Overloading now works and there are tests to back it up. The codebase now relies on some C++14 features explicitly.

This commit is contained in:
ThePhD 2016-02-10 11:36:00 -05:00
parent 9372b54b02
commit 2788abb34e
14 changed files with 1067 additions and 574 deletions

View File

@ -3,7 +3,7 @@
[![Build Status](https://travis-ci.org/Rapptz/sol.svg?branch=master)](https://travis-ci.org/Rapptz/sol) [![Build Status](https://travis-ci.org/Rapptz/sol.svg?branch=master)](https://travis-ci.org/Rapptz/sol)
Sol is a C++ library binding to Lua. It currently supports all Lua versions 5.1+ (LuaJIT 2.x included). Sol aims to be easy to use and easy to add to a project. Sol is a C++ library binding to Lua. It currently supports all Lua versions 5.1+ (LuaJIT 2.x included). Sol aims to be easy to use and easy to add to a project.
At this time, the library is header-only for easy integration with projects. The library is header-only for easy integration with projects.
## Sneak Peek ## Sneak Peek

View File

@ -302,7 +302,7 @@ struct pusher<function_sig<Sigs...>> {
typedef std::decay_t<Fx> dFx; typedef std::decay_t<Fx> dFx;
typedef Unqualified<Fx> uFx; typedef Unqualified<Fx> uFx;
dFx memfxptr(std::forward<Fx>(fx)); dFx memfxptr(std::forward<Fx>(fx));
auto userptr = sol::detail::get_ptr(obj); auto userptr = ptr(obj);
void* userobjdata = static_cast<void*>(userptr); void* userobjdata = static_cast<void*>(userptr);
lua_CFunction freefunc = &static_member_function<std::decay_t<decltype(*userptr)>, uFx>::call; lua_CFunction freefunc = &static_member_function<std::decay_t<decltype(*userptr)>, uFx>::call;
@ -369,6 +369,20 @@ struct pusher<std::function<Signature>> {
} }
}; };
template<typename... Functions>
struct pusher<overload_set<Functions...>> {
template<std::size_t... I, typename Set>
static int push(indices<I...>, lua_State* L, Set&& set) {
pusher<function_sig<>>{}.set_fx<Set>(L, std::make_unique<overloaded_function<Functions...>>(std::get<I>(set)...));
return 1;
}
template<typename Set>
static int push(lua_State* L, Set&& set) {
return push(build_indices<sizeof...(Functions)>(), L, std::forward<Set>(set));
}
};
template<typename Signature> template<typename Signature>
struct getter<std::function<Signature>> { struct getter<std::function<Signature>> {
typedef function_traits<Signature> fx_t; typedef function_traits<Signature> fx_t;

View File

@ -22,546 +22,10 @@
#ifndef SOL_FUNCTION_TYPES_HPP #ifndef SOL_FUNCTION_TYPES_HPP
#define SOL_FUNCTION_TYPES_HPP #define SOL_FUNCTION_TYPES_HPP
#include "stack.hpp" #include "function_types_core.hpp"
#include <memory> #include "function_types_static.hpp"
#include <unordered_map> #include "function_types_member.hpp"
#include "function_types_usertype.hpp"
namespace sol { #include "function_types_overload.hpp"
namespace detail {
struct ref_call_t {} const ref_call = ref_call_t{};
template <typename T>
struct implicit_wrapper {
T& item;
implicit_wrapper(T& item) : item(item) {}
operator T& () {
return item;
}
operator T* () {
return std::addressof(item);
}
};
template <typename Sig, typename... Args>
struct function_packer : std::tuple<Args...> { using std::tuple<Args...>::tuple; };
template <typename Sig, typename... Args>
function_packer<Sig, Args...> function_pack( Args&&... args ) {
return function_packer<Sig, Args...>(std::forward<Args>(args)...);
}
template<typename T, typename Func, typename = void>
struct functor {
typedef member_traits<Func> traits_type;
typedef typename traits_type::args_type args_type;
typedef typename traits_type::return_type return_type;
T* item;
Func invocation;
template<typename... Args>
functor(Args&&... args): item(nullptr), invocation(std::forward<Args>(args)...) {}
bool check () const {
return invocation != nullptr;
}
template<typename... Args>
void call(types<void>, Args&&... args) {
T& member = *item;
(member.*invocation)(std::forward<Args>(args)...);
}
template<typename Ret, typename... Args>
Ret call(types<Ret>, Args&&... args) {
T& member = *item;
return (member.*invocation)(std::forward<Args>(args)...);
}
template<typename... Args>
decltype(auto) operator()(Args&&... args) {
return this->call(types<return_type>{}, std::forward<Args>(args)...);
}
};
template<typename T, typename Func>
struct functor<T, Func, std::enable_if_t<std::is_member_object_pointer<Func>::value>> {
typedef member_traits<Func> traits_type;
typedef typename traits_type::args_type args_type;
typedef typename traits_type::return_type return_type;
T* item;
Func invocation;
template<typename... FxArgs>
functor(FxArgs&&... fxargs): item(nullptr), invocation(std::forward<FxArgs>(fxargs)...) {}
bool check () const {
return this->fx.invocation != nullptr;
}
template<typename Arg>
void call(types<return_type>, Arg&& arg) {
T& member = *item;
(member.*invocation) = std::forward<Arg>(arg);
}
return_type call(types<return_type>) {
T& member = *item;
return (member.*invocation);
}
template<typename... Args>
auto operator()(Args&&... args) -> decltype(std::declval<functor>().call(types<return_type>{}, std::forward<Args>(args)...)) {
return this->call(types<return_type>{}, std::forward<Args>(args)...);
}
};
template<typename T, typename Func>
struct functor<T, Func, std::enable_if_t<std::is_function<Func>::value || std::is_class<Func>::value>> {
typedef member_traits<Func> traits_type;
typedef remove_one_type<typename traits_type::args_type> args_type;
typedef typename traits_type::return_type return_type;
typedef std::conditional_t<std::is_pointer<Func>::value || std::is_class<Func>::value, Func, std::add_pointer_t<Func>> function_type;
T* item;
function_type invocation;
private:
bool check(std::false_type) const {
return true;
}
bool check(std::true_type) const {
return this->invocation != nullptr;
}
public:
template<typename... FxArgs>
functor(FxArgs&&... fxargs): item(nullptr), invocation(std::forward<FxArgs>(fxargs)...) {}
bool check () const {
return this->check(std::is_function<Func>());
}
template<typename... Args>
void call(types<void>, Args&&... args) {
T& member = *item;
invocation(implicit_wrapper<T>(member), std::forward<Args>(args)...);
}
template<typename Ret, typename... Args>
Ret call(types<Ret>, Args&&... args) {
T& member = *item;
return invocation(implicit_wrapper<T>(member), std::forward<Args>(args)...);
}
template<typename... Args>
auto operator()(Args&&... args) -> decltype(std::declval<functor>().call(types<return_type>{}, std::forward<Args>(args)...)) {
return this->call(types<return_type>{}, std::forward<Args>(args)...);
}
};
} // detail
template<typename Function>
struct static_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef function_traits<function_type> traits_type;
template<typename... Args>
static int typed_call(types<void> tr, types<Args...> ta, function_type* fx, lua_State* L) {
stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<typename... Ret, typename... Args>
static int typed_call(types<Ret...>, types<Args...> ta, function_type* fx, lua_State* L) {
typedef return_type_t<Ret...> return_type;
decltype(auto) r = stack::call(L, 0, types<return_type>(), ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return stack::push(L, std::forward<decltype(r)>(r));
}
static int call(lua_State* L) {
auto udata = stack::detail::get_as_upvalues<function_type*>(L);
function_type* fx = udata.first;
int r = typed_call(tuple_types<typename traits_type::return_type>(), typename traits_type::args_type(), fx, L);
return r;
}
int operator()(lua_State* L) {
return call(L);
}
};
template<typename T, typename Function>
struct static_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef function_traits<function_type> traits_type;
template<typename... Args>
static int typed_call(types<void> tr, types<Args...> ta, T& item, function_type& ifx, lua_State* L) {
auto fx = [&item, &ifx](Args&&... args) -> void { (item.*ifx)(std::forward<Args>(args)...); };
stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<typename... Ret, typename... Args>
static int typed_call(types<Ret...> tr, types<Args...> ta, T& item, function_type& ifx, lua_State* L) {
auto fx = [&item, &ifx](Args&&... args) -> return_type { return (item.*ifx)(std::forward<Args>(args)...); };
decltype(auto) r = stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return stack::push(L, std::forward<decltype(r)>(r));
}
static int call(lua_State* L) {
auto memberdata = stack::detail::get_as_upvalues<function_type>(L, 1);
auto objdata = stack::detail::get_as_upvalues<T*>(L, memberdata.second);
function_type& memfx = memberdata.first;
T& obj = *objdata.first;
int r = typed_call(tuple_types<typename traits_type::return_type>(), typename traits_type::args_type(), obj, memfx, L);
return r;
}
int operator()(lua_State* L) {
return call(L);
}
};
struct base_function {
static int base_call(lua_State* L, void* inheritancedata) {
if(inheritancedata == nullptr) {
throw error("call from Lua to C++ function has null data");
}
base_function* pfx = static_cast<base_function*>(inheritancedata);
base_function& fx = *pfx;
int r = fx(L);
return r;
}
static int ref_base_call(lua_State* L, void* inheritancedata) {
if(inheritancedata == nullptr) {
throw error("call from Lua to C++ function has null data");
}
base_function* pfx = static_cast<base_function*>(inheritancedata);
base_function& fx = *pfx;
int r = fx(L, detail::ref_call);
return r;
}
static int base_gc(lua_State*, void* udata) {
if(udata == nullptr) {
throw error("call from lua to C++ gc function with null data");
}
base_function* ptr = static_cast<base_function*>(udata);
std::default_delete<base_function> dx{};
dx(ptr);
return 0;
}
static int call(lua_State* L) {
void** pinheritancedata = static_cast<void**>(stack::get<upvalue>(L, 1).value);
return base_call(L, *pinheritancedata);
}
static int gc(lua_State* L) {
void** pudata = static_cast<void**>(stack::get<userdata>(L, 1).value);
return base_gc(L, *pudata);
}
template<std::size_t I>
struct usertype {
static int call(lua_State* L) {
// Zero-based template parameter, but upvalues start at 1
return ref_base_call(L, stack::get<upvalue>(L, I + 1));
}
static int ref_call(lua_State* L) {
return ref_base_call(L, stack::get<upvalue>(L, I + 1));
}
template <std::size_t limit>
static void func_gc (std::true_type, lua_State*) {
}
template <std::size_t limit>
static void func_gc (std::false_type, lua_State* L) {
// Shut up clang tautological error without throwing out std::size_t
for(std::size_t i = 0; i < limit; ++i) {
upvalue up = stack::get<upvalue>(L, static_cast<int>(i + 1));
base_function* obj = static_cast<base_function*>(up.value);
std::allocator<base_function> alloc{};
alloc.destroy(obj);
alloc.deallocate(obj, 1);
}
}
static int gc(lua_State* L) {
func_gc<I>(Bool<(I < 1)>(), L);
return 0;
}
};
virtual int operator()(lua_State*) {
throw error("failure to call specialized wrapped C++ function from Lua");
}
virtual int operator()(lua_State*, detail::ref_call_t) {
throw error("failure to call reference specialized wrapped C++ function from Lua");
}
virtual ~base_function() {}
};
template<typename Function>
struct functor_function : public base_function {
typedef decltype(&Function::operator()) function_type;
typedef function_return_t<function_type> return_type;
typedef function_args_t<function_type> args_type;
Function fx;
template<typename... Args>
functor_function(Args&&... args): fx(std::forward<Args>(args)...) {}
template<typename... Args>
int operator()(types<void> r, types<Args...> t, lua_State* L) {
stack::call(L, 0, r, t, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<typename... Ret, typename... Args>
int operator()(types<Ret...> tr, types<Args...> ta, lua_State* L) {
return_type r = stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return stack::push(L, r);
}
virtual int operator()(lua_State* L) override {
return (*this)(types<return_type>(), args_type(), L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return (*this)(types<return_type>(), args_type(), L);
}
};
template<typename Function, typename T>
struct member_function : public base_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef function_return_t<function_type> return_type;
typedef function_args_t<function_type> args_type;
struct functor {
T member;
function_type invocation;
template<typename Tm, typename... Args>
functor(Tm&& m, Args&&... args): member(std::forward<Tm>(m)), invocation(std::forward<Args>(args)...) {}
template<typename... Args>
return_type operator()(Args&&... args) {
auto& mem = unwrap(deref(member));
return (mem.*invocation)(std::forward<Args>(args)...);
}
} fx;
template<typename Tm, typename... Args>
member_function(Tm&& m, Args&&... args): fx(std::forward<Tm>(m), std::forward<Args>(args)...) {}
template<typename... Args>
int operator()(types<void> tr, types<Args...> ta, lua_State* L) {
stack::call(L, 0, tr, ta, fx);
return 0;
}
template<typename... Ret, typename... Args>
int operator()(types<Ret...> tr, types<Args...> ta, lua_State* L) {
decltype(auto) r = stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return stack::push(L, std::forward<decltype(r)>(r));
}
virtual int operator()(lua_State* L) override {
return (*this)(tuple_types<return_type>(), args_type(), L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return (*this)(tuple_types<return_type>(), args_type(), L);
}
};
template<typename Function, typename Tp>
struct usertype_function_core : public base_function {
typedef std::remove_pointer_t<Tp> T;
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef detail::functor<T, function_type> fx_t;
typedef typename fx_t::traits_type traits_type;
typedef typename fx_t::args_type args_type;
typedef typename fx_t::return_type return_type;
fx_t fx;
template<typename... Args>
usertype_function_core(Args&&... args): fx(std::forward<Args>(args)...) {}
template<typename Return, typename Raw = Unqualified<Return>>
std::enable_if_t<std::is_same<T, Raw>::value, int> push(lua_State* L, Return&& r) {
if(ptr(unwrap(r)) == fx.item) {
// push nothing
// note that pushing nothing with the ':'
// syntax means we leave the instance of what
// was pushed onto the stack by lua to do the
// function call alone,
// and naturally lua returns that.
// It's an "easy" way to return *this,
// without allocating an extra userdata, apparently!
return 1;
}
return stack::push(L, std::forward<Return>(r));
}
template<typename Return, typename Raw = Unqualified<Return>>
std::enable_if_t<!std::is_same<T, Raw>::value, int> push(lua_State* L, Return&& r) {
return stack::push(L, std::forward<Return>(r));
}
template<typename... Args>
int operator()(types<void> tr, types<Args...> ta, lua_State* L) {
//static const std::size_t skew = static_cast<std::size_t>(std::is_member_object_pointer<function_type>::value);
stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<typename... Ret, typename... Args>
int operator()(types<Ret...> tr, types<Args...> ta, lua_State* L) {
decltype(auto) r = stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
int pushcount = push(L, std::forward<decltype(r)>(r));
return pushcount;
}
};
template<typename Function, typename Tp>
struct usertype_function : public usertype_function_core<Function, Tp> {
typedef usertype_function_core<Function, Tp> base_t;
typedef std::remove_pointer_t<Tp> T;
typedef typename base_t::traits_type traits_type;
typedef typename base_t::args_type args_type;
typedef typename base_t::return_type return_type;
template<typename... FxArgs>
usertype_function(FxArgs&&... fxargs): base_t(std::forward<FxArgs>(fxargs)...) {}
int prelude(lua_State* L) {
this->fx.item = ptr(stack::get<T>(L, 1));
if(this->fx.item == nullptr) {
throw error("userdata for function call is null: are you using the wrong syntax? (use item:function/variable(...) syntax)");
}
return static_cast<base_t&>(*this)(tuple_types<return_type>(), args_type(), L);
}
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
template<typename Function, typename Tp>
struct usertype_variable_function : public usertype_function_core<Function, Tp> {
typedef usertype_function_core<Function, Tp> base_t;
typedef std::remove_pointer_t<Tp> T;
typedef typename base_t::traits_type traits_type;
typedef typename base_t::args_type args_type;
typedef typename base_t::return_type return_type;
template<typename... FxArgs>
usertype_variable_function(FxArgs&&... fxargs): base_t(std::forward<FxArgs>(fxargs)...) {}
int prelude(lua_State* L) {
this->fx.item = ptr(stack::get<T>(L, 1));
if(this->fx.item == nullptr) {
throw error("userdata for member variable is null");
}
int argcount = lua_gettop(L);
switch(argcount) {
case 2:
return static_cast<base_t&>(*this)(tuple_types<return_type>(), types<>(), L);
case 3:
return static_cast<base_t&>(*this)(tuple_types<void>(), args_type(), L);
default:
throw error("cannot get/set userdata member variable with inappropriate number of arguments");
}
}
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
template<typename Function, typename Tp>
struct usertype_indexing_function : public usertype_function_core<Function, Tp> {
typedef usertype_function_core<Function, Tp> base_t;
typedef std::remove_pointer_t<Tp> T;
typedef typename base_t::traits_type traits_type;
typedef typename base_t::args_type args_type;
typedef typename base_t::return_type return_type;
std::string name;
std::unordered_map<std::string, std::pair<std::unique_ptr<base_function>, bool>> functions;
template<typename... FxArgs>
usertype_indexing_function(std::string name, FxArgs&&... fxargs): base_t(std::forward<FxArgs>(fxargs)...), name(std::move(name)) {}
int prelude(lua_State* L) {
std::string accessor = stack::get<std::string>(L, 1 - lua_gettop(L));
auto function = functions.find(accessor);
if(function != functions.end()) {
if(function->second.second) {
stack::push<upvalue>(L, function->second.first.get());
stack::push(L, &base_function::usertype<0>::ref_call, 1);
return 1;
}
return (*function->second.first)(L, detail::ref_call);
}
if (!this->fx.check()) {
throw error("invalid indexing \"" + accessor + "\" on type: " + name);
}
this->fx.item = ptr(stack::get<T>(L, 1));
return static_cast<base_t&>(*this)(tuple_types<return_type>(), args_type(), L);
}
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
} // sol
#endif // SOL_FUNCTION_TYPES_HPP #endif // SOL_FUNCTION_TYPES_HPP

269
sol/function_types_core.hpp Normal file
View File

@ -0,0 +1,269 @@
// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_TYPES_CORE_HPP
#define SOL_FUNCTION_TYPES_CORE_HPP
#include "stack.hpp"
#include <memory>
#include <unordered_map>
namespace sol {
namespace detail {
struct ref_call_t {} const ref_call = ref_call_t{};
template <typename T>
struct implicit_wrapper {
T& item;
implicit_wrapper(T& item) : item(item) {}
operator T& () {
return item;
}
operator T* () {
return std::addressof(item);
}
};
template <typename Sig, typename... Args>
struct function_packer : std::tuple<Args...> { using std::tuple<Args...>::tuple; };
template <typename Sig, typename... Args>
function_packer<Sig, Args...> function_pack( Args&&... args ) {
return function_packer<Sig, Args...>(std::forward<Args>(args)...);
}
inline bool check_types(types<>, indices<>, lua_State* L, int) {
return true;
}
template <typename Arg, typename... Args, std::size_t I, std::size_t... In>
inline bool check_types(types<Arg, Args...>, indices<I, In...>, lua_State* L, int start = 1) {
if (!stack::check<Arg>(L, start + I, no_panic))
return false;
return check_types(types<Args...>(), indices<In...>(), L, start);
}
template<typename T, typename Func, typename = void>
struct functor {
typedef member_traits<Func> traits_type;
typedef typename traits_type::args_type args_type;
typedef typename traits_type::return_type return_type;
T* item;
Func invocation;
template<typename... Args>
functor(Args&&... args): item(nullptr), invocation(std::forward<Args>(args)...) {}
bool check () const {
return invocation != nullptr;
}
template<typename... Args>
void call(types<void>, Args&&... args) {
T& member = *item;
(member.*invocation)(std::forward<Args>(args)...);
}
template<typename Ret, typename... Args>
Ret call(types<Ret>, Args&&... args) {
T& member = *item;
return (member.*invocation)(std::forward<Args>(args)...);
}
template<typename... Args>
decltype(auto) operator()(Args&&... args) {
return this->call(types<return_type>{}, std::forward<Args>(args)...);
}
};
template<typename T, typename Func>
struct functor<T, Func, std::enable_if_t<std::is_member_object_pointer<Func>::value>> {
typedef member_traits<Func> traits_type;
typedef typename traits_type::args_type args_type;
typedef typename traits_type::return_type return_type;
T* item;
Func invocation;
template<typename... Args>
functor(Args&&... args): item(nullptr), invocation(std::forward<Args>(args)...) {}
bool check () const {
return this->fx.invocation != nullptr;
}
template<typename Arg>
void call(types<return_type>, Arg&& arg) {
T& member = *item;
(member.*invocation) = std::forward<Arg>(arg);
}
return_type call(types<return_type>) {
T& member = *item;
return (member.*invocation);
}
template<typename... Args>
auto operator()(Args&&... args) -> decltype(std::declval<functor>().call(types<return_type>{}, std::forward<Args>(args)...)) {
return this->call(types<return_type>{}, std::forward<Args>(args)...);
}
};
template<typename T, typename Func>
struct functor<T, Func, std::enable_if_t<std::is_function<Func>::value || std::is_class<Func>::value>> {
typedef member_traits<Func> traits_type;
typedef remove_one_type<typename traits_type::args_type> args_type;
typedef typename traits_type::return_type return_type;
typedef std::tuple_element_t<0, typename traits_type::args_tuple_type> Arg0;
typedef std::conditional_t<std::is_pointer<Func>::value || std::is_class<Func>::value, Func, std::add_pointer_t<Func>> function_type;
static_assert(std::is_base_of<Unqualified<std::remove_pointer_t<Arg0>>, T>::value, "Any non-member-function must have a first argument which is covariant with the desired userdata type.");
T* item;
function_type invocation;
private:
bool check(std::false_type) const {
return true;
}
bool check(std::true_type) const {
return this->invocation != nullptr;
}
public:
template<typename... Args>
functor(Args&&... args): item(nullptr), invocation(std::forward<Args>(args)...) {}
bool check () const {
return this->check(std::is_function<Func>());
}
template<typename... Args>
void call(types<void>, Args&&... args) {
T& member = *item;
invocation(implicit_wrapper<T>(member), std::forward<Args>(args)...);
}
template<typename Ret, typename... Args>
Ret call(types<Ret>, Args&&... args) {
T& member = *item;
return invocation(implicit_wrapper<T>(member), std::forward<Args>(args)...);
}
template<typename... Args>
auto operator()(Args&&... args) -> decltype(std::declval<functor>().call(types<return_type>{}, std::forward<Args>(args)...)) {
return this->call(types<return_type>(), std::forward<Args>(args)...);
}
};
} // detail
struct base_function {
static int base_call(lua_State* L, void* inheritancedata) {
if(inheritancedata == nullptr) {
throw error("call from Lua to C++ function has null data");
}
base_function* pfx = static_cast<base_function*>(inheritancedata);
base_function& fx = *pfx;
int r = fx(L);
return r;
}
static int ref_base_call(lua_State* L, void* inheritancedata) {
if(inheritancedata == nullptr) {
throw error("call from Lua to C++ function has null data");
}
base_function* pfx = static_cast<base_function*>(inheritancedata);
base_function& fx = *pfx;
int r = fx(L, detail::ref_call);
return r;
}
static int base_gc(lua_State*, void* udata) {
if(udata == nullptr) {
throw error("call from lua to C++ gc function with null data");
}
base_function* ptr = static_cast<base_function*>(udata);
std::default_delete<base_function> dx{};
dx(ptr);
return 0;
}
static int call(lua_State* L) {
void** pinheritancedata = static_cast<void**>(stack::get<upvalue>(L, 1).value);
return base_call(L, *pinheritancedata);
}
static int gc(lua_State* L) {
void** pudata = static_cast<void**>(stack::get<userdata>(L, 1).value);
return base_gc(L, *pudata);
}
template<std::size_t I>
struct usertype {
static int call(lua_State* L) {
// Zero-based template parameter, but upvalues start at 1
return ref_base_call(L, stack::get<upvalue>(L, I + 1));
}
static int ref_call(lua_State* L) {
return ref_base_call(L, stack::get<upvalue>(L, I + 1));
}
template <std::size_t limit>
static void func_gc (std::true_type, lua_State*) {
}
template <std::size_t limit>
static void func_gc (std::false_type, lua_State* L) {
// Shut up clang tautological error without throwing out std::size_t
for(std::size_t i = 0; i < limit; ++i) {
upvalue up = stack::get<upvalue>(L, static_cast<int>(i + 1));
base_function* obj = static_cast<base_function*>(up.value);
std::allocator<base_function> alloc{};
alloc.destroy(obj);
alloc.deallocate(obj, 1);
}
}
static int gc(lua_State* L) {
func_gc<I>(Bool<(I < 1)>(), L);
return 0;
}
};
virtual int operator()(lua_State*) {
throw error("failure to call specialized wrapped C++ function from Lua");
}
virtual int operator()(lua_State*, detail::ref_call_t) {
throw error("failure to call reference specialized wrapped C++ function from Lua");
}
virtual ~base_function() {}
};
} // sol
#endif // SOL_FUNCTION_TYPES_CORE_HPP

View File

@ -0,0 +1,109 @@
// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_TYPES_MEMBER_HPP
#define SOL_FUNCTION_TYPES_MEMBER_HPP
#include "function_types_core.hpp"
namespace sol {
template<typename Function>
struct functor_function : public base_function {
typedef decltype(&Function::operator()) function_type;
typedef function_return_t<function_type> return_type;
typedef function_args_t<function_type> args_type;
Function fx;
template<typename... Args>
functor_function(Args&&... args): fx(std::forward<Args>(args)...) {}
template<typename... Args>
int operator()(types<void> r, types<Args...> t, lua_State* L) {
stack::call(L, 0, r, t, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<typename... Ret, typename... Args>
int operator()(types<Ret...> tr, types<Args...> ta, lua_State* L) {
return_type r = stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return stack::push(L, r);
}
virtual int operator()(lua_State* L) override {
return (*this)(types<return_type>(), args_type(), L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return (*this)(types<return_type>(), args_type(), L);
}
};
template<typename Function, typename T>
struct member_function : public base_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef function_return_t<function_type> return_type;
typedef function_args_t<function_type> args_type;
struct functor {
T member;
function_type invocation;
template<typename Tm, typename... Args>
functor(Tm&& m, Args&&... args): member(std::forward<Tm>(m)), invocation(std::forward<Args>(args)...) {}
template<typename... Args>
return_type operator()(Args&&... args) {
auto& mem = unwrap(deref(member));
return (mem.*invocation)(std::forward<Args>(args)...);
}
} fx;
template<typename Tm, typename... Args>
member_function(Tm&& m, Args&&... args): fx(std::forward<Tm>(m), std::forward<Args>(args)...) {}
template<typename... Args>
int operator()(types<void> tr, types<Args...> ta, lua_State* L) {
stack::call(L, 0, tr, ta, fx);
return 0;
}
template<typename... Ret, typename... Args>
int operator()(types<Ret...> tr, types<Args...> ta, lua_State* L) {
decltype(auto) r = stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return stack::push(L, std::forward<decltype(r)>(r));
}
virtual int operator()(lua_State* L) override {
return (*this)(tuple_types<return_type>(), args_type(), L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return (*this)(tuple_types<return_type>(), args_type(), L);
}
};
} // sol
#endif // SOL_FUNCTION_TYPES_MEMBER_HPP

View File

@ -0,0 +1,210 @@
// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_TYPES_OVERLOAD_HPP
#define SOL_FUNCTION_TYPES_OVERLOAD_HPP
#include "overload.hpp"
#include "function_types_core.hpp"
#include "function_types_usertype.hpp"
namespace sol {
template <typename... Functions>
struct overloaded_function : base_function {
typedef std::tuple<std::pair<int, Functions>...> overloads_t;
overloads_t overloads;
overloaded_function(Functions... fxs)
: overloads({ function_traits<Unqualified<Functions>>::arity, fxs }...) {
}
int match_arity(lua_State* L, std::ptrdiff_t x, indices<>) {
throw error("no matching function call takes this number of arguments");
}
template <std::size_t I, std::size_t... In>
int match_arity(lua_State* L, std::ptrdiff_t x, indices<I, In...>) {
// TODO:
// when we get proper constexpr, search functions only within the specific
// arity range, instead of all of them by using
// std::tuple<
// std::pair<1 - arity, std::tuple<func_arity_of_1_a, func_arity_of_1_b>>,
// std::pair<3 - arity, std::tuple<func_arity_of_3>>,
// std::pair<n - arity, std::tuple<func_arity_of_n, ...>>,
// ...
//>
auto& package = std::get<I>(overloads);
auto arity = package.first;
if (arity != x) {
return match_arity(L, x, indices<In...>());
}
auto& func = package.second;
typedef Unqualified<decltype(func)> fx_t;
typedef tuple_types<typename function_traits<fx_t>::return_type> return_type;
typedef typename function_traits<fx_t>::args_type args_type;
if (!detail::check_types(args_type(), args_type(), L)) {
return match_arity(L, x, indices<In...>());
}
return stack::typed_call(return_type(), args_type(), func, L);
}
int match_arity(lua_State* L) {
std::ptrdiff_t x = lua_gettop(L);
return match_arity(L, x, build_indices<std::tuple_size<overloads_t>::value>());
}
virtual int operator()(lua_State* L) override {
return match_arity(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return match_arity(L);
}
};
template <typename T, typename... Functions>
struct usertype_overloaded_function : base_function {
typedef std::tuple<std::pair<int, detail::functor<T, Functions>>...> overloads_t;
overloads_t overloads;
usertype_overloaded_function(overload_set<Functions...> set)
: usertype_overloaded_function(build_indices<sizeof...(Functions)>(), set) {}
template<std::size_t... In>
usertype_overloaded_function(indices<In...>, overload_set<Functions...> set)
: usertype_overloaded_function(std::get<In>(set)...) {}
usertype_overloaded_function(Functions... fxs)
: overloads({function_traits<Functions>::arity, fxs}...) {
}
int match_arity(lua_State* L, std::ptrdiff_t x, indices<>) {
throw error("no matching function call takes this number of arguments");
}
template <std::size_t I, std::size_t... In>
int match_arity(lua_State* L, std::ptrdiff_t x, indices<I, In...>) {
// TODO:
// propogate changes from above down here too when they get figured out
auto& package = std::get<I>(overloads);
auto arity = package.first;
if (arity != x) {
return match_arity(L, x, indices<In...>());
}
auto& func = package.second;
typedef Unqualified<decltype(func)> fx_t;
typedef tuple_types<typename fx_t::return_type> return_type;
typedef typename fx_t::args_type args_type;
if (!detail::check_types(args_type(), args_type(), L, 2)) {
return match_arity(L, x, indices<In...>());
}
func.item = ptr(stack::get<T>(L, 1));
return stack::typed_call(return_type(), args_type(), func, L);
}
int match_arity(lua_State* L) {
std::ptrdiff_t x = lua_gettop(L) - 1;
return match_arity(L, x, build_indices<std::tuple_size<overloads_t>::value>());
}
virtual int operator()(lua_State* L) override {
return match_arity(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return match_arity(L);
}
};
template<typename... Functions, typename T>
struct usertype_indexing_function<overload_set<Functions...>, T> : base_function {
typedef std::tuple<std::pair<int, detail::functor<T, Functions>>...> overloads_t;
overloads_t overloads;
std::string name;
std::unordered_map<std::string, std::pair<std::unique_ptr<base_function>, bool>> functions;
usertype_indexing_function(std::string name, overload_set<Functions...> set)
: usertype_indexing_function(build_indices<sizeof...(Functions)>(), std::move(name), set) {}
template <std::size_t... In>
usertype_indexing_function(indices<In...>, std::string name, overload_set<Functions...> set)
: usertype_indexing_function(std::move(name), std::get<In>(set)...) {}
usertype_indexing_function(std::string name, Functions... fxs)
: overloads({function_traits<Functions>::arity, fxs}...), name(std::move(name)) {}
int match_arity(lua_State* L, std::ptrdiff_t x, indices<>) {
throw error("no matching function call takes this number of arguments");
}
template <std::size_t I, std::size_t... In>
int match_arity(lua_State* L, std::ptrdiff_t x, indices<I, In...>) {
// TODO:
// propogate changes from above down here too when they get figured out
auto& package = std::get<I>(overloads);
auto arity = package.first;
if (arity != x) {
return match_arity(L, x, indices<In...>());
}
auto& func = package.second;
typedef Unqualified<decltype(func)> fx_t;
typedef tuple_types<typename fx_t::return_type> return_type;
typedef typename fx_t::args_type args_type;
if (!detail::check_types(args_type(), args_type(), L, 2)) {
return match_arity(L, x, indices<In...>());
}
func.item = ptr(stack::get<T>(L, 1));
return stack::typed_call(return_type(), args_type(), func, L);
}
int match_arity(lua_State* L) {
std::ptrdiff_t x = lua_gettop(L) - 1;
return match_arity(L, x, build_indices<std::tuple_size<overloads_t>::value>());
}
int prelude(lua_State* L) {
std::string accessor = stack::get<std::string>(L, 1 - lua_gettop(L));
auto function = functions.find(accessor);
if(function != functions.end()) {
if(function->second.second) {
stack::push<upvalue>(L, function->second.first.get());
stack::push(L, &base_function::usertype<0>::ref_call, 1);
return 1;
}
return (*function->second.first)(L);
}
return match_arity(L);
}
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
} // sol
#endif // SOL_FUNCTION_TYPES_OVERLOAD_HPP

View File

@ -0,0 +1,100 @@
// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_TYPES_STATIC_HPP
#define SOL_FUNCTION_TYPES_STATIC_HPP
#include "stack.hpp"
namespace sol {
template<typename Function>
struct static_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef function_traits<function_type> traits_type;
template<typename... Args>
static int typed_call(types<void> tr, types<Args...> ta, function_type* fx, lua_State* L) {
stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<typename... Ret, typename... Args>
static int typed_call(types<Ret...>, types<Args...> ta, function_type* fx, lua_State* L) {
typedef return_type_t<Ret...> return_type;
decltype(auto) r = stack::call(L, 0, types<return_type>(), ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return stack::push(L, std::forward<decltype(r)>(r));
}
static int call(lua_State* L) {
auto udata = stack::detail::get_as_upvalues<function_type*>(L);
function_type* fx = udata.first;
int r = typed_call(tuple_types<typename traits_type::return_type>(), typename traits_type::args_type(), fx, L);
return r;
}
int operator()(lua_State* L) {
return call(L);
}
};
template<typename T, typename Function>
struct static_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef function_traits<function_type> traits_type;
template<typename... Args>
static int typed_call(types<void> tr, types<Args...> ta, T& item, function_type& ifx, lua_State* L) {
auto fx = [&item, &ifx](Args&&... args) -> void { (item.*ifx)(std::forward<Args>(args)...); };
stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<typename... Ret, typename... Args>
static int typed_call(types<Ret...> tr, types<Args...> ta, T& item, function_type& ifx, lua_State* L) {
auto fx = [&item, &ifx](Args&&... args) -> return_type { return (item.*ifx)(std::forward<Args>(args)...); };
decltype(auto) r = stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return stack::push(L, std::forward<decltype(r)>(r));
}
static int call(lua_State* L) {
auto memberdata = stack::detail::get_as_upvalues<function_type>(L, 1);
auto objdata = stack::detail::get_as_upvalues<T*>(L, memberdata.second);
function_type& memfx = memberdata.first;
T& obj = *objdata.first;
int r = typed_call(tuple_types<typename traits_type::return_type>(), typename traits_type::args_type(), obj, memfx, L);
return r;
}
int operator()(lua_State* L) {
return call(L);
}
};
} // sol
#endif // SOL_FUNCTION_TYPES_STATIC_HPP

View File

@ -0,0 +1,191 @@
// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_TYPES_USERTYPE_HPP
#define SOL_FUNCTION_TYPES_USERTYPE_HPP
#include "overload.hpp"
#include "function_types_core.hpp"
namespace sol {
template<typename Function, typename Tp>
struct usertype_function_core : public base_function {
typedef std::remove_pointer_t<Tp> T;
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef detail::functor<T, function_type> fx_t;
typedef typename fx_t::traits_type traits_type;
typedef typename fx_t::args_type args_type;
typedef typename fx_t::return_type return_type;
fx_t fx;
template<typename... Args>
usertype_function_core(Args&&... args): fx(std::forward<Args>(args)...) {}
template<typename Return, typename Raw = Unqualified<Return>>
std::enable_if_t<std::is_same<T, Raw>::value, int> push(lua_State* L, Return&& r) {
if(ptr(unwrap(r)) == fx.item) {
// push nothing
// note that pushing nothing with the ':'
// syntax means we leave the instance of what
// was pushed onto the stack by lua to do the
// function call alone,
// and naturally lua returns that.
// It's an "easy" way to return *this,
// without allocating an extra userdata, apparently!
return 1;
}
return stack::push(L, std::forward<Return>(r));
}
template<typename Return, typename Raw = Unqualified<Return>>
std::enable_if_t<!std::is_same<T, Raw>::value, int> push(lua_State* L, Return&& r) {
return stack::push(L, std::forward<Return>(r));
}
template<typename... Args>
int operator()(types<void> tr, types<Args...> ta, lua_State* L) {
//static const std::size_t skew = static_cast<std::size_t>(std::is_member_object_pointer<function_type>::value);
stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<typename... Ret, typename... Args>
int operator()(types<Ret...> tr, types<Args...> ta, lua_State* L) {
decltype(auto) r = stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
int pushcount = push(L, std::forward<decltype(r)>(r));
return pushcount;
}
};
template<typename Function, typename Tp>
struct usertype_function : public usertype_function_core<Function, Tp> {
typedef usertype_function_core<Function, Tp> base_t;
typedef std::remove_pointer_t<Tp> T;
typedef typename base_t::traits_type traits_type;
typedef typename base_t::args_type args_type;
typedef typename base_t::return_type return_type;
template<typename... Args>
usertype_function(Args&&... args): base_t(std::forward<Args>(args)...) {}
int prelude(lua_State* L) {
this->fx.item = ptr(stack::get<T>(L, 1));
if(this->fx.item == nullptr) {
throw error("userdata for function call is null: are you using the wrong syntax? (use item:function/variable(...) syntax)");
}
return static_cast<base_t&>(*this)(tuple_types<return_type>(), args_type(), L);
}
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
template<typename Function, typename Tp>
struct usertype_variable_function : public usertype_function_core<Function, Tp> {
typedef usertype_function_core<Function, Tp> base_t;
typedef std::remove_pointer_t<Tp> T;
typedef typename base_t::traits_type traits_type;
typedef typename base_t::args_type args_type;
typedef typename base_t::return_type return_type;
template<typename... Args>
usertype_variable_function(Args&&... args): base_t(std::forward<Args>(args)...) {}
int prelude(lua_State* L) {
this->fx.item = ptr(stack::get<T>(L, 1));
if(this->fx.item == nullptr) {
throw error("userdata for member variable is null");
}
int argcount = lua_gettop(L);
switch(argcount) {
case 2:
return static_cast<base_t&>(*this)(tuple_types<return_type>(), types<>(), L);
case 3:
return static_cast<base_t&>(*this)(tuple_types<void>(), args_type(), L);
default:
throw error("cannot get/set userdata member variable with inappropriate number of arguments");
}
}
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
template<typename Function, typename Tp>
struct usertype_indexing_function : public usertype_function_core<Function, Tp> {
typedef usertype_function_core<Function, Tp> base_t;
typedef std::remove_pointer_t<Tp> T;
typedef typename base_t::traits_type traits_type;
typedef typename base_t::args_type args_type;
typedef typename base_t::return_type return_type;
std::string name;
std::unordered_map<std::string, std::pair<std::unique_ptr<base_function>, bool>> functions;
template<typename... Args>
usertype_indexing_function(std::string name, Args&&... args): base_t(std::forward<Args>(args)...), name(std::move(name)) {}
int prelude(lua_State* L) {
std::string accessor = stack::get<std::string>(L, 1 - lua_gettop(L));
auto function = functions.find(accessor);
if(function != functions.end()) {
if(function->second.second) {
stack::push<upvalue>(L, function->second.first.get());
stack::push(L, &base_function::usertype<0>::ref_call, 1);
return 1;
}
return (*function->second.first)(L);
}
if (!this->fx.check()) {
throw error("invalid indexing \"" + accessor + "\" on type: " + name);
}
this->fx.item = ptr(stack::get<T>(L, 1));
return static_cast<base_t&>(*this)(tuple_types<return_type>(), args_type(), L);
}
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
} // sol
#endif // SOL_FUNCTION_TYPES_USERTYPE_HPP

39
sol/overload.hpp Normal file
View File

@ -0,0 +1,39 @@
// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_OVERLOAD_HPP
#define SOL_OVERLOAD_HPP
#include <utility>
namespace sol {
template <typename... Functions>
struct overload_set : std::tuple<Functions...> {
using std::tuple<Functions...>::tuple;
};
template <typename... Args>
decltype(auto) overload(Args&&... args) {
return overload_set<Args...>(std::forward<Args>(args)...);
}
}
#endif // SOL_OVERLOAD_HPP

View File

@ -27,6 +27,7 @@
#include "tuple.hpp" #include "tuple.hpp"
#include "traits.hpp" #include "traits.hpp"
#include "usertype_traits.hpp" #include "usertype_traits.hpp"
#include "overload.hpp"
#include <utility> #include <utility>
#include <array> #include <array>
#include <cstring> #include <cstring>
@ -627,6 +628,22 @@ inline void call(lua_State* L, types<void> tr, types<Args...> ta, Fx&& fx, FxArg
call<checkargs>(L, 0, ta, tr, ta, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); call<checkargs>(L, 0, ta, tr, ta, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
} }
template<typename... Args, typename Fx>
inline int typed_call(types<void> tr, types<Args...> ta, Fx&& fx, lua_State* L) {
stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<typename... Ret, typename... Args, typename Fx>
inline int typed_call(types<Ret...> tr, types<Args...> ta, Fx&& fx, lua_State* L) {
decltype(auto) r = stack::call(L, 0, tr, ta, fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return stack::push(L, std::forward<decltype(r)>(r));
}
inline call_syntax get_call_syntax(lua_State* L, const std::string& meta) { inline call_syntax get_call_syntax(lua_State* L, const std::string& meta) {
if (sol::stack::get<type>(L, 1) == type::table) { if (sol::stack::get<type>(L, 1) == type::table) {
if (luaL_newmetatable(L, meta.c_str()) == 0) { if (luaL_newmetatable(L, meta.c_str()) == 0) {

View File

@ -212,7 +212,12 @@ private:
set_resolved_function<R( Args... )>( std::forward<Key>( key ), std::forward<Fx>( fx ) ); set_resolved_function<R( Args... )>( std::forward<Key>( key ), std::forward<Fx>( fx ) );
} }
template<typename Fx, typename Key> template<typename Fx, typename Key, EnableIf<is_specialization_of<Unqualified<Fx>, overload_set>> = 0>
void set_fx( types<>, Key&& key, Fx&& fx ) {
set(std::forward<Key>(key), std::forward<Fx>(fx));
}
template<typename Fx, typename Key, DisableIf<is_specialization_of<Unqualified<Fx>, overload_set>> = 0>
void set_fx( types<>, Key&& key, Fx&& fx ) { void set_fx( types<>, Key&& key, Fx&& fx ) {
typedef Unwrapped<Unqualified<Fx>> fx_t; typedef Unwrapped<Unqualified<Fx>> fx_t;
typedef decltype( &fx_t::operator() ) Sig; typedef decltype( &fx_t::operator() ) Sig;

View File

@ -197,7 +197,7 @@ template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...), false> { struct fx_traits<R(T::*)(Args...), false> {
static const std::size_t arity = sizeof...(Args); static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = true; static const bool is_member_function = true;
typedef std::tuple<Args...> arg_tuple_type; typedef std::tuple<Args...> args_tuple_type;
typedef types<Args...> args_type; typedef types<Args...> args_type;
typedef R(T::* function_pointer_type)(Args...); typedef R(T::* function_pointer_type)(Args...);
typedef std::remove_pointer_t<function_pointer_type> function_type; typedef std::remove_pointer_t<function_pointer_type> function_type;
@ -205,14 +205,14 @@ struct fx_traits<R(T::*)(Args...), false> {
typedef R return_type; typedef R return_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type; typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template<std::size_t i> template<std::size_t i>
using arg = std::tuple_element_t<i, arg_tuple_type>; using arg = std::tuple_element_t<i, args_tuple_type>;
}; };
template<typename T, typename R, typename... Args> template<typename T, typename R, typename... Args>
struct fx_traits<R(T::*)(Args...) const, false> { struct fx_traits<R(T::*)(Args...) const, false> {
static const std::size_t arity = sizeof...(Args); static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = true; static const bool is_member_function = true;
typedef std::tuple<Args...> arg_tuple_type; typedef std::tuple<Args...> args_tuple_type;
typedef types<Args...> args_type; typedef types<Args...> args_type;
typedef R(T::* function_pointer_type)(Args...); typedef R(T::* function_pointer_type)(Args...);
typedef std::remove_pointer_t<function_pointer_type> function_type; typedef std::remove_pointer_t<function_pointer_type> function_type;
@ -220,14 +220,14 @@ struct fx_traits<R(T::*)(Args...) const, false> {
typedef R return_type; typedef R return_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type; typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template<std::size_t i> template<std::size_t i>
using arg = std::tuple_element_t<i, arg_tuple_type>; using arg = std::tuple_element_t<i, args_tuple_type>;
}; };
template<typename R, typename... Args> template<typename R, typename... Args>
struct fx_traits<R(Args...), false> { struct fx_traits<R(Args...), false> {
static const std::size_t arity = sizeof...(Args); static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = false; static const bool is_member_function = false;
typedef std::tuple<Args...> arg_tuple_type; typedef std::tuple<Args...> args_tuple_type;
typedef types<Args...> args_type; typedef types<Args...> args_type;
typedef R(function_type)(Args...); typedef R(function_type)(Args...);
typedef R(*function_pointer_type)(Args...); typedef R(*function_pointer_type)(Args...);
@ -235,14 +235,14 @@ struct fx_traits<R(Args...), false> {
typedef R return_type; typedef R return_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type; typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template<std::size_t i> template<std::size_t i>
using arg = std::tuple_element_t<i, arg_tuple_type>; using arg = std::tuple_element_t<i, args_tuple_type>;
}; };
template<typename R, typename... Args> template<typename R, typename... Args>
struct fx_traits<R(*)(Args...), false> { struct fx_traits<R(*)(Args...), false> {
static const std::size_t arity = sizeof...(Args); static const std::size_t arity = sizeof...(Args);
static const bool is_member_function = false; static const bool is_member_function = false;
typedef std::tuple<Args...> arg_tuple_type; typedef std::tuple<Args...> args_tuple_type;
typedef types<Args...> args_type; typedef types<Args...> args_type;
typedef R(function_type)(Args...); typedef R(function_type)(Args...);
typedef R(*function_pointer_type)(Args...); typedef R(*function_pointer_type)(Args...);
@ -250,7 +250,7 @@ struct fx_traits<R(*)(Args...), false> {
typedef R return_type; typedef R return_type;
typedef std::remove_pointer_t<free_function_pointer_type> signature_type; typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
template<std::size_t i> template<std::size_t i>
using arg = std::tuple_element_t<i, arg_tuple_type>; using arg = std::tuple_element_t<i, args_tuple_type>;
}; };
} // detail } // detail
@ -280,14 +280,14 @@ struct member_traits<Signature, true> {
typedef Signature signature_type; typedef Signature signature_type;
static const bool is_member_function = false; static const bool is_member_function = false;
static const std::size_t arity = 1; static const std::size_t arity = 1;
typedef std::tuple<Arg> arg_tuple_type; typedef std::tuple<Arg> args_tuple_type;
typedef types<Arg> args_type; typedef types<Arg> args_type;
typedef R return_type; typedef R return_type;
typedef R(function_type)(Arg); typedef R(function_type)(Arg);
typedef R(*function_pointer_type)(Arg); typedef R(*function_pointer_type)(Arg);
typedef R(*free_function_pointer_type)(Arg); typedef R(*free_function_pointer_type)(Arg);
template<std::size_t i> template<std::size_t i>
using arg = std::tuple_element_t<i, arg_tuple_type>; using arg = std::tuple_element_t<i, args_tuple_type>;
}; };
} // detail } // detail

View File

@ -32,13 +32,6 @@
#include <algorithm> #include <algorithm>
namespace sol { namespace sol {
namespace detail {
template<typename T, typename... Args>
inline std::unique_ptr<T> make_unique(Args&&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
} // detail
const std::array<std::string, 2> meta_variable_names = {{ const std::array<std::string, 2> meta_variable_names = {{
"__index", "__index",
"__newindex" "__newindex"
@ -121,7 +114,7 @@ private:
} }
static int construct(lua_State* L) { static int construct(lua_State* L) {
auto&& meta = usertype_traits<T>::metatable; const auto& meta = usertype_traits<T>::metatable;
call_syntax syntax = stack::get_call_syntax(L, meta); call_syntax syntax = stack::get_call_syntax(L, meta);
int argcount = lua_gettop(L); int argcount = lua_gettop(L);
@ -164,7 +157,7 @@ private:
int extracount = 0; int extracount = 0;
if(!indexmetafunctions.empty()) { if(!indexmetafunctions.empty()) {
if(index == nullptr) { if(index == nullptr) {
auto idxptr = detail::make_unique<usertype_indexing_function<void (T::*)(), T>>("__index", nullptr); auto idxptr = std::make_unique<usertype_indexing_function<void (T::*)(), T>>("__index", nullptr);
index = &(idxptr->functions); index = &(idxptr->functions);
functionnames.emplace_back("__index"); functionnames.emplace_back("__index");
metafunctions.emplace_back(std::move(idxptr)); metafunctions.emplace_back(std::move(idxptr));
@ -180,7 +173,7 @@ private:
} }
if(!newindexmetafunctions.empty()) { if(!newindexmetafunctions.empty()) {
if(newindex == nullptr) { if(newindex == nullptr) {
auto idxptr = detail::make_unique<usertype_indexing_function<void (T::*)(), T>>("__newindex", nullptr); auto idxptr = std::make_unique<usertype_indexing_function<void (T::*)(), T>>("__newindex", nullptr);
newindex = &(idxptr->functions); newindex = &(idxptr->functions);
functionnames.emplace_back("__newindex"); functionnames.emplace_back("__newindex");
metafunctions.emplace_back(std::move(idxptr)); metafunctions.emplace_back(std::move(idxptr));
@ -218,14 +211,19 @@ private:
bool build_function(std::true_type, function_map_t*&, function_map_t*&, std::string funcname, Ret Base::* func) { bool build_function(std::true_type, function_map_t*&, function_map_t*&, std::string funcname, Ret Base::* func) {
static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class"); static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class");
typedef std::decay_t<decltype(func)> function_type; typedef std::decay_t<decltype(func)> function_type;
indexmetafunctions.emplace(funcname, std::make_pair(detail::make_unique<usertype_variable_function<function_type, T>>(func), false)); indexmetafunctions.emplace(funcname, std::make_pair(std::make_unique<usertype_variable_function<function_type, T>>(func), false));
newindexmetafunctions.emplace(funcname, std::make_pair(detail::make_unique<usertype_variable_function<function_type, T>>(func), false)); newindexmetafunctions.emplace(funcname, std::make_pair(std::make_unique<usertype_variable_function<function_type, T>>(func), false));
return false; return false;
} }
template<typename... Functions>
std::unique_ptr<base_function> make_function(const std::string&, overload_set<Functions...> func) {
return std::make_unique<usertype_overloaded_function<T, Functions...>>(func);
}
template<typename Arg, typename... Args, typename Ret> template<typename Arg, typename... Args, typename Ret>
std::unique_ptr<base_function> make_function(const std::string&, Ret(*func)(Arg, Args...)) { std::unique_ptr<base_function> make_function(const std::string&, Ret(*func)(Arg, Args...)) {
typedef Unqualified<Arg> Argu; typedef Unqualified<std::remove_pointer_t<Arg>> Argu;
static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired userdata type."); static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired userdata type.");
typedef std::decay_t<decltype(func)> function_type; typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_function<function_type, T>>(func); return std::make_unique<usertype_function<function_type, T>>(func);
@ -254,8 +252,7 @@ private:
template<typename Fx> template<typename Fx>
std::unique_ptr<base_function> make_function(const std::string&, Fx&& func) { std::unique_ptr<base_function> make_function(const std::string&, Fx&& func) {
typedef Unqualified<Fx> Fxu; typedef Unqualified<Fx> Fxu;
typedef std::tuple_element_t<0, typename function_traits<Fxu>::arg_tuple_type> Arg; typedef Unqualified<std::remove_pointer_t<function_traits<Fxu>::arg<0>>> Argu;
typedef Unqualified<Arg> Argu;
static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired usertype."); static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired usertype.");
typedef std::decay_t<Fxu> function_type; typedef std::decay_t<Fxu> function_type;
return std::make_unique<usertype_function<function_type, T>>(func); return std::make_unique<usertype_function<function_type, T>>(func);
@ -269,9 +266,9 @@ private:
functionnames.push_back(std::move(funcname)); functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back(); std::string& name = functionnames.back();
auto indexmetamethod = std::find(meta_variable_names.begin(), meta_variable_names.end(), name); auto indexmetamethod = std::find(meta_variable_names.begin(), meta_variable_names.end(), name);
std::unique_ptr<base_function> ptr(nullptr); std::unique_ptr<base_function> baseptr(nullptr);
if(indexmetamethod != meta_variable_names.end()) { if(indexmetamethod != meta_variable_names.end()) {
auto idxptr = detail::make_unique<usertype_indexing_function<function_type, T>>(name, func); auto idxptr = std::make_unique<usertype_indexing_function<function_type, T>>(name, func);
std::ptrdiff_t idxvalue = std::distance(meta_variable_names.begin(), indexmetamethod); std::ptrdiff_t idxvalue = std::distance(meta_variable_names.begin(), indexmetamethod);
switch(idxvalue) { switch(idxvalue) {
case 0: case 0:
@ -283,12 +280,12 @@ private:
default: default:
break; break;
} }
ptr = std::move(idxptr); baseptr = std::move(idxptr);
} }
else { else {
ptr = make_function(funcname, std::forward<Fx>(func)); baseptr = make_function(funcname, std::forward<Fx>(func));
} }
metafunctions.emplace_back(std::move(ptr)); metafunctions.emplace_back(std::move(baseptr));
metafunctiontable.push_back( { name.c_str(), &base_function::usertype<N>::call } ); metafunctiontable.push_back( { name.c_str(), &base_function::usertype<N>::call } );
ptrmetafunctiontable.push_back( { name.c_str(), &base_function::usertype<N>::ref_call } ); ptrmetafunctiontable.push_back( { name.c_str(), &base_function::usertype<N>::ref_call } );
return true; return true;

View File

@ -85,6 +85,22 @@ struct self_test {
} }
}; };
int func_1(int a) {
return 1;
}
std::string func_1s(std::string a) {
return "string: " + a;
}
int func_2(int a, int b) {
return 2;
}
void func_3(int a, int b, int c) {
}
struct vars { struct vars {
vars () { vars () {
@ -1167,3 +1183,65 @@ TEST_CASE("usertype/destructor-tests", "Show that proper copies / destruction ha
REQUIRE(destroyed == 4); REQUIRE(destroyed == 4);
REQUIRE(created == destroyed); REQUIRE(created == destroyed);
} }
TEST_CASE("functions/overloading", "Check if overloading works properly for regular set function syntax") {
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.set_function("func_1", func_1);
lua.set_function("func", sol::overload(func_1, func_1s, func_2, func_3));
const std::string string_bark = "string: bark";
REQUIRE_NOTHROW(lua.script(R"(
a = func(1)
b = func("bark")
c = func(1,2)
func(1,2,3)
)"));
REQUIRE((lua["a"] == 1));
REQUIRE((lua["b"] == string_bark));
REQUIRE((lua["c"] == 2));
REQUIRE_THROWS(lua.script("func(1,2,'meow')"));
}
TEST_CASE("usertype/overloading", "Check if overloading works properly for usertypes") {
struct woof {
int var;
int func(int x) {
return var + x;
}
double func2(int x, int y) {
return var + x + y + 0.5;
}
std::string func2s(int x, std::string y) {
return y + " " + std::to_string(x);
}
};
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<woof>("woof",
"var", &woof::var,
"func", sol::overload(&woof::func, &woof::func2, &woof::func2s)
);
const std::string bark_58 = "bark 58";
REQUIRE_NOTHROW(lua.script(R"(
r = woof:new()
a = r:func(1)
b = r:func(1, 2)
c = r:func(58, "bark")
)"));
REQUIRE((lua["a"] == 1));
REQUIRE((lua["b"] == 3.5));
REQUIRE((lua["c"] == bark_58));
REQUIRE_THROWS(lua.script("r:func(1,2,'meow')"));
}