Merge pull request #1 from ThePhD/master

Function binding both ways, and return type support
This commit is contained in:
Danny 2013-12-02 18:42:31 -08:00
commit 5455efe83c
10 changed files with 519 additions and 50 deletions

12
.gitignore vendored
View File

@ -5,3 +5,15 @@ demacro.txt
Shinobi2
dev.*
main.cpp
sol.scratch.cpp
lua-5.2.2/
Debug/
Release/
x64/
*.vcxproj
*.vcxproj.filters
*.tlog
*.lastbuildstate
*.idb
*.sln
*.gitattributes

View File

@ -24,5 +24,6 @@
#include "sol/state.hpp"
#include "sol/object.hpp"
#include "sol/function.hpp"
#endif // SOL_HPP

68
sol/function.hpp Normal file
View File

@ -0,0 +1,68 @@
// The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_HPP
#define SOL_FUNCTION_HPP
#include "reference.hpp"
#include "tuple.hpp"
#include "stack.hpp"
namespace sol {
class function : virtual public reference {
private:
template <typename... Ret>
std::tuple<Ret...> call( types<Ret...>, std::size_t n ) {
lua_pcall( state( ), n, sizeof...( Ret ), 0 );
return stack::pop_call( state( ), std::make_tuple<Ret...>, types<Ret...>( ) );
}
template <typename Ret>
Ret call( types<Ret>, std::size_t n ) {
lua_pcall( state( ), n, 1, 0 );
return stack::pop<Ret>( state( ) );
}
void call( types<void>, std::size_t n ) {
lua_pcall( state( ), n, 0, 0 );
}
void call( types<>, std::size_t n ) {
lua_pcall( state( ), n, 0, 0 );
}
public:
function() : reference() {}
function(lua_State* L, int index = -1) : reference(L, index) {
type_assert(L, index, type::function);
}
template<typename... Ret, typename... Args>
auto invoke(Args&&... args) -> decltype(call(types<Ret...>( ), sizeof...( Args ))) {
push( );
stack::push_args( state( ), std::forward<Args>( args )... );
return call( types<Ret...>( ), sizeof...( Args ) );
}
};
} // sol
#endif // SOL_FUNCTION_HPP

122
sol/functional.hpp Normal file
View File

@ -0,0 +1,122 @@
// The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "tuple.hpp"
#ifndef SOL_FUNCTIONAL_HPP
#define SOL_FUNCTIONAL_HPP
namespace sol {
namespace detail {
template<typename TFuncSignature>
struct function_traits;
template<typename T, typename R, typename... Args>
struct function_traits<R(T::*)(Args...)> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = true;
typedef std::tuple<Args...> arg_tuple_type;
typedef types<Args...> args_type;
typedef R(T::* func_pointer_type)(Args...);
typedef typename std::remove_pointer<func_pointer_type>::type func_type;
typedef R return_type;
template<std::size_t i>
using arg_n = std::tuple_element<i, arg_tuple_type>;
};
template<typename T, typename R, typename... Args>
struct function_traits<R(T::*)(Args...) const> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = true;
typedef std::tuple<Args...> arg_tuple_type;
typedef types<Args...> args_type;
typedef R(T::* func_type)(Args...);
typedef R(T::* func_pointer_type)(Args...);
typedef R return_type;
template<std::size_t i>
using arg_n = std::tuple_element<i, arg_tuple_type>;
};
template<typename R, typename... Args>
struct function_traits<R(Args...)> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = false;
typedef std::tuple<Args...> arg_tuple_type;
typedef types<Args...> args_type;
typedef R(func_type)(Args...);
typedef R(*func_pointer_type)(Args...);
typedef R return_type;
template<std::size_t i>
using arg_n = std::tuple_element<i, arg_tuple_type>;
};
template<typename R, typename... Args>
struct function_traits<R(*)(Args...)> {
static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = false;
typedef std::tuple<Args...> arg_tuple_type;
typedef types<Args...> args_type;
typedef R(func_type)(Args...);
typedef R(*func_pointer_type)(Args...);
typedef R return_type;
template<std::size_t i>
using arg_n = std::tuple_element<i, arg_tuple_type>;
};
using std::get;
template<typename Function, typename Tuple, size_t... Indices>
inline auto call(Function&& f, const Tuple& t, indices<Indices...>) -> decltype(f(get<Indices>(t)...)) {
return f(get<Indices>(t)...);
}
} // detail
template <typename... Ret>
struct lua_return_type {
typedef std::tuple<Ret...> type;
};
template <typename Ret>
struct lua_return_type<Ret> {
typedef Ret type;
};
template <>
struct lua_return_type<> {
typedef void type;
};
template <>
struct lua_return_type<void> {
typedef void type;
};
template<typename Function, typename... Args>
inline auto call(Function&& f, const std::tuple<Args...>& t) -> decltype(detail::call(std::forward<Function>(f), t, build_indices<sizeof...(Args)>{})) {
return call(std::forward<Function>(f), t, build_indices<sizeof...(Args)>{});
}
} // sol
#endif // SOL_FUNCTIONAL_HPP

155
sol/lua_function.hpp Normal file
View File

@ -0,0 +1,155 @@
// The MIT License (MIT)
// Copyright (c) 2013 Danny Y., Rapptz
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_LUA_FUNC_HPP
#define SOL_LUA_FUNC_HPP
#include "functional.hpp"
#include "stack.hpp"
namespace sol {
namespace detail {
struct lua_func {
virtual int operator () (lua_State*) {
throw sol_error("Failure to call specialized wrapped C++ function from lua");
}
virtual ~lua_func() {};
};
template<typename TFx>
struct lambda_lua_func : public lua_func {
typedef decltype(&TFx::operator()) fx_t;
typedef function_traits<fx_t> fx_traits;
TFx fx;
template<typename... FxArgs>
lambda_lua_func(FxArgs&&... fxargs) : fx(std::forward<FxArgs>(fxargs)...) {
}
virtual int operator () (lua_State* L) override {
return ( *this )( tuple_types<typename fx_traits::return_type>( ), typename fx_traits::args_type( ), L );
}
template<typename... Args>
int operator()(types<void>, types<Args...> t, lua_State* L) {
stack::pop_call(L, fx, t);
return 0;
}
template<typename... TRn, typename... Args>
int operator()(types<TRn...>, types<Args...> t, lua_State* L) {
auto r = stack::pop_call(L, fx, t);
stack::push(L, r);
return sizeof...(TRn);
}
};
template<typename TFx, typename T = TFx, bool is_member_pointer = std::is_member_function_pointer<TFx>::value>
struct explicit_lua_func : public lua_func {
typedef typename std::remove_pointer<typename std::decay<TFx>::type>::type fx_t;
typedef function_traits<fx_t> fx_traits;
TFx fx;
template<typename... FxArgs>
explicit_lua_func(FxArgs&&... fxargs) : fx(std::forward<FxArgs>(fxargs)...) {
}
virtual int operator () (lua_State* L) override {
return ( *this )( tuple_types<typename fx_traits::return_type>( ), typename fx_traits::args_type( ), L );
}
template<typename... Args>
int operator () (types<void>, types<Args...> t, lua_State* L) {
stack::pop_call(L, fx, t);
return 0;
}
template<typename... TRn, typename... Args>
int operator () (types<TRn...>, types<Args...> t, lua_State* L) {
auto r = stack::pop_call(L, fx, t);
stack::push(L, r);
return sizeof...(TRn);
}
};
template<typename TFx, typename T>
struct explicit_lua_func<TFx, T, true> : public lua_func {
typedef typename std::remove_pointer<typename std::decay<TFx>::type>::type fx_t;
typedef function_traits<fx_t> fx_traits;
struct lambda {
T* member;
TFx invocation;
template<typename... FxArgs>
lambda(T* m, FxArgs&&... fxargs) : member(m), invocation(std::forward<FxArgs>(fxargs)...) {
}
template<typename... Args>
typename fx_traits::return_type operator () (Args&&... args) {
return ((*member).*invocation)(std::forward<Args>(args)...);
}
} fx;
template<typename... FxArgs>
explicit_lua_func(T* m, FxArgs&&... fxargs) : fx(m, std::forward<FxArgs>(fxargs)...) {
}
template<typename... FxArgs>
explicit_lua_func(T& m, FxArgs&&... fxargs) : fx(std::addressof(m), std::forward<FxArgs>(fxargs)...) {
}
virtual int operator () (lua_State* L) override {
return ( *this )( tuple_types<typename fx_traits::return_type>( ), typename fx_traits::args_type( ), L );
}
template<typename... Args>
int operator () (types<void>, types<Args...> t, lua_State* L) {
stack::pop_call(L, fx, t);
return 0;
}
template<typename... TRn, typename... Args>
int operator () (types<TRn...>, types<Args...> t, lua_State* L) {
auto r = stack::pop_call(L, fx, t);
stack::push(L, r);
return sizeof...(TRn);
}
};
int lua_cfun(lua_State* L) {
void* bridgedata = lua_touserdata(L, lua_upvalueindex(1));
auto* fx = static_cast<lua_func*>(bridgedata);
int r = fx->operator()(L);
return r;
}
} // detail
} // sol
#endif // SOL_LUA_FUNC_HPP

View File

@ -23,6 +23,7 @@
#define SOL_STACK_HPP
#include "reference.hpp"
#include "tuple.hpp"
#include <utility>
#include <type_traits>
@ -150,6 +151,48 @@ inline void push(lua_State* L, const char (&str)[N]) {
inline void push(lua_State* L, const std::string& str) {
lua_pushlstring(L, str.c_str(), str.size());
}
namespace detail {
template<typename T, std::size_t... I>
inline void push(lua_State* L, indices<I...>, const T& tuplen) {
using swallow = char [];
void(swallow{ '\0', (sol::stack::push(L, std::get<I>(tuplen)), '\0')... });
}
template<typename F, typename... Vs>
auto ltr_pop( lua_State*, F&& f, types<>, Vs&&... vs )
-> decltype( f( std::forward<Vs>( vs )... ) ) {
return f( std::forward<Vs>( vs )... );
}
template<typename F, typename Head, typename... Vs>
auto ltr_pop( lua_State* L, F&& f, types<Head>, Vs&&... vs )
-> decltype( ltr_pop( L, std::forward<F>( f ), types<>( ), std::forward<Vs>( vs )..., pop<Head>( L ) ) ) {
return ltr_pop( L, std::forward<F>( f ), types<>( ), std::forward<Vs>( vs )..., pop<Head>( L ) );
}
template<typename F, typename Head, typename... Tail, typename... Vs>
auto ltr_pop( lua_State* L, F&& f, types<Head, Tail...>, Vs&&... vs )
-> decltype( ltr_pop( L, std::forward<F>( f ), types<Tail...>( ), std::forward<Vs>( vs )..., pop<Head>( L ) ) ) {
return ltr_pop( L, std::forward<F>( f ), types<Tail...>( ), std::forward<Vs>( vs )..., pop<Head>( L ) );
}
} // detail
template<typename... Args>
inline void push(lua_State* L, const std::tuple<Args...>& tuplen) {
detail::push(L, build_indices<sizeof...(Args)>(), tuplen);
}
template<typename... Args, typename TFx>
inline auto pop_call( lua_State* L, TFx&& fx, types<Args...> )->decltype( detail::ltr_pop( L, std::forward<TFx>( fx ), types<Args...>() ) ) {
return detail::ltr_pop( L, std::forward<TFx>( fx ), types<Args...>());
}
template<typename... Args>
void push_args( lua_State* L, Args&&... args ) {
using swallow = char [];
void( swallow{ '\0', ( stack::push( L, std::forward<Args>( args ) ), '\0' )... } );
}
} // stack
} // sol

View File

@ -32,7 +32,7 @@ template<class T, class...>
struct are_same : std::true_type {};
template<class T, class U, class... Args>
struct are_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T,U>{} && are_same<T, Args...>{}> {};
struct are_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T,U>::value && are_same<T, Args...>::value> {};
int atpanic(lua_State* L) {
throw sol_error(lua_tostring(L, -1));
@ -58,6 +58,8 @@ private:
std::unique_ptr<lua_State, void(*)(lua_State*)> L;
table reg;
table global;
std::unordered_map<std::string, std::unique_ptr<detail::lua_func>> funcs;
public:
state():
L(luaL_newstate(), lua_close),
@ -145,6 +147,18 @@ public:
return *this;
}
template<typename T, typename TFx>
state& set_function(T&& key, TFx&& fx) {
global.set_function(std::forward<T>(key), std::forward<TFx>(fx));
return *this;
}
template<typename T, typename TFx, typename TM>
state& set_function(T&& key, TFx&& fx, TM& mem) {
global.set_function(std::forward<T>(key), std::forward<TFx>(fx), mem);
return *this;
}
template<typename T>
table create_table(T&& key, int narr = 0, int nrec = 0) {
if(narr == 0 && nrec == 0) {

View File

@ -23,9 +23,14 @@
#define SOL_TABLE_HPP
#include "stack.hpp"
#include "lua_function.hpp"
#include <unordered_map>
#include <memory>
namespace sol {
class table : virtual public reference {
private:
std::unordered_map<std::string, std::shared_ptr<detail::lua_func>> funcs;
public:
table() noexcept: reference{} {}
table(lua_State* L, int index = -1): reference(L, index) {
@ -53,10 +58,60 @@ public:
return *this;
}
template<typename T, typename TFx>
table& set_function(T&& key, TFx&& fx) {
typedef typename std::remove_pointer<typename std::decay<TFx>::type>::type clean_fx;
const static bool isfunction = std::is_function<clean_fx>::value;
return set_fx(std::integral_constant<bool, !isfunction>(),
std::forward<T>(key), std::forward<TFx>(fx));
}
template<typename T, typename TFx, typename TM>
table& set_function(T&& key, TFx&& fx, TM& mem) {
typedef typename std::remove_pointer<typename std::decay<TFx>::type>::type clean_fx;
std::unique_ptr<detail::lua_func> sptr(new detail::explicit_lua_func<clean_fx, TM>(mem, std::forward<TFx>(fx)));
return set_fx(std::forward<T>(key), std::move(sptr));
}
size_t size() const {
push();
return lua_rawlen(state(), -1);
}
private:
template<typename T, typename TFx>
table& set_fx(std::true_type, T&& key, TFx&& fx) {
typedef typename std::remove_pointer<typename std::decay<TFx>::type>::type clean_fx;
std::unique_ptr<detail::lua_func> sptr(new detail::lambda_lua_func<clean_fx>(std::forward<TFx>(fx)));
return set_fx(std::forward<T>(key), std::move(sptr));
}
template<typename T, typename TFx>
table& set_fx(std::false_type, T&& key, TFx&& fx) {
typedef typename std::decay<TFx>::type ptr_fx;
std::unique_ptr<detail::lua_func> sptr(new detail::explicit_lua_func<ptr_fx>(std::forward<TFx>(fx)));
return set_fx(std::forward<T>(key), std::move(sptr));
}
template<typename T>
table& set_fx(T&& key, std::unique_ptr<detail::lua_func> funcptr) {
std::string fkey(key);
auto hint = funcs.find(fkey);
if (hint == funcs.end()) {
std::shared_ptr<detail::lua_func> sptr(funcptr.release());
hint = funcs.emplace_hint(hint, fkey, std::move(sptr));
}
else {
hint->second.reset(funcptr.release());
}
detail::lua_func* target = hint->second.get();
lua_CFunction freefunc = &detail::lua_cfun;
lua_pushlightuserdata(state(), static_cast<void*>(target));
lua_pushcclosure(state(), freefunc, 1);
lua_setglobal(state(), fkey.c_str());
return *this;
}
};
} // sol

View File

@ -26,28 +26,25 @@
#include <cstddef>
namespace sol {
namespace detail {
template<size_t... Ns>
struct indices {};
struct indices { };
template<size_t N, size_t... Ns>
struct build_indices : build_indices<N-1, N-1, Ns...> {};
struct build_indices : build_indices<N - 1, N - 1, Ns...> { };
template<size_t... Ns>
struct build_indices<0, Ns...> : indices<Ns...> {};
struct build_indices<0, Ns...> : indices<Ns...>{ };
using std::get;
template<typename... Args>
struct types : build_indices<sizeof...(Args)> { };
template<typename Function, typename Tuple, size_t... Indices>
inline auto call(Function f, const Tuple& t, indices<Indices...>) -> decltype(f(get<Indices>(t)...)) {
return f(get<Indices>(t)...);
}
} // detail
template<typename... Args>
struct tuple_types : types<Args...>, std::false_type { };
template<typename... Args>
struct tuple_types<std::tuple<Args...>> : types<Args...>, std::true_type{ };
template<typename Function, typename... Args>
inline auto call(Function f, const std::tuple<Args...>& t) -> decltype(detail::call(f, t, detail::build_indices<sizeof...(Args)>{})) {
return call(f, t, detail::build_indices<sizeof...(Args)>{});
}
} // sol
#endif // SOL_TUPLE_HPP

View File

@ -28,7 +28,9 @@
namespace sol {
struct nil_t {};
const nil_t nil{};
const nil_t nil{ };
struct Void_t { };
const Void_t Void{};
enum class type : int {
none = LUA_TNONE,