion and use of unique and shared pointers ('unique usertypes')") {
const int64_t unique_value = 0x7125679355635963;
auto uniqueint = std::make_unique<int64_t>(unique_value);
auto sharedint = std::make_shared<int64_t>(unique_value);
long preusecount = sharedint.use_count();
{ sol::state lua;
lua.open_libraries(sol::lib::base);
lua.set("uniqueint", std::move(uniqueint));
lua.set("sharedint", sharedint);
std::unique_ptr<int64_t>& uniqueintref = lua["uniqueint"];
std::shared_ptr<int64_t>& sharedintref = lua["sharedint"];
int64_t* rawuniqueintref = lua["uniqueint"];
int64_t* rawsharedintref = lua["sharedint"];
int siusecount = sharedintref.use_count();
REQUIRE((uniqueintref.get() == rawuniqueintref && sharedintref.get() == rawsharedintref));
REQUIRE((uniqueintref != nullptr && sharedintref != nullptr && rawuniqueintref != nullptr && rawsharedintref != nullptr));
REQUIRE((unique_value == *uniqueintref.get() && unique_value == *sharedintref.get()));
REQUIRE((unique_value == *rawuniqueintref && unique_value == *rawsharedintref));
REQUIRE(siusecount == sharedint.use_count());
std::shared_ptr<int64_t> moreref = sharedint;
REQUIRE(unique_value == *moreref.get());
REQUIRE(moreref.use_count() == sharedint.use_count());
REQUIRE(moreref.use_count() == sharedintref.use_count());
}
REQUIRE(preusecount == sharedint.use_count());
}
TEST_CASE("regressions/one", "issue number 48") {
sol::state lua;
lua.new_usertype<vars>("vars",
"boop", &vars::boop);
REQUIRE_NOTHROW(lua.script("beep = vars.new()\n"
"beep.boop = 1"));
// test for segfault
auto my_var = lua.get<vars>("beep");
REQUIRE(my_var.boop == 1);
auto* ptr = &my_var;
REQUIRE(ptr->boop == 1);
}
TEST_CASE("usertype/get-set-references", "properly get and set with std::ref semantics. Note that to get, we must not use Unqualified<T> on the type...") {
sol::state lua;
lua.new_usertype<vars>("vars",
"boop", &vars::boop);
vars var{};
vars rvar{};
lua.set("beep", var);
lua.set("rbeep", std::ref(rvar));
auto& my_var = lua.get<vars>("beep");
auto& ref_var = lua.get<std::reference_wrapper<vars>>("rbeep");
vars& proxy_my_var = lua["beep"];
std::reference_wrapper<vars> proxy_ref_var = lua["rbeep"];
var.boop = 2;
rvar.boop = 5;
// Was return as a value: var must be diferent from "beep"
REQUIRE_FALSE(std::addressof(var) == std::addressof(my_var));
REQUIRE_FALSE(std::addressof(proxy_my_var) == std::addressof(var));
REQUIRE((my_var.boop == 0));
REQUIRE(var.boop != my_var.boop);
REQUIRE(std::addressof(ref_var) == std::addressof(rvar));
REQUIRE(std::addressof(proxy_ref_var.get()) == std::addressof(rvar));
REQUIRE(rvar.boop == 5);
REQUIRE(rvar.boop == ref_var.boop);
}
TEST_CASE("interop/null-to-nil-and-back", "nil should be the given type when a pointer from C++ is returned as nullptr, and nil should result in nullptr in connected C++ code") { TEST_CASE("interop/null-to-nil-and-back", "nil should be the given type when a pointer from C++ is returned as nullptr, and nil should result in nullptr in connected C++ code") {
sol::state lua; sol::state lua;
lua.open_libraries(sol::lib::base); lua.open_libraries(sol::lib::base);
@ -744,310 +211,6 @@ TEST_CASE("interop/null-to-nil-and-back", "nil should be the given type when a p
"assert(x == nil)")); "assert(x == nil)"));
} }
TEST_CASE("usertype/destructor-tests", "Show that proper copies / destruction happens") {
static int created = 0;
static int destroyed = 0;
static void* last_call = nullptr;
struct x {
x() {++created;}
x(const x&) {++created;}
x(x&&) {++created;}
x& operator=(const x&) {return *this;}
x& operator=(x&&) {return *this;}
~x () {++destroyed;}
};
{
sol::state lua;
lua.new_usertype<x>("x");
x x1;
x x2;
lua.set("x1copy", x1, "x2copy", x2, "x1ref", std::ref(x1));
x& x1copyref = lua["x1copy"];
x& x2copyref = lua["x2copy"];
x& x1ref = lua["x1ref"];
REQUIRE(created == 4);
REQUIRE(destroyed == 0);
REQUIRE(std::addressof(x1) == std::addressof(x1ref));
}
REQUIRE(created == 4);
REQUIRE(destroyed == 4);
}
TEST_CASE("functions/overloading", "Check if overloading works properly for regular set function syntax") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.set_function("func_1", func_1);
lua.set_function("func", sol::overload(func_1, func_1s, func_2, func_3));
const std::string string_bark = "string: bark";
REQUIRE_NOTHROW(lua.script(
"a = func(1)\n"
"b = func('bark')\n"
"c = func(1,2)\n"
"func(1,2,3)\n"
));
REQUIRE((lua["a"] == 1));
REQUIRE((lua["b"] == string_bark));
REQUIRE((lua["c"] == 2));
REQUIRE_THROWS(lua.script("func(1,2,'meow')"));
}
TEST_CASE("usertype/private-constructible", "Check to make sure special snowflake types from Enterprise thingamahjongs work properly.") {
int numsaved = factory_test::num_saved;
int numkilled = factory_test::num_killed;
{
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<factory_test>("factory_test",
"new", sol::initializers(factory_test::save),
"__gc", sol::destructor(factory_test::kill),
"a", &factory_test::a
);
std::unique_ptr<factory_test, factory_test::deleter> f = factory_test::make();
lua.set("true_a", factory_test::true_a, "f", f.get());
REQUIRE_NOTHROW(lua.script("assert(f.a == true_a)"));
REQUIRE_NOTHROW(lua.script(
"local fresh_f = factory_test:new()\n"
"assert(fresh_f.a == true_a)\n"));
}
int expectednumsaved = numsaved + 1;
int expectednumkilled = numkilled + 1;
REQUIRE(expectednumsaved == factory_test::num_saved);
REQUIRE(expectednumkilled == factory_test::num_killed);
}
TEST_CASE("usertype/overloading", "Check if overloading works properly for usertypes") {
struct woof {
int var;
int func(int x) {
return var + x;
}
double func2(int x, int y) {
return var + x + y + 0.5;
}
std::string func2s(int x, std::string y) {
return y + " " + std::to_string(x);
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<woof>("woof",
"var", &woof::var,
"func", sol::overload(&woof::func, &woof::func2, &woof::func2s)
);
const std::string bark_58 = "bark 58";
REQUIRE_NOTHROW(lua.script(
"r = woof:new()\n"
"a = r:func(1)\n"
"b = r:func(1, 2)\n"
"c = r:func(58, 'bark')\n"
));
REQUIRE((lua["a"] == 1));
REQUIRE((lua["b"] == 3.5));
REQUIRE((lua["c"] == bark_58));
REQUIRE_THROWS(lua.script("r:func(1,2,'meow')"));
}
TEST_CASE("usertype/reference-and-constness", "Make sure constness compiles properly and errors out at runtime") {
struct bark {
int var = 50;
};
struct woof {
bark b;
};
struct nested {
const int f = 25;
};
struct outer {
nested n;
};
bool caughterror = false;
std::string msg;
sol::state lua;
lua.new_usertype<woof>("woof",
"b", &woof::b);
lua.new_usertype<bark>("bark",
"var", &bark::var);
lua.new_usertype<outer>("outer",
"n", &outer::n);
lua.set("w", woof());
lua.set("n", nested());
lua.set("o", outer());
lua.set("f", sol::c_call<decltype(&nested::f), &nested::f>);
lua.script(R"(
x = w.b
x.var = 20
val = w.b.var == x.var
v = f(n);
)");
woof& w = lua["w"];
bark& x = lua["x"];
nested& n = lua["n"];
int v = lua["v"];
bool val = lua["val"];
// enforce reference semantics
REQUIRE(std::addressof(w.b) == std::addressof(x));
REQUIRE(n.f == 25);
REQUIRE(v == 25);
REQUIRE(val);
REQUIRE_THROWS(lua.script("f(n, 50)"));
REQUIRE_THROWS(lua.script("o.n = 25"));
}
TEST_CASE("usertype/readonly-and-static-functions", "Check if static functions can be called on userdata and from their originating (meta)tables") {
struct bark {
int var = 50;
void func() {}
static void oh_boy() {}
static int oh_boy(std::string name) {
return static_cast<int>(name.length());
}
int operator()(int x) {
return x;
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<bark>("bark",
"var", &bark::var,
"var2", sol::readonly( &bark::var ),
"something", something,
"something2", [](int x, int y) { return x + y; },
"func", &bark::func,
"oh_boy", sol::overload(sol::resolve<void()>(&bark::oh_boy), sol::resolve<int(std::string)>(&bark::oh_boy)),
sol::meta_function::call_function, &bark::operator()
);
REQUIRE_NOTHROW(lua.script("assert(bark.oh_boy('woo') == 3)"));
REQUIRE_NOTHROW(lua.script("bark.oh_boy()"));
bark b;
lua.set("b", &b);
sol::table b_table = lua["b"];
sol::function member_func = b_table["func"];
sol::function s = b_table["something"];
sol::function s2 = b_table["something2"];
sol::table b_metatable = b_table[sol::metatable_key];
bool isvalidmt = b_metatable.valid();
REQUIRE(isvalidmt);
sol::function b_call = b_metatable["__call"];
sol::function b_as_function = lua["b"];
int x = b_as_function(1);
int y = b_call(b, 1);
bool z = s();
int w = s2(2, 3);
REQUIRE(x == 1);
REQUIRE(y == 1);
REQUIRE(z);
REQUIRE(w == 5);
lua.script(R"(
lx = b(1)
ly = getmetatable(b).__call(b, 1)
lz = b.something()
lz2 = bark.something()
lw = b.something2(2, 3)
lw2 = bark.something2(2, 3)
)");
int lx = lua["lx"];
int ly = lua["ly"];
bool lz = lua["lz"];
int lw = lua["lw"];
bool lz2 = lua["lz2"];
int lw2 = lua["lw2"];
REQUIRE(lx == 1);
REQUIRE(ly == 1);
REQUIRE(lz);
REQUIRE(lz2);
REQUIRE(lw == 5);
REQUIRE(lw2 == 5);
REQUIRE(lx == ly);
REQUIRE(lz == lz2);
REQUIRE(lw == lw2);
REQUIRE_THROWS(lua.script("b.var2 = 2"));
}
TEST_CASE("usertype/properties", "Check if member properties/variables work") {
struct bark {
int var = 50;
int var2 = 25;
int get_var2() const {
return var2;
}
int get_var3() {
return var2;
}
void set_var2( int x ) {
var2 = x;
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<bark>("bark",
"var", &bark::var,
"var2", sol::readonly( &bark::var2 ),
"a", sol::property(&bark::get_var2, &bark::set_var2),
"b", sol::property(&bark::get_var2),
"c", sol::property(&bark::get_var3),
"d", sol::property(&bark::set_var2)
);
bark b;
lua.set("b", &b);
lua.script("b.a = 59");
lua.script("var2_0 = b.a");
lua.script("var2_1 = b.b");
lua.script("b.d = 1568");
lua.script("var2_2 = b.c");
int var2_0 = lua["var2_0"];
int var2_1 = lua["var2_1"];
int var2_2 = lua["var2_2"];
REQUIRE(var2_0 == 59);
REQUIRE(var2_1 == 59);
REQUIRE(var2_2 == 1568);
REQUIRE_THROWS(lua.script("b.var2 = 24"));
REQUIRE_THROWS(lua.script("r = b.d"));
REQUIRE_THROWS(lua.script("r = b.d"));
REQUIRE_THROWS(lua.script("b.b = 25"));
REQUIRE_THROWS(lua.script("b.c = 11"));
}
TEST_CASE("utilities/this_state", "Ensure this_state argument can be gotten anywhere in the function.") { TEST_CASE("utilities/this_state", "Ensure this_state argument can be gotten anywhere in the function.") {
struct bark { struct bark {
int with_state(sol::this_state l, int a, int b) { int with_state(sol::this_state l, int a, int b) {
@ -1096,49 +259,6 @@ TEST_CASE("utilities/this_state", "Ensure this_state argument can be gotten anyw
REQUIRE(la == 625); REQUIRE(la == 625);
} }
TEST_CASE("usertype/call_constructor", "make sure lua types can be constructed with function call constructors") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<thing>("thing",
"v", &thing::v
, sol::call_constructor, sol::constructors<sol::types<>, sol::types<int>>()
);
lua.script(R"(
t = thing(256)
)");
thing& y = lua["t"];
std::cout << y.v << std::endl;
REQUIRE(y.v == 256);
}
TEST_CASE("usertype/blank_constructor", "make sure lua types cannot be constructed if a blank / empty constructor is provided") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<thing>("thing",
"v", &thing::v
, sol::call_constructor, sol::constructors<>()
);
REQUIRE_THROWS(lua.script("t = thing(256)"));
}
TEST_CASE("usertype/no_constructor", "make sure lua types cannot be constructed if a blank / empty constructor is provided") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<thing>("thing",
"v", &thing::v
, sol::call_constructor, sol::no_constructor
);
REQUIRE_THROWS(lua.script("t = thing.new()"));
}
TEST_CASE("object/conversions", "make sure all basic reference types can be made into objects") { TEST_CASE("object/conversions", "make sure all basic reference types can be made into objects") {
sol::state lua; sol::state lua;
lua.open_libraries(sol::lib::base); lua.open_libraries(sol::lib::base);
@ -1187,18 +307,66 @@ TEST_CASE("object/conversions", "make sure all basic reference types can be made
REQUIRE(omn.get_type() == sol::type::nil); REQUIRE(omn.get_type() == sol::type::nil);
} }
TEST_CASE("usertype/safety", "crash with an exception -- not a segfault -- on bad userdata calls") { TEST_CASE("state/require_script", "opening strings as 'requires' clauses") {
class Test { std::string code = "return { modfunc = function () return 221 end }";
public:
void sayHello() { std::cout << "Hey\n"; }
};
sol::state lua; sol::state lua;
lua.new_usertype<Test>("Test", "sayHello", &Test::sayHello); sol::table thingy1 = lua.require_script("thingy", code);
static const std::string code = R"( sol::table thingy2 = lua.require_script("thingy", code);
local t = Test.new()
t:sayHello() --Works fine int val1 = thingy1["modfunc"]();
t.sayHello() --Uh oh. int val2 = thingy2["modfunc"]();
)"; REQUIRE(val1 == 221);
REQUIRE_THROWS(lua.script(code)); REQUIRE(val2 == 221);
// must have loaded the same table
REQUIRE(thingy1 == thingy2);
}
TEST_CASE("state/require", "opening using a file") {
struct open {
static int open_func(lua_State* L) {
sol::state_view lua = L;
return sol::stack::push(L, lua.create_table_with("modfunc", sol::function_args([]() { return 221; })));
}
};
sol::state lua;
sol::table thingy1 = lua.require("thingy", open::open_func);
sol::table thingy2 = lua.require("thingy", open::open_func);
int val1 = thingy1["modfunc"]();
int val2 = thingy2["modfunc"]();
REQUIRE(val1 == 221);
REQUIRE(val2 == 221);
// THIS IS ONLY REQUIRED IN LUA 5.3, FOR SOME REASON
// must have loaded the same table
// REQUIRE(thingy1 == thingy2);
}
TEST_CASE("state/multi-require", "make sure that requires transfers across hand-rolled script implementation and standard requiref") {
struct open {
static int open_func(lua_State* L) {
sol::state_view lua = L;
return sol::stack::push(L, lua.create_table_with("modfunc", sol::function_args([]() { return 221; })));
}
};
std::string code = "return { modfunc = function () return 221 end }";
sol::state lua;
sol::table thingy1 = lua.require("thingy", open::open_func);
sol::table thingy2 = lua.require("thingy", open::open_func);
sol::table thingy3 = lua.require_script("thingy", code);
int val1 = thingy1["modfunc"]();
int val2 = thingy2["modfunc"]();
int val3 = thingy2["modfunc"]();
REQUIRE(val1 == 221);
REQUIRE(val2 == 221);
REQUIRE(val3 == 221);
// must have loaded the same table
// Lua is not obliged to give a shit. Thanks, Lua
//REQUIRE(thingy1 == thingy2);
// But we care, thankfully
//REQUIRE(thingy1 == thingy3);
REQUIRE(thingy2 == thingy3);
} }