Put detail classes not part of the interface into deeper namespaces to clear up the to level.

This commit is contained in:
ThePhD 2016-02-23 23:39:46 -05:00
parent 16c6f62fe3
commit 3d7a93ae1c
19 changed files with 215 additions and 215 deletions

View File

@ -26,6 +26,7 @@
#include <iostream>
namespace sol {
namespace detail {
namespace debug {
inline std::string dump_types(lua_State* L) {
std::string visual;
@ -46,6 +47,7 @@ inline void print_stack(lua_State* L) {
inline void print_section(const std::string& message, lua_State* L) {
std::cout << "-- " << message << " -- [ " << dump_types(L) << " ]" << std::endl;
}
} // detail
} // debug
} // sol

View File

@ -34,6 +34,14 @@
#include <memory>
namespace sol {
template <typename Sig, typename... Args>
struct function_packer : std::tuple<Args...> { using std::tuple<Args...>::tuple; };
template <typename Sig, typename... Args>
function_packer<Sig, Args...> function_pack( Args&&... args ) {
return function_packer<Sig, Args...>(std::forward<Args>(args)...);
}
class function : public reference {
private:
void luacall( std::ptrdiff_t argcount, std::ptrdiff_t resultcount ) const {
@ -218,7 +226,7 @@ struct pusher<function_sig<Sigs...>> {
template<typename R, typename... Args, typename Fx, typename = std::result_of_t<Fx(Args...)>>
static void set_memfx(types<R(Args...)> t, lua_State* L, Fx&& fx) {
typedef std::decay_t<Unwrapped<Unqualified<Fx>>> raw_fx_t;
typedef std::decay_t<meta::Unwrapped<meta::Unqualified<Fx>>> raw_fx_t;
typedef R(* fx_ptr_t)(Args...);
typedef std::is_convertible<raw_fx_t, fx_ptr_t> is_convertible;
set_isconvertible_fx(is_convertible(), t, L, std::forward<Fx>(fx));
@ -226,7 +234,7 @@ struct pusher<function_sig<Sigs...>> {
template<typename Fx>
static void set_memfx(types<>, lua_State* L, Fx&& fx) {
typedef Unwrapped<Unqualified<Fx>> fx_t;
typedef meta::Unwrapped<meta::Unqualified<Fx>> fx_t;
set(L, &fx_t::operator(), std::forward<Fx>(fx));
}
@ -242,13 +250,13 @@ struct pusher<function_sig<Sigs...>> {
template<typename... Args, typename R, typename C, typename T>
static void set(lua_State* L, R (C::*memfxptr)(Args...), T&& obj) {
typedef Bool<is_specialization_of<Unqualified<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
typedef meta::Bool<meta::is_specialization_of<meta::Unqualified<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
set_reference_fx(is_reference(), L, memfxptr, std::forward<T>(obj));
}
template<typename Sig, typename C, typename T>
static void set(lua_State* L, Sig C::* memfxptr, T&& obj) {
typedef Bool<is_specialization_of<Unqualified<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
typedef meta::Bool<meta::is_specialization_of<meta::Unqualified<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
set_reference_fx(is_reference(), L, memfxptr, std::forward<T>(obj));
}
@ -260,14 +268,14 @@ struct pusher<function_sig<Sigs...>> {
template<typename Fx, typename R, typename... Args>
static void set_isconvertible_fx(std::true_type, types<R(Args...)>, lua_State* L, Fx&& fx) {
typedef R(* fx_ptr_t)(Args...);
fx_ptr_t fxptr = unwrap(std::forward<Fx>(fx));
fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx));
set(L, fxptr);
}
template<typename Fx, typename R, typename... Args>
static void set_isconvertible_fx(std::false_type, types<R(Args...)>, lua_State* L, Fx&& fx) {
typedef Unwrapped<std::decay_t<Fx>> fx_t;
std::unique_ptr<base_function> sptr(new functor_function<fx_t>(std::forward<Fx>(fx)));
typedef meta::Unwrapped<std::decay_t<Fx>> fx_t;
std::unique_ptr<base_function> sptr = std::make_unique<function_detail::functor_function<fx_t>>(std::forward<Fx>(fx));
set_fx<Fx>(L, std::move(sptr));
}
@ -279,7 +287,7 @@ struct pusher<function_sig<Sigs...>> {
template<typename Fx, typename T>
static void set_reference_fx(std::false_type, lua_State* L, Fx&& fx, T&& obj) {
typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
std::unique_ptr<base_function> sptr(new member_function<clean_fx, Unqualified<T>>(std::forward<T>(obj), std::forward<Fx>(fx)));
std::unique_ptr<function_detail::base_function> sptr = std::make_unique<function_detail::member_function<clean_fx, meta::Unqualified<T>>>(std::forward<T>(obj), std::forward<Fx>(fx));
return set_fx<Fx>(L, std::move(sptr));
}
@ -291,11 +299,11 @@ struct pusher<function_sig<Sigs...>> {
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
typedef std::decay_t<Fx> dFx;
typedef Unqualified<Fx> uFx;
typedef meta::Unqualified<Fx> uFx;
dFx memfxptr(std::forward<Fx>(fx));
auto userptr = ptr(obj);
auto userptr = detail::ptr(obj);
void* userobjdata = static_cast<void*>(userptr);
lua_CFunction freefunc = &static_member_function<std::decay_t<decltype(*userptr)>, uFx>::call;
lua_CFunction freefunc = &function_detail::static_member_function<std::decay_t<decltype(*userptr)>, uFx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, memfxptr);
upvalues += stack::push(L, userobjdata);
@ -306,24 +314,24 @@ struct pusher<function_sig<Sigs...>> {
template<typename Fx>
static void set_fx(std::false_type, lua_State* L, Fx&& fx) {
std::decay_t<Fx> target(std::forward<Fx>(fx));
lua_CFunction freefunc = &static_function<Fx>::call;
lua_CFunction freefunc = &function_detail::static_function<Fx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, target);
stack::push(L, freefunc, upvalues);
}
template<typename Fx>
static void set_fx(lua_State* L, std::unique_ptr<base_function> luafunc) {
static void set_fx(lua_State* L, std::unique_ptr<function_detail::base_function> luafunc) {
const static auto& metakey = u8"sol.ƒ.♲.🗑.(/¯◡ ‿ ◡)/¯ ~ ┻━┻ (ノ◕ヮ◕)ノ*:・゚✧";
const static char* metatablename = &metakey[0];
base_function* target = luafunc.release();
function_detail::base_function* target = luafunc.release();
void* userdata = reinterpret_cast<void*>(target);
lua_CFunction freefunc = detail::call;
lua_CFunction freefunc = function_detail::call;
int metapushed = luaL_newmetatable(L, metatablename);
if(metapushed == 1) {
lua_pushstring(L, "__gc");
stack::push(L, detail::gc);
stack::push(L, function_detail::gc);
lua_settable(L, -3);
lua_pop(L, 1);
}
@ -341,7 +349,7 @@ struct pusher<function_sig<Sigs...>> {
};
template<typename T, typename... Args>
struct pusher<sol::detail::function_packer<T, Args...>> {
struct pusher<function_packer<T, Args...>> {
template <std::size_t... I, typename FP>
static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) {
return stack::push<T>(L, std::get<I>(fp)...);
@ -364,7 +372,7 @@ template<typename... Functions>
struct pusher<overload_set<Functions...>> {
template<std::size_t... I, typename Set>
static int push(std::index_sequence<I...>, lua_State* L, Set&& set) {
pusher<function_sig<>>{}.set_fx<Set>(L, std::make_unique<overloaded_function<Functions...>>(std::get<I>(set)...));
pusher<function_sig<>>{}.set_fx<Set>(L, std::make_unique<function_detail::overloaded_function<Functions...>>(std::get<I>(set)...));
return 1;
}
@ -376,21 +384,21 @@ struct pusher<overload_set<Functions...>> {
template<typename Signature>
struct getter<std::function<Signature>> {
typedef function_traits<Signature> fx_t;
typedef meta::function_traits<Signature> fx_t;
typedef typename fx_t::args_type args_types;
typedef tuple_types<typename fx_t::return_type> return_types;
typedef meta::tuple_types<typename fx_t::return_type> return_types;
template<typename... Args, typename... Ret>
static std::function<Signature> get_std_func(types<Args...>, types<Ret...>, lua_State* L, int index = -1) {
static std::function<Signature> get_std_func(types<Ret...>, types<Args...>, lua_State* L, int index = -1) {
sol::function f(L, index);
auto fx = [f, L, index](Args&&... args) -> return_type_t<Ret...> {
auto fx = [f, L, index](Args&&... args) -> meta::return_type_t<Ret...> {
return f.call<Ret...>(std::forward<Args>(args)...);
};
return std::move(fx);
}
template<typename... FxArgs>
static std::function<Signature> get_std_func(types<FxArgs...>, types<void>, lua_State* L, int index = -1) {
static std::function<Signature> get_std_func(types<void>, types<FxArgs...>, lua_State* L, int index = -1) {
sol::function f(L, index);
auto fx = [f, L, index](FxArgs&&... args) -> void {
f(std::forward<FxArgs>(args)...);
@ -399,12 +407,12 @@ struct getter<std::function<Signature>> {
}
template<typename... FxArgs>
static std::function<Signature> get_std_func(types<FxArgs...> t, types<>, lua_State* L, int index = -1) {
return get_std_func(std::move(t), types<void>(), L, index);
static std::function<Signature> get_std_func(types<>, types<FxArgs...> t, lua_State* L, int index = -1) {
return get_std_func(types<void>(), t, L, index);
}
static std::function<Signature> get(lua_State* L, int index) {
return get_std_func(args_types(), return_types(), L, index);
return get_std_func(return_types(), args_types(), L, index);
}
};
} // stack

View File

@ -42,13 +42,14 @@ struct constructor_match {
constructor_match(T* obj) : obj(obj) {}
template <bool b, typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const {
int operator()(meta::Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const {
default_construct func{};
return stack::typed_call<b ? false : stack::stack_detail::default_check_arguments>(r, a, func, L, start, obj);
}
};
} // detail
namespace function_detail {
template <typename T, typename... TypeLists, typename Match>
inline int construct(Match&& matchfx, lua_State* L, int fxarity, int start) {
// use same overload resolution matching as all other parts of the framework
@ -109,7 +110,7 @@ struct usertype_constructor_function : base_function {
usertype_constructor_function(Functions... fxs) : overloads(fxs...) {}
template <bool b, typename Fx, std::size_t I, typename... R, typename... Args>
int call(Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) {
int call(meta::Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) {
static const auto& meta = usertype_traits<T>::metatable;
T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& referencepointer = *pointerpointer;
@ -119,7 +120,7 @@ struct usertype_constructor_function : base_function {
userdataref.pop();
auto& func = std::get<I>(overloads);
stack::typed_call<b ? false : stack::stack_detail::default_check_arguments>(r, a, func, L, start, detail::implicit_wrapper<T>(obj));
stack::typed_call<b ? false : stack::stack_detail::default_check_arguments>(r, a, func, L, start, function_detail::implicit_wrapper<T>(obj));
userdataref.push();
luaL_getmetatable(L, &meta[0]);
@ -139,9 +140,10 @@ struct usertype_constructor_function : base_function {
call_syntax syntax = stack::get_call_syntax(L, meta);
int argcount = lua_gettop(L) - static_cast<int>(syntax);
auto mfx = [&](auto&&... args) { return this->call(std::forward<decltype(args)>(args)...); };
return construct<T, pop_front_type_t<function_args_t<Functions>>...>(mfx, L, argcount, 1 + static_cast<int>(syntax));
return construct<T, meta::pop_front_type_t<meta::function_args_t<Functions>>...>(mfx, L, argcount, 1 + static_cast<int>(syntax));
}
};
} // function_detail
} // sol
#endif // SOL_FUNCTION_TYPES_ALLOCATOR_HPP

View File

@ -26,8 +26,7 @@
#include <memory>
namespace sol {
namespace detail {
struct ref_call_t {} const ref_call = ref_call_t{};
namespace function_detail {
template <typename T>
struct implicit_wrapper {
T& item;
@ -41,14 +40,6 @@ struct implicit_wrapper {
}
};
template <typename Sig, typename... Args>
struct function_packer : std::tuple<Args...> { using std::tuple<Args...>::tuple; };
template <typename Sig, typename... Args>
function_packer<Sig, Args...> function_pack( Args&&... args ) {
return function_packer<Sig, Args...>(std::forward<Args>(args)...);
}
inline bool check_types(types<>, std::index_sequence<>, lua_State*, int) {
return true;
}
@ -63,7 +54,7 @@ inline bool check_types(types<Arg, Args...>, std::index_sequence<I, In...>, lua_
template<typename T, typename Func, typename = void>
struct functor {
typedef callable_traits<Func> traits_type;
typedef meta::callable_traits<Func> traits_type;
typedef typename traits_type::args_type args_type;
typedef typename traits_type::return_type return_type;
static const std::size_t arity = traits_type::arity;
@ -98,7 +89,7 @@ struct functor {
template<typename T, typename Func>
struct functor<T, Func, std::enable_if_t<std::is_member_object_pointer<Func>::value>> {
typedef callable_traits<Func> traits_type;
typedef meta::callable_traits<Func> traits_type;
typedef typename traits_type::args_type args_type;
typedef typename traits_type::return_type return_type;
static const std::size_t arity = traits_type::arity;
@ -131,13 +122,13 @@ struct functor<T, Func, std::enable_if_t<std::is_member_object_pointer<Func>::va
template<typename T, typename Func>
struct functor<T, Func, std::enable_if_t<std::is_function<Func>::value || std::is_class<Func>::value>> {
typedef callable_traits<Func> traits_type;
typedef pop_front_type_t<typename traits_type::args_type> args_type;
typedef meta::callable_traits<Func> traits_type;
typedef meta::pop_front_type_t<typename traits_type::args_type> args_type;
typedef typename traits_type::return_type return_type;
static const std::size_t arity = traits_type::arity;
typedef std::tuple_element_t<0, typename traits_type::args_tuple_type> Arg0;
typedef std::conditional_t<std::is_pointer<Func>::value || std::is_class<Func>::value, Func, std::add_pointer_t<Func>> function_type;
static_assert(std::is_base_of<Unqualified<std::remove_pointer_t<Arg0>>, T>::value, "Any non-member-function must have a first argument which is covariant with the desired userdata type.");
static_assert(std::is_base_of<meta::Unqualified<std::remove_pointer_t<Arg0>>, T>::value, "Any non-member-function must have a first argument which is covariant with the desired userdata type.");
T* item;
function_type invocation;
@ -176,7 +167,6 @@ public:
return this->call(types<return_type>(), std::forward<Args>(args)...);
}
};
} // detail
struct base_function {
virtual int operator()(lua_State*) {
@ -186,7 +176,6 @@ struct base_function {
virtual ~base_function() {}
};
namespace detail {
static int base_call(lua_State* L, void* inheritancedata) {
if (inheritancedata == nullptr) {
throw error("call from Lua to C++ function has null data");
@ -245,10 +234,10 @@ inline int usertype_call(lua_State* L) {
template<std::size_t I>
inline int usertype_gc(lua_State* L) {
func_gc<I>(Bool<(I < 1)>(), L);
func_gc<I>(meta::Bool<(I < 1)>(), L);
return 0;
}
} // detail
} // function_detail
} // sol
#endif // SOL_FUNCTION_TYPES_CORE_HPP

View File

@ -25,11 +25,12 @@
#include "function_types_core.hpp"
namespace sol {
namespace function_detail {
template<typename Function>
struct functor_function : public base_function {
typedef decltype(&Function::operator()) function_type;
typedef function_return_t<function_type> return_type;
typedef function_args_t<function_type> args_type;
typedef meta::function_return_t<function_type> return_type;
typedef meta::function_args_t<function_type> args_type;
Function fx;
template<typename... Args>
@ -59,8 +60,8 @@ struct functor_function : public base_function {
template<typename Function, typename T>
struct member_function : public base_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef function_return_t<function_type> return_type;
typedef function_args_t<function_type> args_types;
typedef meta::function_return_t<function_type> return_type;
typedef meta::function_args_t<function_type> args_types;
struct functor {
T member;
function_type invocation;
@ -70,7 +71,7 @@ struct member_function : public base_function {
template<typename... Args>
return_type operator()(Args&&... args) {
auto& mem = unwrap(deref(member));
auto& mem = detail::unwrap(detail::deref(member));
return (mem.*invocation)(std::forward<Args>(args)...);
}
} fx;
@ -79,9 +80,10 @@ struct member_function : public base_function {
member_function(Tm&& m, Args&&... args): fx(std::forward<Tm>(m), std::forward<Args>(args)...) {}
virtual int operator()(lua_State* L) override {
return stack::typed_call(tuple_types<return_type>(), args_types(), fx, L);
return stack::typed_call(meta::tuple_types<return_type>(), args_types(), fx, L);
}
};
} // function_detail
} // sol
#endif // SOL_FUNCTION_TYPES_MEMBER_HPP

View File

@ -27,9 +27,10 @@
#include "function_types_usertype.hpp"
namespace sol {
namespace detail {
namespace function_detail {
namespace internals {
template <typename T>
struct overload_traits : function_traits<T> {};
struct overload_traits : meta::function_traits<T> {};
template <typename T, typename Func, typename X>
struct overload_traits<functor<T, Func, X>> {
@ -45,27 +46,27 @@ inline int overload_match_arity(types<>, std::index_sequence<>, std::index_seque
template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
typedef overload_traits<Unqualified<Fx>> traits;
typedef tuple_types<typename traits::return_type> return_types;
typedef overload_traits<meta::Unqualified<Fx>> traits;
typedef meta::tuple_types<typename traits::return_type> return_types;
typedef typename traits::args_type args_type;
typedef typename args_type::indices args_indices;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if (find_in_pack_v<Index<traits::arity>, Index<M>...>::value) {
if (meta::find_in_pack_v<Index<traits::arity>, Index<M>...>::value) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
if (traits::arity != fxarity) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<traits::arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
if (sizeof...(Fxs) != 0 && !detail::check_types(args_type(), args_indices(), L, start)) {
if (sizeof...(Fxs) != 0 && function_detail::check_types(args_type(), args_indices(), L, start)) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
return matchfx(Bool<sizeof...(Fxs) != 0>(), types<Fx>(), Index<I>(), return_types(), args_type(), L, fxarity, start, std::forward<Args>(args)...);
return matchfx(meta::Bool<sizeof...(Fxs) != 0>(), types<Fx>(), Index<I>(), return_types(), args_type(), L, fxarity, start, std::forward<Args>(args)...);
}
} // detail
} // internals
template <typename... Functions, typename Match, typename... Args>
inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start = 1, Args&&... args) {
return detail::overload_match_arity(types<Functions...>(), std::index_sequence_for<Functions...>(), std::index_sequence<>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
return internals::overload_match_arity(types<Functions...>(), std::index_sequence_for<Functions...>(), std::index_sequence<>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename... Functions, typename Match, typename... Args>
@ -93,7 +94,7 @@ struct overloaded_function : base_function {
}
template <bool b, typename Fx, std::size_t I, typename... R, typename... Args>
int call(Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) {
int call(meta::Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) {
auto& func = std::get<I>(overloads);
return stack::typed_call<b ? false : stack::stack_detail::default_check_arguments>(r, a, func, L, start);
}
@ -106,7 +107,7 @@ struct overloaded_function : base_function {
template <typename T, typename... Functions>
struct usertype_overloaded_function : base_function {
typedef std::tuple<detail::functor<T, std::remove_pointer_t<std::decay_t<Functions>>>...> overload_list;
typedef std::tuple<functor<T, std::remove_pointer_t<std::decay_t<Functions>>>...> overload_list;
typedef std::index_sequence_for<Functions...> indices;
overload_list overloads;
@ -118,18 +119,19 @@ struct usertype_overloaded_function : base_function {
usertype_overloaded_function(Functions... fxs) : overloads(fxs...) {}
template <bool b,typename Fx, std::size_t I, typename... R, typename... Args>
int call(Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) {
int call(meta::Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) {
auto& func = std::get<I>(overloads);
func.item = ptr(stack::get<T>(L, 1));
func.item = detail::ptr(stack::get<T>(L, 1));
return stack::typed_call<b ? false : stack::stack_detail::default_check_arguments>(r, a, func, L, start);
}
virtual int operator()(lua_State* L) override {
auto mfx = [&](auto&&... args){ return this->call(std::forward<decltype(args)>(args)...); };
return overload_match<detail::functor<T, std::remove_pointer_t<std::decay_t<Functions>>>...>(mfx, L, 2);
return overload_match<functor<T, std::remove_pointer_t<std::decay_t<Functions>>>...>(mfx, L, 2);
}
};
} // function_detail
} // sol
#endif // SOL_FUNCTION_TYPES_OVERLOAD_HPP

View File

@ -25,15 +25,16 @@
#include "stack.hpp"
namespace sol {
namespace function_detail {
template<typename Function>
struct static_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef function_traits<function_type> traits_type;
typedef meta::function_traits<function_type> traits_type;
static int call(lua_State* L) {
auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L);
function_type* fx = udata.first;
int r = stack::typed_call(tuple_types<typename traits_type::return_type>(), typename traits_type::args_type(), fx, L);
int r = stack::typed_call(meta::tuple_types<typename traits_type::return_type>(), typename traits_type::args_type(), fx, L);
return r;
}
@ -45,7 +46,7 @@ struct static_function {
template<typename T, typename Function>
struct static_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef function_traits<function_type> traits_type;
typedef meta::function_traits<function_type> traits_type;
static int call(lua_State* L) {
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L, 1);
@ -53,13 +54,14 @@ struct static_member_function {
function_type& memfx = memberdata.first;
T& item = *objdata.first;
auto fx = [&item, &memfx](auto&&... args) -> typename traits_type::return_type { return (item.*memfx)(std::forward<decltype(args)>(args)...); };
return stack::typed_call(tuple_types<typename traits_type::return_type>(), typename traits_type::args_type(), fx, L);
return stack::typed_call(meta::tuple_types<typename traits_type::return_type>(), typename traits_type::args_type(), fx, L);
}
int operator()(lua_State* L) {
return call(L);
}
};
} // function_detail
} // sol
#endif // SOL_FUNCTION_TYPES_STATIC_HPP

View File

@ -27,11 +27,12 @@
#include <map>
namespace sol {
namespace function_detail {
template<typename Function, typename Tp>
struct usertype_function_core : public base_function {
typedef std::remove_pointer_t<Tp> T;
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef detail::functor<T, function_type> fx_t;
typedef functor<T, function_type> fx_t;
typedef typename fx_t::traits_type traits_type;
typedef typename fx_t::args_type args_type;
typedef typename fx_t::return_type return_type;
@ -41,9 +42,9 @@ struct usertype_function_core : public base_function {
template<typename... Args>
usertype_function_core(Args&&... args): fx(std::forward<Args>(args)...) {}
template<typename Return, typename Raw = Unqualified<Return>>
template<typename Return, typename Raw = meta::Unqualified<Return>>
std::enable_if_t<std::is_same<T, Raw>::value, int> push(lua_State* L, Return&& r) {
if(ptr(unwrap(r)) == fx.item) {
if(detail::ptr(detail::unwrap(r)) == fx.item) {
// push nothing
// note that pushing nothing with the ':'
// syntax means we leave the instance of what
@ -57,7 +58,7 @@ struct usertype_function_core : public base_function {
return stack::push(L, std::forward<Return>(r));
}
template<typename Return, typename Raw = Unqualified<Return>>
template<typename Return, typename Raw = meta::Unqualified<Return>>
std::enable_if_t<!std::is_same<T, Raw>::value, int> push(lua_State* L, Return&& r) {
return stack::push(L, std::forward<Return>(r));
}
@ -92,11 +93,11 @@ struct usertype_function : public usertype_function_core<Function, Tp> {
usertype_function(Args&&... args): base_t(std::forward<Args>(args)...) {}
int prelude(lua_State* L) {
this->fx.item = ptr(stack::get<T>(L, 1));
this->fx.item = detail::ptr(stack::get<T>(L, 1));
if(this->fx.item == nullptr) {
throw error("userdata for function call is null: are you using the wrong syntax? (use item:function/variable(...) syntax)");
}
return static_cast<base_t&>(*this)(tuple_types<return_type>(), args_type(), Index<2>(), L);
return static_cast<base_t&>(*this)(meta::tuple_types<return_type>(), args_type(), Index<2>(), L);
}
virtual int operator()(lua_State* L) override {
@ -123,9 +124,9 @@ struct usertype_variable_function : public usertype_function_core<Function, Tp>
}
switch(argcount) {
case 2:
return static_cast<base_t&>(*this)(tuple_types<return_type>(), types<>(), Index<2>(), L);
return static_cast<base_t&>(*this)(meta::tuple_types<return_type>(), types<>(), Index<2>(), L);
case 3:
return static_cast<base_t&>(*this)(tuple_types<void>(), args_type(), Index<3>(), L);
return static_cast<base_t&>(*this)(meta::tuple_types<void>(), args_type(), Index<3>(), L);
default:
throw error("cannot get/set userdata member variable with inappropriate number of arguments");
}
@ -151,7 +152,7 @@ struct usertype_indexing_function : base_function {
std::pair<bool, base_function*>& target = functionpair->second;
if (target.first) {
stack::push<upvalue>(L, target.second);
stack::push(L, c_closure(detail::usertype_call<0>, 1));
stack::push(L, c_closure(usertype_call<0>, 1));
return 1;
}
return (*target.second)(L);
@ -164,6 +165,7 @@ struct usertype_indexing_function : base_function {
return prelude(L);
}
};
} // function_detail
} // sol
#endif // SOL_FUNCTION_TYPES_USERTYPE_HPP

View File

@ -31,7 +31,7 @@ namespace sol {
template<typename Table, typename Key>
struct proxy : public proxy_base<proxy<Table, Key>> {
private:
typedef If<is_specialization_of<Key, std::tuple>, Key, std::tuple<If<std::is_array<Unqualified<Key>>, Key&, Unqualified<Key>>>> key_type;
typedef meta::If<meta::is_specialization_of<Key, std::tuple>, Key, std::tuple<meta::If<std::is_array<meta::Unqualified<Key>>, Key&, meta::Unqualified<Key>>>> key_type;
Table tbl;
key_type key;
@ -52,7 +52,7 @@ public:
template<typename T>
proxy& set(T&& item) {
tuple_set( std::make_index_sequence<std::tuple_size<Unqualified<key_type>>::value>(), std::forward<T>(item) );
tuple_set( std::make_index_sequence<std::tuple_size<meta::Unqualified<key_type>>::value>(), std::forward<T>(item) );
return *this;
}
@ -62,24 +62,24 @@ public:
return *this;
}
template<typename U, EnableIf<Function<Unqualified<U>>> = 0>
template<typename U, meta::EnableIf<meta::Function<meta::Unqualified<U>>> = 0>
proxy& operator=(U&& other) {
return set_function(std::forward<U>(other));
}
template<typename U, DisableIf<Function<Unqualified<U>>> = 0>
template<typename U, meta::DisableIf<meta::Function<meta::Unqualified<U>>> = 0>
proxy& operator=(U&& other) {
return set(std::forward<U>(other));
}
template<typename T>
decltype(auto) get() const {
return tuple_get<T>( std::make_index_sequence<std::tuple_size<Unqualified<key_type>>::value>() );
return tuple_get<T>( std::make_index_sequence<std::tuple_size<meta::Unqualified<key_type>>::value>() );
}
template <typename K>
decltype(auto) operator[](K&& k) const {
auto keys = tuplefy(key, std::forward<K>(k));
auto keys = meta::tuplefy(key, std::forward<K>(k));
return proxy<Table, decltype(keys)>(tbl, std::move(keys));
}

View File

@ -34,13 +34,13 @@ struct proxy_base {
return super.template get<std::string>();
}
template<typename T, EnableIf<Not<is_string_constructible<T>>, is_proxy_primitive<Unqualified<T>>> = 0>
template<typename T, meta::EnableIf<meta::Not<meta::is_string_constructible<T>>, is_proxy_primitive<meta::Unqualified<T>>> = 0>
operator T ( ) const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<T>( );
}
template<typename T, EnableIf<Not<is_string_constructible<T>>, Not<is_proxy_primitive<Unqualified<T>>>> = 0>
template<typename T, meta::EnableIf<meta::Not<meta::is_string_constructible<T>>, meta::Not<is_proxy_primitive<meta::Unqualified<T>>>> = 0>
operator T& ( ) const {
const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
return super.template get<T&>( );

View File

@ -26,26 +26,15 @@
#include "traits.hpp"
namespace sol {
namespace detail {
struct default_construct {
template<typename T, typename... Args>
void operator()(T&& obj, Args&&... args) const {
std::allocator<Unqualified<T>> alloc{};
std::allocator<meta::Unqualified<T>> alloc{};
alloc.construct(obj, std::forward<Args>(args)...);
}
};
template <typename T>
struct placement_construct {
T obj;
template <typename... Args>
placement_construct( Args&&... args ) : obj(std::forward<Args>(args)...) {}
template<typename... Args>
void operator()(Args&&... args) const {
default_construct{}(obj, std::forward<Args>(args)...);
}
};
} // detail
template<typename... Args>
using constructors = sol::types<Args...>;

View File

@ -27,14 +27,14 @@
namespace sol {
namespace detail {
template<typename R, typename... Args, typename F, typename = std::result_of_t<Unqualified<F>(Args...)>>
inline auto resolve_i(types<R(Args...)>, F&&) -> R(Unqualified<F>::*)(Args...) {
template<typename R, typename... Args, typename F, typename = std::result_of_t<meta::Unqualified<F>(Args...)>>
inline auto resolve_i(types<R(Args...)>, F&&) -> R(meta::Unqualified<F>::*)(Args...) {
using Sig = R(Args...);
typedef Unqualified<F> Fu;
typedef meta::Unqualified<F> Fu;
return static_cast<Sig Fu::*>(&Fu::operator());
}
template<typename F, typename U = Unqualified<F>>
template<typename F, typename U = meta::Unqualified<F>>
inline auto resolve_f(std::true_type, F&& f)
-> decltype(resolve_i(types<function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
return resolve_i(types<function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
@ -46,7 +46,7 @@ inline void resolve_f(std::false_type, F&&) {
"Cannot use no-template-parameter call with an overloaded functor: specify the signature");
}
template<typename F, typename U = Unqualified<F>>
template<typename F, typename U = meta::Unqualified<F>>
inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(has_deducible_signature<U> {}, std::forward<F>(f))) {
return resolve_f(has_deducible_signature<U> {}, std::forward<F>(f));
}

View File

@ -50,13 +50,13 @@ struct checker;
template<typename T, typename... Args>
inline int push(lua_State* L, T&& t, Args&&... args) {
return pusher<Unqualified<T>>{}.push(L, std::forward<T>(t), std::forward<Args>(args)...);
return pusher<meta::Unqualified<T>>{}.push(L, std::forward<T>(t), std::forward<Args>(args)...);
}
// overload allows to use a pusher of a specific type, but pass in any kind of args
template<typename T, typename Arg, typename... Args>
inline int push(lua_State* L, Arg&& arg, Args&&... args) {
return pusher<Unqualified<T>>{}.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
return pusher<meta::Unqualified<T>>{}.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
inline int push_args(lua_State*) {
@ -73,17 +73,17 @@ inline int push_args(lua_State* L, T&& t, Args&&... args) {
template<typename T>
inline decltype(auto) get(lua_State* L, int index = -1) {
return getter<Unqualified<T>>{}.get(L, index);
return getter<meta::Unqualified<T>>{}.get(L, index);
}
template<typename T>
inline decltype(auto) pop(lua_State* L) {
return popper<Unqualified<T>>{}.pop(L);
return popper<meta::Unqualified<T>>{}.pop(L);
}
template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler) {
typedef Unqualified<T> Tu;
typedef meta::Unqualified<T> Tu;
checker<Tu> c;
// VC++ has a bad warning here: shut it up
(void)c;
@ -98,22 +98,22 @@ bool check(lua_State* L, int index) {
template <bool global = false, typename Key>
void get_field(lua_State* L, Key&& key) {
field_getter<Unqualified<Key>, global>{}.get(L, std::forward<Key>(key));
field_getter<meta::Unqualified<Key>, global>{}.get(L, std::forward<Key>(key));
}
template <bool global = false, typename Key>
void get_field(lua_State* L, Key&& key, int tableindex) {
field_getter<Unqualified<Key>, global>{}.get(L, std::forward<Key>(key), tableindex);
field_getter<meta::Unqualified<Key>, global>{}.get(L, std::forward<Key>(key), tableindex);
}
template <bool global = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value) {
field_setter<Unqualified<Key>, global>{}.set(L, std::forward<Key>(key), std::forward<Value>(value));
field_setter<meta::Unqualified<Key>, global>{}.set(L, std::forward<Key>(key), std::forward<Value>(value));
}
template <bool global = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
field_setter<Unqualified<Key>, global>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
field_setter<meta::Unqualified<Key>, global>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
namespace stack_detail {
@ -190,14 +190,14 @@ inline int push_userdata_pointer(lua_State* L, Key&& metatablekey) {
return push_confirmed_userdata<T>(L, std::forward<Key>(metatablekey));
}
template <typename T, typename Key, typename Arg, EnableIf<std::is_same<T, Unqualified<Arg>>> = 0>
template <typename T, typename Key, typename Arg, meta::EnableIf<std::is_same<T, meta::Unqualified<Arg>>> = 0>
inline int push_userdata_pointer(lua_State* L, Key&& metatablekey, Arg&& arg) {
if (arg == nullptr)
return push(L, nil);
return push_confirmed_userdata<T>(L, std::forward<Key>(metatablekey), std::forward<Arg>(arg));
}
template <typename T, typename Key, typename Arg, DisableIf<std::is_same<T, Unqualified<Arg>>> = 0>
template <typename T, typename Key, typename Arg, meta::DisableIf<std::is_same<T, meta::Unqualified<Arg>>> = 0>
inline int push_userdata_pointer(lua_State* L, Key&& metatablekey, Arg&& arg) {
return push_confirmed_userdata<T>(L, std::forward<Key>(metatablekey), std::forward<Arg>(arg));
}
@ -207,12 +207,12 @@ inline int push_userdata_pointer(lua_State* L, Key&& metatablekey, Arg0&& arg0,
return push_confirmed_userdata<T>(L, std::forward<Key>(metatablekey), std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...);
}
template<typename T, typename Key, typename... Args, DisableIf<std::is_pointer<T>> = 0>
template<typename T, typename Key, typename... Args, meta::DisableIf<std::is_pointer<T>> = 0>
inline int push_userdata(lua_State* L, Key&& metatablekey, Args&&... args) {
return push_confirmed_userdata<T>(L, std::forward<Key>(metatablekey), std::forward<Args>(args)...);
}
template<typename T, typename Key, typename... Args, EnableIf<std::is_pointer<T>> = 0>
template<typename T, typename Key, typename... Args, meta::EnableIf<std::is_pointer<T>> = 0>
inline int push_userdata(lua_State* L, Key&& metatablekey, Args&&... args) {
return push_userdata_pointer<T>(L, std::forward<Key>(metatablekey), std::forward<Args>(args)...);
}
@ -291,14 +291,14 @@ struct getter<T, std::enable_if_t<std::is_floating_point<T>::value>> {
};
template<typename T>
struct getter<T, std::enable_if_t<And<std::is_integral<T>, std::is_signed<T>>::value>> {
struct getter<T, std::enable_if_t<meta::And<std::is_integral<T>, std::is_signed<T>>::value>> {
static T get(lua_State* L, int index = -1) {
return static_cast<T>(lua_tointeger(L, index));
}
};
template<typename T>
struct getter<T, std::enable_if_t<And<std::is_integral<T>, std::is_unsigned<T>>::value>> {
struct getter<T, std::enable_if_t<meta::And<std::is_integral<T>, std::is_unsigned<T>>::value>> {
static T get(lua_State* L, int index = -1) {
return static_cast<T>(lua_tointeger(L, index));
}
@ -471,7 +471,7 @@ struct pusher<T, std::enable_if_t<std::is_floating_point<T>::value>> {
};
template<typename T>
struct pusher<T, std::enable_if_t<And<std::is_integral<T>, std::is_signed<T>>::value>> {
struct pusher<T, std::enable_if_t<meta::And<std::is_integral<T>, std::is_signed<T>>::value>> {
static int push(lua_State* L, const T& value) {
lua_pushinteger(L, static_cast<lua_Integer>(value));
return 1;
@ -479,7 +479,7 @@ struct pusher<T, std::enable_if_t<And<std::is_integral<T>, std::is_signed<T>>::v
};
template<typename T>
struct pusher<T, std::enable_if_t<And<std::is_integral<T>, std::is_unsigned<T>>::value>> {
struct pusher<T, std::enable_if_t<meta::And<std::is_integral<T>, std::is_unsigned<T>>::value>> {
static int push(lua_State* L, const T& value) {
typedef std::make_signed_t<T> signed_int;
return stack::push(L, static_cast<signed_int>(value));
@ -487,7 +487,7 @@ struct pusher<T, std::enable_if_t<And<std::is_integral<T>, std::is_unsigned<T>>:
};
template<typename T>
struct pusher<T, std::enable_if_t<And<has_begin_end<T>, Not<has_key_value_pair<T>>>::value>> {
struct pusher<T, std::enable_if_t<meta::And<meta::has_begin_end<T>, meta::Not<meta::has_key_value_pair<T>>>::value>> {
static int push(lua_State* L, const T& cont) {
lua_createtable(L, static_cast<int>(cont.size()), 0);
unsigned index = 1;
@ -495,7 +495,7 @@ struct pusher<T, std::enable_if_t<And<has_begin_end<T>, Not<has_key_value_pair<T
// push the index
pusher<unsigned>{}.push(L, index++);
// push the value
pusher<Unqualified<decltype(i)>>{}.push(L, i);
pusher<meta::Unqualified<decltype(i)>>{}.push(L, i);
// set the table
lua_settable(L, -3);
}
@ -504,12 +504,12 @@ struct pusher<T, std::enable_if_t<And<has_begin_end<T>, Not<has_key_value_pair<T
};
template<typename T>
struct pusher<T, std::enable_if_t<And<has_begin_end<T>, has_key_value_pair<T>>::value>> {
struct pusher<T, std::enable_if_t<meta::And<meta::has_begin_end<T>, meta::has_key_value_pair<T>>::value>> {
static int push(lua_State* L, const T& cont) {
lua_createtable(L, static_cast<int>(cont.size()), 0);
for(auto&& pair : cont) {
pusher<Unqualified<decltype(pair.first)>>{}.push(L, pair.first);
pusher<Unqualified<decltype(pair.second)>>{}.push(L, pair.second);
pusher<meta::Unqualified<decltype(pair.first)>>{}.push(L, pair.first);
pusher<meta::Unqualified<decltype(pair.second)>>{}.push(L, pair.second);
lua_settable(L, -3);
}
return 1;
@ -669,7 +669,7 @@ struct field_getter<std::tuple<Args...>, b, C> {
};
template <typename T>
struct field_getter<T, true, std::enable_if_t<is_c_str<T>::value>> {
struct field_getter<T, true, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int = -1) {
lua_getglobal(L, &key[0]);
@ -677,7 +677,7 @@ struct field_getter<T, true, std::enable_if_t<is_c_str<T>::value>> {
};
template <typename T>
struct field_getter<T, false, std::enable_if_t<is_c_str<T>::value>> {
struct field_getter<T, false, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -1) {
lua_getfield(L, tableindex, &key[0]);
@ -705,7 +705,7 @@ struct field_setter {
};
template <typename T>
struct field_setter<T, true, std::enable_if_t<is_c_str<T>::value>> {
struct field_setter<T, true, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int = -2) {
push(L, std::forward<Value>(value));
@ -714,7 +714,7 @@ struct field_setter<T, true, std::enable_if_t<is_c_str<T>::value>> {
};
template <typename T>
struct field_setter<T, false, std::enable_if_t<is_c_str<T>::value>> {
struct field_setter<T, false, std::enable_if_t<meta::is_c_str<T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
@ -860,9 +860,9 @@ inline int typed_call(types<void> tr, types<Args...> ta, Fx&& fx, lua_State* L,
return 0;
}
template<bool check_args = stack_detail::default_check_arguments, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<Not<std::is_void<Ret0>>::value>>
template<bool check_args = stack_detail::default_check_arguments, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<meta::Not<std::is_void<Ret0>>::value>>
inline int typed_call(types<Ret0, Ret...>, types<Args...> ta, Fx&& fx, lua_State* L, int start = 1, FxArgs&&... fxargs) {
decltype(auto) r = call<check_args>(types<return_type_t<Ret0, Ret...>>(), ta, L, start, fx, std::forward<FxArgs>(fxargs)...);
decltype(auto) r = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, fx, std::forward<FxArgs>(fxargs)...);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return push(L, std::forward<decltype(r)>(r));

View File

@ -68,7 +68,7 @@ public:
template<typename... Args>
void open_libraries(Args&&... args) {
static_assert(are_same<lib, Args...>::value, "all types must be libraries");
static_assert(meta::are_same<lib, Args...>::value, "all types must be libraries");
if(sizeof...(args) == 0) {
luaL_openlibs(L);
return;

View File

@ -38,7 +38,7 @@ class table_core : public reference {
friend class state_view;
template <typename... Args>
using is_global = And<Bool<top_level>, is_c_str<Args>...>;
using is_global = meta::And<meta::Bool<top_level>, meta::is_c_str<Args>...>;
template<typename... Ret, std::size_t... I, typename Keys>
auto tuple_get( types<Ret...>, std::index_sequence<I...>, Keys&& keys ) const
@ -201,21 +201,21 @@ private:
set_resolved_function<R( Args... )>( std::forward<Key>( key ), std::forward<Fx>( fx ) );
}
template<typename Fx, typename Key, EnableIf<is_specialization_of<Unqualified<Fx>, overload_set>> = 0>
template<typename Fx, typename Key, meta::EnableIf<meta::is_specialization_of<meta::Unqualified<Fx>, overload_set>> = 0>
void set_fx( types<>, Key&& key, Fx&& fx ) {
set(std::forward<Key>(key), std::forward<Fx>(fx));
}
template<typename Fx, typename Key, DisableIf<is_specialization_of<Unqualified<Fx>, overload_set>> = 0>
template<typename Fx, typename Key, meta::DisableIf<meta::is_specialization_of<meta::Unqualified<Fx>, overload_set>> = 0>
void set_fx( types<>, Key&& key, Fx&& fx ) {
typedef Unwrapped<Unqualified<Fx>> fx_t;
typedef meta::Unwrapped<meta::Unqualified<Fx>> fx_t;
typedef decltype( &fx_t::operator() ) Sig;
set_fx( types<function_signature_t<Sig>>( ), std::forward<Key>( key ), std::forward<Fx>( fx ) );
set_fx( types<meta::function_signature_t<Sig>>( ), std::forward<Key>( key ), std::forward<Fx>( fx ) );
}
template<typename... Sig, typename... Args, typename Key>
void set_resolved_function( Key&& key, Args&&... args ) {
set(std::forward<Key>(key), detail::function_pack<function_sig<Sig...>>(std::forward<Args>(args)...));
set(std::forward<Key>(key), function_pack<function_sig<Sig...>>(std::forward<Args>(args)...));
}
};
} // sol

View File

@ -28,6 +28,10 @@
#include <functional>
namespace sol {
template<std::size_t I>
using Index = std::integral_constant<std::size_t, I>;
namespace meta {
template<typename T>
struct identity { typedef T type; };
@ -69,7 +73,7 @@ using remove_member_pointer_t = remove_member_pointer<T>;
template<typename T, template<typename...> class Templ>
struct is_specialization_of : std::false_type { };
template<typename... T, template<typename...> class Templ>
struct is_specialization_of<Templ<T...>, Templ> : std::true_type { };
struct meta::is_specialization_of<Templ<T...>, Templ> : std::true_type { };
template<class T, class...>
struct are_same : std::true_type { };
@ -83,9 +87,6 @@ using Type = typename T::type;
template<bool B>
using Bool = std::integral_constant<bool, B>;
template<std::size_t I>
using Index = std::integral_constant<std::size_t, I>;
template<typename T>
using Not = Bool<!T::value>;
@ -338,6 +339,24 @@ using is_string_constructible = Or<std::is_same<Unqualified<T>, const char*>, st
template <typename T>
using is_c_str = Or<std::is_same<std::decay_t<Unqualified<T>>, char*>, std::is_same<Unqualified<T>, std::string>>;
namespace detail {
template <typename T, meta::DisableIf<meta::is_specialization_of<meta::Unqualified<T>, std::tuple>> = 0>
decltype(auto) force_tuple(T&& x) {
return std::forward_as_tuple(x);
}
template <typename T, meta::EnableIf<meta::is_specialization_of<meta::Unqualified<T>, std::tuple>> = 0>
decltype(auto) force_tuple(T&& x) {
return std::forward<T>(x);
}
} // detail
template <typename... X>
decltype(auto) tuplefy(X&&... x ) {
return std::tuple_cat(detail::force_tuple(x)...);
}
} // meta
namespace detail {
template<typename T>
auto unwrap(T&& item) -> decltype(std::forward<T>(item)) {
return std::forward<T>(item);
@ -349,7 +368,7 @@ T& unwrap(std::reference_wrapper<T> arg) {
}
template<typename T>
T& deref(T& item) {
decltype(auto) deref(T&& item) {
return item;
}
@ -392,23 +411,7 @@ template<typename T>
inline T* ptr(T* val) {
return val;
}
namespace detail {
template <typename T, DisableIf<is_specialization_of<Unqualified<T>, std::tuple>> = 0>
decltype(auto) force_tuple(T&& x) {
return std::forward_as_tuple(x);
}
template <typename T, EnableIf<is_specialization_of<Unqualified<T>, std::tuple>> = 0>
decltype(auto) force_tuple(T&& x) {
return std::forward<T>(x);
}
} // detail
template <typename... X>
decltype(auto) tuplefy(X&&... x ) {
return std::tuple_cat(detail::force_tuple(x)...);
}
} // sol
#endif // SOL_TRAITS_HPP

View File

@ -26,18 +26,19 @@
#include <cstddef>
namespace sol {
namespace detail {
using swallow = std::initializer_list<int>;
} // detail
template<typename... Args>
struct types { typedef std::index_sequence_for<Args...> indices; static constexpr std::size_t size() { return sizeof...(Args); } };
struct types { typedef std::index_sequence_for<Args...> indices; static constexpr std::size_t size() { return sizeof...(Args); } };
namespace meta {
namespace detail {
template<typename... Args>
struct tuple_types_ { typedef types<Args...> type; };
template<typename... Args>
struct tuple_types_<std::tuple<Args...>> { typedef types<Args...> type; };
using swallow = std::initializer_list<int>;
} // detail
template<typename... Args>
@ -51,9 +52,7 @@ using pop_front_type_t = typename pop_front_type<Arg>::type;
template<typename Arg, typename... Args>
struct pop_front_type<types<Arg, Args...>> { typedef types<Args...> type; };
} // meta
} // sol
#endif // SOL_TUPLE_HPP

View File

@ -186,7 +186,7 @@ template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_enum<T>::value>> : std::integral_constant<type, type::number> {};
template <typename T>
struct is_lua_primitive : std::integral_constant<bool, type::userdata != lua_type_of<Unqualified<T>>::value> { };
struct is_lua_primitive : std::integral_constant<bool, type::userdata != lua_type_of<meta::Unqualified<T>>::value> { };
template <typename T>
struct is_proxy_primitive : is_lua_primitive<T> { };
@ -199,7 +199,7 @@ struct is_proxy_primitive<std::tuple<Args...>> : std::true_type { };
template<typename T>
inline type type_of() {
return lua_type_of<Unqualified<T>>::value;
return lua_type_of<meta::Unqualified<T>>::value;
}
inline type type_of(lua_State* L, int index) {

View File

@ -102,7 +102,7 @@ template <typename... Args>
struct is_constructor<constructor_wrapper<Args...>> : std::true_type {};
template <typename... Args>
using has_constructor = Or<is_constructor<Unqualified<Args>>...>;
using has_constructor = meta::Or<is_constructor<meta::Unqualified<Args>>...>;
template <typename T>
struct is_destructor : std::false_type {};
@ -111,7 +111,7 @@ template <typename Fx>
struct is_destructor<destructor_wrapper<Fx>> : std::true_type {};
template <typename... Args>
using has_destructor = Or<is_destructor<Unqualified<Args>>...>;
using has_destructor = meta::Or<is_destructor<meta::Unqualified<Args>>...>;
template<typename T, bool refmeta, typename Funcs, typename FuncTable, typename MetaFuncTable>
inline void push_metatable(lua_State* L, bool needsindexfunction, Funcs&& funcs, FuncTable&& functable, MetaFuncTable&& metafunctable) {
@ -168,13 +168,13 @@ inline void set_global_deleter(lua_State* L, lua_CFunction cleanup, Functions&&
template<typename T>
class usertype {
private:
typedef std::map<std::string, std::pair<bool, base_function*>> function_map_t;
typedef std::map<std::string, std::pair<bool, function_detail::base_function*>> function_map_t;
std::vector<std::string> functionnames;
std::vector<std::unique_ptr<base_function>> functions;
std::vector<std::unique_ptr<function_detail::base_function>> functions;
std::vector<luaL_Reg> functiontable;
std::vector<luaL_Reg> metafunctiontable;
base_function* indexfunc;
base_function* newindexfunc;
function_detail::base_function* indexfunc;
function_detail::base_function* newindexfunc;
function_map_t indexwrapper, newindexwrapper;
lua_CFunction constructfunc;
const char* destructfuncname;
@ -183,51 +183,51 @@ private:
bool needsindexfunction;
template<typename... Functions>
std::unique_ptr<base_function> make_function(const std::string&, overload_set<Functions...> func) {
return std::make_unique<usertype_overloaded_function<T, Functions...>>(std::move(func));
std::unique_ptr<function_detail::base_function> make_function(const std::string&, overload_set<Functions...> func) {
return std::make_unique<function_detail::usertype_overloaded_function<T, Functions...>>(std::move(func));
}
template<typename... Functions>
std::unique_ptr<base_function> make_function(const std::string&, constructor_wrapper<Functions...> func) {
return std::make_unique<usertype_constructor_function<T, Functions...>>(std::move(func));
std::unique_ptr<function_detail::base_function> make_function(const std::string&, constructor_wrapper<Functions...> func) {
return std::make_unique<function_detail::usertype_constructor_function<T, Functions...>>(std::move(func));
}
template<typename Arg, typename... Args, typename Ret>
std::unique_ptr<base_function> make_function(const std::string&, Ret(*func)(Arg, Args...)) {
typedef Unqualified<std::remove_pointer_t<Arg>> Argu;
std::unique_ptr<function_detail::base_function> make_function(const std::string&, Ret(*func)(Arg, Args...)) {
typedef meta::Unqualified<std::remove_pointer_t<Arg>> Argu;
static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired userdata type.");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
return std::make_unique<function_detail::usertype_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_variable_function(std::true_type, const std::string&, Ret Base::* func) {
std::unique_ptr<function_detail::base_function> make_variable_function(std::true_type, const std::string&, Ret Base::* func) {
static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_variable_function<function_type, T>>(func);
return std::make_unique<function_detail::usertype_variable_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_variable_function(std::false_type, const std::string&, Ret Base::* func) {
std::unique_ptr<function_detail::base_function> make_variable_function(std::false_type, const std::string&, Ret Base::* func) {
static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
return std::make_unique<function_detail::usertype_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_function(const std::string& name, Ret Base::* func) {
std::unique_ptr<function_detail::base_function> make_function(const std::string& name, Ret Base::* func) {
typedef std::decay_t<decltype(func)> function_type;
return make_variable_function(std::is_member_object_pointer<function_type>(), name, func);
}
template<typename Fx>
std::unique_ptr<base_function> make_function(const std::string&, Fx&& func) {
typedef Unqualified<Fx> Fxu;
typedef std::tuple_element_t<0, typename function_traits<Fxu>::args_tuple_type> Arg0;
typedef Unqualified<std::remove_pointer_t<Arg0>> Argu;
std::unique_ptr<function_detail::base_function> make_function(const std::string&, Fx&& func) {
typedef meta::Unqualified<Fx> Fxu;
typedef std::tuple_element_t<0, typename meta::function_traits<Fxu>::args_tuple_type> Arg0;
typedef meta::Unqualified<std::remove_pointer_t<Arg0>> Argu;
static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired usertype.");
typedef std::decay_t<Fxu> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
return std::make_unique<function_detail::usertype_function<function_type, T>>(func);
}
template<std::size_t N, typename... Args>
@ -236,7 +236,7 @@ private:
std::string& name = functionnames.back();
// Insert bubble to keep with compile-time argument count (simpler and cheaper to do)
functions.push_back(nullptr);
constructfunc = construct<T, Args...>;
constructfunc = function_detail::construct<T, Args...>;
metafunctiontable.push_back({ functionnames.back().c_str(), constructfunc });
}
@ -251,7 +251,7 @@ private:
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
destructfunc = destruct<T>;
destructfunc = function_detail::destruct<T>;
destructfuncname = name.c_str();
// Insert bubble to stay with the compile-time count
functions.push_back(nullptr);
@ -270,25 +270,25 @@ private:
std::string& name = functionnames.back();
auto baseptr = make_function(name, std::move(dx.fx));
functions.emplace_back(std::move(baseptr));
destructfunc = detail::usertype_call<N>;
destructfunc = function_detail::usertype_call<N>;
destructfuncname = name.c_str();
}
template<std::size_t N, typename Fx>
void build_function(std::string funcname, Fx&& func) {
typedef std::is_member_object_pointer<Unqualified<Fx>> is_variable;
typedef std::is_member_object_pointer<meta::Unqualified<Fx>> is_variable;
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
auto baseptr = make_function(name, std::forward<Fx>(func));
functions.emplace_back(std::move(baseptr));
auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), name);
if (metamethodfind != meta_function_names.end()) {
metafunctiontable.push_back({ name.c_str(), detail::usertype_call<N> });
metafunctiontable.push_back({ name.c_str(), function_detail::usertype_call<N> });
meta_function metafunction = static_cast<meta_function>(metamethodfind - meta_function_names.begin());
switch (metafunction) {
case meta_function::garbage_collect:
destructfuncname = name.c_str();
destructfunc = detail::usertype_call<N>;
destructfunc = function_detail::usertype_call<N>;
return;
case meta_function::index:
indexfunc = functions.back().get();
@ -298,7 +298,7 @@ private:
newindexfunc = functions.back().get();
break;
case meta_function::construct:
constructfunc = detail::usertype_call<N>;
constructfunc = function_detail::usertype_call<N>;
break;
default:
break;
@ -312,7 +312,7 @@ private:
return;
}
indexwrapper.insert({ name, { true, functions.back().get() } });
functiontable.push_back({ name.c_str(), detail::usertype_call<N> });
functiontable.push_back({ name.c_str(), function_detail::usertype_call<N> });
}
template<std::size_t N, typename Fx, typename... Args>
@ -332,13 +332,13 @@ private:
void build_function_tables() {
int variableend = 0;
if (!indexwrapper.empty()) {
functions.push_back(std::make_unique<usertype_indexing_function>("__index", indexfunc, std::move(indexwrapper)));
metafunctiontable.push_back({ "__index", detail::usertype_call<N> });
functions.push_back(std::make_unique<function_detail::usertype_indexing_function>("__index", indexfunc, std::move(indexwrapper)));
metafunctiontable.push_back({ "__index", function_detail::usertype_call<N> });
++variableend;
}
if (!newindexwrapper.empty()) {
functions.push_back(std::make_unique<usertype_indexing_function>("__newindex", newindexfunc, std::move(newindexwrapper)));
metafunctiontable.push_back({ "__newindex", indexwrapper.empty() ? detail::usertype_call<N> : detail::usertype_call<N + 1> });
functions.push_back(std::make_unique<function_detail::usertype_indexing_function>("__newindex", newindexfunc, std::move(newindexwrapper)));
metafunctiontable.push_back({ "__newindex", indexwrapper.empty() ? function_detail::usertype_call<N> : function_detail::usertype_call<N + 1> });
++variableend;
}
if (destructfunc != nullptr) {
@ -346,13 +346,13 @@ private:
}
switch (variableend) {
case 2:
functiongcfunc = detail::usertype_gc<N + 2>;
functiongcfunc = function_detail::usertype_gc<N + 2>;
break;
case 1:
functiongcfunc = detail::usertype_gc<N + 1>;
functiongcfunc = function_detail::usertype_gc<N + 1>;
break;
case 0:
functiongcfunc = detail::usertype_gc<N + 0>;
functiongcfunc = function_detail::usertype_gc<N + 0>;
break;
}
}
@ -372,12 +372,12 @@ private:
usertype(usertype_detail::add_destructor_tag, Args&&... args) : usertype(usertype_detail::verified, "__gc", default_destructor, std::forward<Args>(args)...) {}
template<typename... Args>
usertype(usertype_detail::check_destructor_tag, Args&&... args) : usertype(If<And<std::is_destructible<T>, Not<usertype_detail::has_destructor<Args...>>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward<Args>(args)...) {}
usertype(usertype_detail::check_destructor_tag, Args&&... args) : usertype(meta::If<meta::And<std::is_destructible<T>, meta::Not<usertype_detail::has_destructor<Args...>>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward<Args>(args)...) {}
public:
template<typename... Args>
usertype(Args&&... args) : usertype(If<And<std::is_default_constructible<T>, Not<usertype_detail::has_constructor<Args...>>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward<Args>(args)...) {}
usertype(Args&&... args) : usertype(meta::If<meta::And<std::is_default_constructible<T>, meta::Not<usertype_detail::has_constructor<Args...>>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward<Args>(args)...) {}
template<typename... Args, typename... CArgs>
usertype(constructors<CArgs...> constructorlist, Args&&... args) : usertype(usertype_detail::verified, "new", constructorlist, "__gc", default_destructor, std::forward<Args>(args)...) {