This is hard....

This commit is contained in:
ThePhD 2016-02-16 21:22:07 -05:00
parent 8a7f4e6586
commit 0ee92c0142
13 changed files with 454 additions and 525 deletions

View File

@ -24,6 +24,7 @@
#include "function_types_core.hpp"
#include "function_types_static.hpp"
#include "function_types_allocator.hpp"
#include "function_types_member.hpp"
#include "function_types_usertype.hpp"
#include "function_types_overload.hpp"

View File

@ -0,0 +1,30 @@
// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_TYPES_ALLOCATOR_HPP
#define SOL_FUNCTION_TYPES_ALLOCATOR_HPP
#include "stack.hpp"
namespace sol {
} // sol
#endif // SOL_FUNCTION_TYPES_ALLOCATOR_HPP

View File

@ -24,7 +24,6 @@
#include "stack.hpp"
#include <memory>
#include <unordered_map>
namespace sol {
namespace detail {
@ -187,17 +186,6 @@ struct base_function {
return r;
}
static int ref_base_call(lua_State* L, void* inheritancedata) {
if(inheritancedata == nullptr) {
throw error("call from Lua to C++ function has null data");
}
base_function* pfx = static_cast<base_function*>(inheritancedata);
base_function& fx = *pfx;
int r = fx(L, detail::ref_call);
return r;
}
static int base_gc(lua_State*, void* udata) {
if(udata == nullptr) {
throw error("call from lua to C++ gc function with null data");
@ -223,11 +211,7 @@ struct base_function {
struct usertype {
static int call(lua_State* L) {
// Zero-based template parameter, but upvalues start at 1
return ref_base_call(L, stack::get<upvalue>(L, I + 1));
}
static int ref_call(lua_State* L) {
return ref_base_call(L, stack::get<upvalue>(L, I + 1));
return base_call(L, stack::get<upvalue>(L, I + 1));
}
template <std::size_t limit>
@ -257,10 +241,6 @@ struct base_function {
throw error("failure to call specialized wrapped C++ function from Lua");
}
virtual int operator()(lua_State*, detail::ref_call_t) {
throw error("failure to call reference specialized wrapped C++ function from Lua");
}
virtual ~base_function() {}
};

View File

@ -54,10 +54,6 @@ struct functor_function : public base_function {
virtual int operator()(lua_State* L) override {
return (*this)(types<return_type>(), args_type(), L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return (*this)(types<return_type>(), args_type(), L);
}
};
template<typename Function, typename T>
@ -85,10 +81,6 @@ struct member_function : public base_function {
virtual int operator()(lua_State* L) override {
return stack::typed_call(tuple_types<return_type>(), args_types(), fx, L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return (*this)(L);
}
};
} // sol

View File

@ -76,10 +76,6 @@ struct overloaded_function : base_function {
virtual int operator()(lua_State* L) override {
return match_arity(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return match_arity(L);
}
};
template <typename T, typename... Functions>
@ -133,80 +129,6 @@ struct usertype_overloaded_function : base_function {
virtual int operator()(lua_State* L) override {
return match_arity(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return match_arity(L);
}
};
template<typename... Functions, typename T>
struct usertype_indexing_function<overload_set<Functions...>, T> : base_function {
typedef std::tuple<std::pair<int, detail::functor<T, Functions>>...> overloads_t;
overloads_t overloads;
std::string name;
std::unordered_map<std::string, std::pair<std::unique_ptr<base_function>, bool>> functions;
usertype_indexing_function(std::string name, overload_set<Functions...> set)
: usertype_indexing_function(std::index_sequence_for<Functions...>(), std::move(name), set) {}
template <std::size_t... In>
usertype_indexing_function(std::index_sequence<In...>, std::string name, overload_set<Functions...> set)
: usertype_indexing_function(std::move(name), std::get<In>(set)...) {}
usertype_indexing_function(std::string name, Functions... fxs)
: overloads({static_cast<int>(function_traits<Functions>::arity), fxs}...), name(std::move(name)) {}
int match_arity(std::index_sequence<>, lua_State*, std::ptrdiff_t) {
throw error("no matching function call takes this number of arguments");
}
template <std::size_t I, std::size_t... In>
int match_arity(std::index_sequence<I, In...>, lua_State* L, std::ptrdiff_t x ) {
// TODO:
// propogate changes from above down here too when they get figured out
auto& package = std::get<I>(overloads);
auto arity = package.first;
if (arity != x) {
return match_arity(std::index_sequence<In...>(), L, x);
}
auto& func = package.second;
typedef Unqualified<decltype(func)> fx_t;
typedef tuple_types<typename fx_t::return_type> return_type;
typedef typename fx_t::args_type args_type;
typedef typename args_type::indices args_indices;
if (!detail::check_types(args_type(), args_indices(), L, 2)) {
return match_arity(std::index_sequence<In...>(), L, x);
}
func.item = ptr(stack::get<T>(L, 1));
return stack::typed_call<false>(return_type(), args_type(), func, L);
}
int match_arity(lua_State* L) {
std::ptrdiff_t x = lua_gettop(L) - 1;
return match_arity(std::make_index_sequence<std::tuple_size<overloads_t>::value>(), L, x);
}
int prelude(lua_State* L) {
std::string accessor = stack::get<std::string>(L, 1 - lua_gettop(L));
auto function = functions.find(accessor);
if(function != functions.end()) {
if(function->second.second) {
stack::push<upvalue>(L, function->second.first.get());
stack::push(L, &base_function::usertype<0>::ref_call, 1);
return 1;
}
return (*function->second.first)(L);
}
return match_arity(L);
}
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
} // sol

View File

@ -24,6 +24,7 @@
#include "overload.hpp"
#include "function_types_core.hpp"
#include <map>
namespace sol {
template<typename Function, typename Tp>
@ -102,10 +103,6 @@ struct usertype_function : public usertype_function_core<Function, Tp> {
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
template<typename Function, typename Tp>
@ -124,7 +121,6 @@ struct usertype_variable_function : public usertype_function_core<Function, Tp>
if(this->fx.item == nullptr) {
throw error("userdata for member variable is null");
}
int argcount = lua_gettop(L);
switch(argcount) {
case 2:
@ -134,57 +130,34 @@ struct usertype_variable_function : public usertype_function_core<Function, Tp>
default:
throw error("cannot get/set userdata member variable with inappropriate number of arguments");
}
}
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
template<typename Function, typename Tp>
struct usertype_indexing_function : public usertype_function_core<Function, Tp> {
typedef usertype_function_core<Function, Tp> base_t;
typedef std::remove_pointer_t<Tp> T;
typedef typename base_t::traits_type traits_type;
typedef typename base_t::args_type args_type;
typedef typename base_t::return_type return_type;
struct usertype_indexing_function : base_function {
std::string name;
std::unordered_map<std::string, std::pair<std::unique_ptr<base_function>, bool>> functions;
base_function* original;
std::map<std::string, base_function*> functions;
template<typename... Args>
usertype_indexing_function(std::string name, Args&&... args): base_t(std::forward<Args>(args)...), name(std::move(name)) {}
usertype_indexing_function(std::string name, base_function* original, Args&&... args): name(std::move(name)), original(original), functions(std::forward<Args>(args)...) {}
int prelude(lua_State* L) {
std::string accessor = stack::get<std::string>(L, 1 - lua_gettop(L));
const char* accessor = stack::get<const char*>(L, 1 - lua_gettop(L));
auto function = functions.find(accessor);
if(function != functions.end()) {
if(function->second.second) {
stack::push<upvalue>(L, function->second.first.get());
stack::push(L, &base_function::usertype<0>::ref_call, 1);
return 1;
}
return (*function->second.first)(L);
if (function != functions.end()) {
return (*function->second)(L);
}
if (!this->fx.check()) {
throw error("invalid indexing \"" + accessor + "\" on type: " + name);
}
this->fx.item = ptr(stack::get<T>(L, 1));
return static_cast<base_t&>(*this)(tuple_types<return_type>(), args_type(), L);
base_function& core = *original;
return core(L);
}
virtual int operator()(lua_State* L) override {
return prelude(L);
}
virtual int operator()(lua_State* L, detail::ref_call_t) override {
return prelude(L);
}
};
} // sol

View File

@ -42,32 +42,21 @@ public:
template<typename T>
bool is() const {
if (!reference::valid())
return false;
auto expected = type_of<T>();
auto actual = get_type();
return (expected == actual) || (expected == type::poly);
}
bool valid() const {
if (!reference::valid())
return false;
return !this->is<nil_t>();
}
operator const char* () const {
return this->as<const char*>();
}
template<typename T, EnableIf<Not<std::is_same<Unqualified<T>, const char*>>, Not<std::is_same<Unqualified<T>, char>>, Not<std::is_same<Unqualified<T>, std::string>>, Not<std::is_same<Unqualified<T>, std::initializer_list<char>>>> = 0>
operator T () const {
return this->as<T>();
}
template<typename... Ret, typename... Args>
decltype(auto) call( Args&&... args ) {
return this->as<function>()(types<Ret...>(), std::forward<Args>( args )...);
}
template<typename... Args>
function_result operator()( Args&&... args ) {
return this->as<function>()(std::forward<Args>( args )...);
explicit operator bool() {
return valid();
}
};

View File

@ -100,6 +100,10 @@ public:
return 1;
}
void pop(int n = 1) const noexcept {
lua_pop(lua_state( ), n);
}
int get_index() const {
return ref;
}

View File

@ -124,6 +124,21 @@ true;
false;
#endif
template<bool releasemem = false, typename TCont>
static int push_upvalues(lua_State* L, TCont&& cont) {
int n = 0;
for(auto& c : cont) {
if(releasemem) {
stack::push<upvalue>(L, c.release());
}
else {
stack::push<upvalue>(L, c.get());
}
++n;
}
return n;
}
template <typename T>
struct userdata_pusher {
template <typename Key, typename... Args>
@ -140,7 +155,7 @@ struct userdata_pusher {
referencereference = allocationtarget;
std::allocator<T> alloc{};
alloc.construct(allocationtarget, std::forward<Args>(args)...);
luaL_getmetatable(L, std::addressof(metatablekey[0]));
luaL_getmetatable(L, &metatablekey[0]);
lua_setmetatable(L, -2);
}
};
@ -152,7 +167,7 @@ struct userdata_pusher<T*> {
T** pdatum = static_cast<T**>(lua_newuserdata(L, sizeof(T*)));
std::allocator<T*> alloc{};
alloc.construct(pdatum, std::forward<Args>(args)...);
luaL_getmetatable(L, std::addressof(metatablekey[0]));
luaL_getmetatable(L, &metatablekey[0]);
lua_setmetatable(L, -2);
}
};
@ -361,6 +376,20 @@ struct getter<nil_t> {
}
};
template<>
struct getter<lua_CFunction> {
static lua_CFunction get(lua_State* L, int index = -1) {
return lua_tocfunction(L, index);
}
};
template<>
struct getter<c_closure> {
static c_closure get(lua_State* L, int index = -1) {
return c_closure(lua_tocfunction(L, index), -1);
}
};
template<>
struct getter<userdata> {
static userdata get(lua_State* L, int index = -1) {
@ -529,6 +558,14 @@ struct pusher<lua_CFunction> {
}
};
template<>
struct pusher<c_closure> {
static int push(lua_State* L, c_closure closure) {
lua_pushcclosure(L, closure.c_function, closure.upvalues);
return 1;
}
};
template<>
struct pusher<void*> {
static int push(lua_State* L, void* userdata) {
@ -636,6 +673,16 @@ struct field_getter<T, false, std::enable_if_t<is_c_str<T>::value>> {
}
};
#if SOL_LUA_VERSION >= 503
template <typename T>
struct field_getter<T, false, std::enable_if_t<std::is_integral<T>::value>> {
template <typename Key>
void get(lua_State* L, Key&& key, int tableindex = -1) {
lua_geti(L, tableindex, static_cast<lua_Integer>(key));
}
};
#endif // Lua 5.3.x
template <typename T, bool, typename>
struct field_setter {
template <typename Key, typename Value>
@ -664,6 +711,17 @@ struct field_setter<T, false, std::enable_if_t<is_c_str<T>::value>> {
}
};
#if SOL_LUA_VERSION >= 503
template <typename T>
struct field_setter<T, false, std::enable_if_t<std::is_integral<T>::value>> {
template <typename Key, typename Value>
void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) {
push(L, std::forward<Value>(value));
lua_seti(L, tableindex, static_cast<lua_Integer>(key));
}
};
#endif // Lua 5.3.x
namespace stack_detail {
template<typename T>
inline int push_as_upvalues(lua_State* L, T& item) {
@ -675,7 +733,7 @@ inline int push_as_upvalues(lua_State* L, T& item) {
typedef std::array<void*, data_t_count> data_t;
data_t data{{}};
std::memcpy(std::addressof(data[0]), std::addressof(item), itemsize);
std::memcpy(&data[0], std::addressof(item), itemsize);
int pushcount = 0;
for(auto&& v : data) {
pushcount += push(L, upvalue(v));
@ -699,9 +757,9 @@ struct check_arguments {
template <std::size_t I0, std::size_t... I, typename Arg0, typename... Args>
static bool check(types<Arg0, Args...>, std::index_sequence<I0, I...>, lua_State* L, int firstargument) {
bool checks = true;
stack::check<Arg0>(L, firstargument + I0);
(void)detail::swallow{(checks &= stack::check<Args>(L, firstargument + I))...};
return checks;
if (!stack::check<Arg0>(L, firstargument + I0))
return false;
return check(types<Args...>(), std::index_sequence<I...>(), L, firstargument);
}
static bool check(types<>, std::index_sequence<>, lua_State*, int) {

View File

@ -165,10 +165,6 @@ public:
return proxy<table_core, T>( *this, std::forward<T>( key ) );
}
void pop( int n = 1 ) const noexcept {
lua_pop( lua_state( ), n );
}
template<typename... Args, typename R, typename Key>
table_core& set_function( Key&& key, R fun_ptr( Args... ) ) {
set_resolved_function( std::forward<Key>( key ), fun_ptr );

View File

@ -56,6 +56,12 @@ struct userdata {
operator void*() const { return value; }
};
struct c_closure {
lua_CFunction c_function;
int upvalues;
c_closure(lua_CFunction f, int upvalues = 0) : c_function(f), upvalues(upvalues) {}
};
enum class call_syntax {
dot = 0,
colon = 1
@ -158,6 +164,9 @@ struct lua_type_of<object> : std::integral_constant<type, type::poly> {};
template <>
struct lua_type_of<light_userdata> : std::integral_constant<type, type::lightuserdata> {};
template <>
struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> {};
template <>
struct lua_type_of<function> : std::integral_constant<type, type::function> {};
@ -173,21 +182,8 @@ struct lua_type_of<T*> : std::integral_constant<type, type::userdata> {};
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_arithmetic<T>::value>> : std::integral_constant<type, type::number> {};
template<typename T>
inline type type_of() {
return lua_type_of<Unqualified<T>>::value;
}
inline type type_of(lua_State* L, int index) {
return static_cast<type>(lua_type(L, index));
}
// All enumerations are given and taken from lua
// as numbers as well
template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_enum<T>::value>> : std::integral_constant<type, type::number> {
};
struct lua_type_of<T, std::enable_if_t<std::is_enum<T>::value>> : std::integral_constant<type, type::number> {};
template <typename T>
struct is_lua_primitive : std::integral_constant<bool, type::userdata != lua_type_of<Unqualified<T>>::value> { };
@ -200,6 +196,15 @@ struct is_proxy_primitive<std::reference_wrapper<T>> : std::true_type { };
template <typename... Args>
struct is_proxy_primitive<std::tuple<Args...>> : std::true_type { };
template<typename T>
inline type type_of() {
return lua_type_of<Unqualified<T>>::value;
}
inline type type_of(lua_State* L, int index) {
return static_cast<type>(lua_type(L, index));
}
} // sol
#endif // SOL_TYPES_HPP

View File

@ -30,375 +30,350 @@
#include <vector>
#include <array>
#include <algorithm>
#include <map>
namespace sol {
const std::array<std::string, 2> meta_variable_names = {{
"__index",
"__newindex"
}};
const std::array<std::string, 2> meta_variable_names = { {
"__index",
"__newindex",
} };
const std::array<std::string, 19> meta_function_names = {{
"__index",
"__newindex",
"__mode",
"__call",
"__metatable",
"__tostring",
"__len",
"__unm",
"__add",
"__sub",
"__mul",
"__div",
"__mod",
"__pow",
"__concat",
"__eq",
"__lt",
"__le",
"__gc",
}};
const std::array<std::string, 21> meta_function_names = { {
"new",
"__index",
"__newindex",
"__mode",
"__call",
"__metatable",
"__tostring",
"__len",
"__unm",
"__add",
"__sub",
"__mul",
"__div",
"__mod",
"__pow",
"__concat",
"__eq",
"__lt",
"__le",
"__gc",
"__call",
} };
enum class meta_function {
index,
new_index,
mode,
call,
metatable,
to_string,
length,
unary_minus,
addition,
subtraction,
multiplication,
division,
modulus,
power_of,
involution = power_of,
concatenation,
equal_to,
less_than,
less_than_or_equal_to,
};
enum class meta_function {
construct,
index,
new_index,
mode,
call,
metatable,
to_string,
length,
unary_minus,
addition,
subtraction,
multiplication,
division,
modulus,
power_of,
involution = power_of,
concatenation,
equal_to,
less_than,
less_than_or_equal_to,
garbage_collect,
call_function,
};
template<typename T>
class usertype {
private:
typedef std::unordered_map<std::string, std::pair<std::unique_ptr<base_function>, bool>> function_map_t;
function_map_t indexmetafunctions, newindexmetafunctions;
std::vector<std::string> functionnames;
std::vector<std::unique_ptr<base_function>> metafunctions;
std::vector<luaL_Reg> metafunctiontable;
std::vector<luaL_Reg> ptrmetafunctiontable;
lua_CFunction cleanup;
namespace usertype_detail {
template<typename T, typename Funcs, typename FuncTable, typename MetaFuncTable, typename VarFuncTable>
inline void push_metatable(lua_State* L, Funcs&& funcs, FuncTable&& functable, MetaFuncTable&& metafunctable, VarFuncTable&& varfunctable) {
luaL_newmetatable(L, &usertype_traits<T>::metatable[0]);
int metatableindex = lua_gettop(L);
if (funcs.size() < 1 || metafunctable.size() < 2) {
return;
}
// Metamethods directly on the metatable itself
int metaup = stack::stack_detail::push_upvalues(L, funcs);
if (std::is_pointer<T>::value) {
// Insert nullptr before new/gc methods for pointer types;
// prevents calling new/GC on pointer-based tables.
luaL_Reg& oldref = metafunctable[metafunctable.size() - 3];
luaL_Reg old = oldref;
luaL_Reg cutoff = { nullptr, nullptr };
oldref = cutoff;
luaL_setfuncs(L, metafunctable.data(), metaup);
oldref = old;
}
else {
luaL_setfuncs(L, metafunctable.data(), metaup);
}
// Functions accessed by regular calls are put into a table
// that get put into the metatable.__index metamethod
lua_createtable(L, 0, functable.size());
int functableindex = lua_gettop(L);
int up = stack::stack_detail::push_upvalues(L, funcs);
luaL_setfuncs(L, functable.data(), up);
// Also, set the variable indexer that's inside of the metatable's index
luaL_newmetatable(L, &usertype_traits<T>::variable_metatable[0]);
int varup = stack::stack_detail::push_upvalues(L, funcs);
luaL_setfuncs(L, varfunctable.data(), varup);
lua_setmetatable(L, functableindex);
lua_setfield(L, metatableindex, "__index");
}
template<typename... TTypes>
struct constructor {
template<typename... Args>
static void do_constructor(lua_State* L, T* obj, call_syntax syntax, int, types<Args...>) {
default_construct fx{};
stack::call(types<void>(), types<Args...>(), L, -1 + static_cast<int>(syntax), fx, obj);
}
template <typename T, typename Functions>
inline void set_global_deleter(lua_State* L, lua_CFunction cleanup, Functions&& metafunctions) {
// Automatic deleter table -- stays alive until lua VM dies
// even if the user calls collectgarbage(), weirdly enough
lua_createtable(L, 0, 0);
lua_createtable(L, 0, 1);
int up = stack::stack_detail::push_upvalues<true>(L, metafunctions);
lua_pushcclosure(L, cleanup, up);
lua_setfield(L, -2, "__gc");
lua_setmetatable(L, -2);
// gctable name by default has ♻ part of it
lua_setglobal(L, &usertype_traits<T>::gc_table[0]);
}
}
static void match_constructor(lua_State*, T*, call_syntax, int) {
throw error("No matching constructor for the arguments provided");
}
template<typename T>
class usertype {
private:
typedef std::map<std::string, base_function*> function_map_t;
std::vector<std::string> functionnames;
std::vector<std::unique_ptr<base_function>> functions;
std::vector<luaL_Reg> functiontable;
std::vector<luaL_Reg> metafunctiontable;
std::array<luaL_Reg, 3> variablefunctiontable;
base_function* indexfunc;
base_function* newindexfunc;
function_map_t indexwrapper, newindexwrapper;
lua_CFunction constructfunc;
lua_CFunction destructfunc;
template<typename ...CArgs, typename... Args>
static void match_constructor(lua_State* L, T* obj, call_syntax syntax, int argcount, types<CArgs...> t, Args&&... args) {
if(argcount == sizeof...(CArgs)) {
do_constructor(L, obj, syntax, argcount, t);
return;
}
match_constructor(L, obj, syntax, argcount, std::forward<Args>(args)...);
}
template<typename... TTypes>
struct constructor {
template<typename... Args>
static void do_constructor(lua_State* L, T* obj, call_syntax syntax, int, types<Args...>) {
default_construct fx{};
stack::call(types<void>(), types<Args...>(), L, -1 + static_cast<int>(syntax), fx, obj);
}
static int construct(lua_State* L) {
const auto& meta = usertype_traits<T>::metatable;
call_syntax syntax = stack::get_call_syntax(L, meta);
int argcount = lua_gettop(L);
static void match_constructor(lua_State*, T*, call_syntax, int) {
throw error("No matching constructor for the arguments provided");
}
T** referencepointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& referencereference = *referencepointer;
T* obj = reinterpret_cast<T*>(referencepointer + 1);
referencereference = obj;
match_constructor(L, obj, syntax, argcount - static_cast<int>(syntax), identity_t<TTypes>()...);
template<typename ...CArgs, typename... Args>
static void match_constructor(lua_State* L, T* obj, call_syntax syntax, int argcount, types<CArgs...> t, Args&&... args) {
if (argcount == sizeof...(CArgs)) {
do_constructor(L, obj, syntax, argcount, t);
return;
}
match_constructor(L, obj, syntax, argcount, std::forward<Args>(args)...);
}
if(luaL_newmetatable(L, std::addressof(meta[0])) == 1) {
lua_pop(L, 1);
std::string err = "Unable to get usertype metatable for ";
err += meta;
throw error(err);
}
lua_setmetatable(L, -2);
static int construct(lua_State* L) {
const auto& meta = usertype_traits<T>::metatable;
call_syntax syntax = stack::get_call_syntax(L, meta);
int argcount = lua_gettop(L);
return 1;
}
};
T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& referencepointer = *pointerpointer;
T* obj = reinterpret_cast<T*>(pointerpointer + 1);
referencepointer = obj;
match_constructor(L, obj, syntax, argcount - static_cast<int>(syntax), identity_t<TTypes>()...);
static int destruct(lua_State* L) {
userdata udata = stack::get<userdata>(L, 1);
// The first sizeof(T*) bytes are the reference: the rest is
// the actual data itself (if there is a reference at all)
T** pobj = reinterpret_cast<T**>(udata.value);
T*& obj = *pobj;
std::allocator<T> alloc{};
alloc.destroy(obj);
return 0;
}
if (luaL_newmetatable(L, &meta[0]) == 1) {
lua_pop(L, 1);
std::string err = "Unable to get usertype metatable for ";
err += meta;
throw error(err);
}
lua_setmetatable(L, -2);
template<std::size_t N>
void build_function_tables(function_map_t*& index, function_map_t*& newindex) {
int extracount = 0;
if(!indexmetafunctions.empty()) {
if(index == nullptr) {
auto idxptr = std::make_unique<usertype_indexing_function<void (T::*)(), T>>("__index", nullptr);
index = &(idxptr->functions);
functionnames.emplace_back("__index");
metafunctions.emplace_back(std::move(idxptr));
std::string& name = functionnames.back();
metafunctiontable.push_back({ name.c_str(), &base_function::usertype<N>::call });
ptrmetafunctiontable.push_back({ name.c_str(), &base_function::usertype<N>::ref_call });
++extracount;
}
auto& idx = *index;
for(auto&& namedfunc : indexmetafunctions) {
idx.emplace(std::move(namedfunc.first), std::move(namedfunc.second));
}
}
if(!newindexmetafunctions.empty()) {
if(newindex == nullptr) {
auto idxptr = std::make_unique<usertype_indexing_function<void (T::*)(), T>>("__newindex", nullptr);
newindex = &(idxptr->functions);
functionnames.emplace_back("__newindex");
metafunctions.emplace_back(std::move(idxptr));
std::string& name = functionnames.back();
if(extracount > 0) {
metafunctiontable.push_back({ name.c_str(), &base_function::usertype<N + 1>::call });
ptrmetafunctiontable.push_back({ name.c_str(), &base_function::usertype<N + 1>::ref_call });
}
else {
metafunctiontable.push_back({ name.c_str(), &base_function::usertype<N>::call });
ptrmetafunctiontable.push_back({ name.c_str(), &base_function::usertype<N>::ref_call });
}
++extracount;
}
auto& idx = *newindex;
for(auto&& namedfunc : newindexmetafunctions) {
idx.emplace(std::move(namedfunc.first), std::move(namedfunc.second));
}
}
switch(extracount) {
case 2:
cleanup = &base_function::usertype<N + 2>::gc;
break;
case 1:
cleanup = &base_function::usertype<N + 1>::gc;
break;
case 0:
default:
cleanup = &base_function::usertype<N + 0>::gc;
break;
}
}
return 1;
}
};
template<std::size_t N, typename Base, typename Ret>
bool build_function(std::true_type, function_map_t*&, function_map_t*&, std::string funcname, Ret Base::* func) {
static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class");
typedef std::decay_t<decltype(func)> function_type;
indexmetafunctions.emplace(funcname, std::make_pair(std::make_unique<usertype_variable_function<function_type, T>>(func), false));
newindexmetafunctions.emplace(funcname, std::make_pair(std::make_unique<usertype_variable_function<function_type, T>>(func), false));
return false;
}
static int destruct(lua_State* L) {
userdata udata = stack::get<userdata>(L, 1);
// The first sizeof(T*) bytes are the reference: the rest is
// the actual data itself (if there is a reference at all)
T** pobj = reinterpret_cast<T**>(udata.value);
T*& obj = *pobj;
std::allocator<T> alloc{};
alloc.destroy(obj);
return 0;
}
template<typename... Functions>
std::unique_ptr<base_function> make_function(const std::string&, overload_set<Functions...> func) {
return std::make_unique<usertype_overloaded_function<T, Functions...>>(func);
}
template<typename... Functions>
std::unique_ptr<base_function> make_function(const std::string&, overload_set<Functions...> func) {
return std::make_unique<usertype_overloaded_function<T, Functions...>>(func);
}
template<typename Arg, typename... Args, typename Ret>
std::unique_ptr<base_function> make_function(const std::string&, Ret(*func)(Arg, Args...)) {
typedef Unqualified<std::remove_pointer_t<Arg>> Argu;
static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired userdata type.");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
}
template<typename Arg, typename... Args, typename Ret>
std::unique_ptr<base_function> make_function(const std::string&, Ret(*func)(Arg, Args...)) {
typedef Unqualified<std::remove_pointer_t<Arg>> Argu;
static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired userdata type.");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_variable_function(std::true_type, const std::string&, Ret Base::* func) {
static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_variable_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_variable_function(std::true_type, const std::string&, Ret Base::* func) {
static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_variable_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_variable_function(std::false_type, const std::string&, Ret Base::* func) {
static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_variable_function(std::false_type, const std::string&, Ret Base::* func) {
static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_function(const std::string& name, Ret Base::* func) {
typedef std::decay_t<decltype(func)> function_type;
return make_variable_function(std::is_member_object_pointer<function_type>(), name, func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_function(const std::string& name, Ret Base::* func) {
typedef std::decay_t<decltype(func)> function_type;
return make_variable_function(std::is_member_object_pointer<function_type>(), name, func);
}
template<typename Fx>
std::unique_ptr<base_function> make_function(const std::string&, Fx&& func) {
typedef Unqualified<Fx> Fxu;
typedef std::tuple_element_t<0, typename function_traits<Fxu>::args_tuple_type> Arg0;
typedef Unqualified<std::remove_pointer_t<Arg0>> Argu;
static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired usertype.");
typedef std::decay_t<Fxu> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
}
template<typename Fx>
std::unique_ptr<base_function> make_function(const std::string&, Fx&& func) {
typedef Unqualified<Fx> Fxu;
typedef std::tuple_element_t<0, typename function_traits<Fxu>::args_tuple_type> Arg0;
typedef Unqualified<std::remove_pointer_t<Arg0>> Argu;
static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired usertype.");
typedef std::decay_t<Fxu> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
}
template<std::size_t N, typename Fx>
bool build_function(std::false_type, function_map_t*& index, function_map_t*& newindex, std::string funcname, Fx&& func) {
typedef std::decay_t<Fx> function_type;
auto metamethod = std::find(meta_function_names.begin(), meta_function_names.end(), funcname);
if(metamethod != meta_function_names.end()) {
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
auto indexmetamethod = std::find(meta_variable_names.begin(), meta_variable_names.end(), name);
std::unique_ptr<base_function> baseptr(nullptr);
if(indexmetamethod != meta_variable_names.end()) {
auto idxptr = std::make_unique<usertype_indexing_function<function_type, T>>(name, func);
std::ptrdiff_t idxvalue = std::distance(meta_variable_names.begin(), indexmetamethod);
switch(idxvalue) {
case 0:
index = &(idxptr->functions);
break;
case 1:
newindex = &(idxptr->functions);
break;
default:
break;
}
baseptr = std::move(idxptr);
}
else {
baseptr = make_function(funcname, std::forward<Fx>(func));
}
metafunctions.emplace_back(std::move(baseptr));
metafunctiontable.push_back( { name.c_str(), &base_function::usertype<N>::call } );
ptrmetafunctiontable.push_back( { name.c_str(), &base_function::usertype<N>::ref_call } );
return true;
}
indexmetafunctions.emplace(funcname, std::make_pair(make_function(funcname, std::forward<Fx>(func)), true));
return false;
}
template<std::size_t N, typename Fx>
void build_function(std::string funcname, Fx&& func) {
typedef std::is_member_object_pointer<Unqualified<Fx>> is_variable;
typedef std::decay_t<Fx> function_type;
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
auto baseptr = make_function(name, std::forward<Fx>(func));
functions.emplace_back(std::move(baseptr));
if (is_variable::value) {
indexwrapper.insert({ name, functions.back().get() });
newindexwrapper.insert({ name, functions.back().get() });
return;
}
auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), name);
if (metamethodfind != meta_function_names.end()) {
meta_function metafunction = static_cast<meta_function>(metamethodfind - meta_function_names.begin());
switch (metafunction) {
case meta_function::index:
indexfunc = functions.back().get();
break;
case meta_function::new_index:
newindexfunc = functions.back().get();
break;
default:
break;
}
metafunctiontable.push_back({ name.c_str(), &base_function::usertype<N>::call });
return;
}
functiontable.push_back({ name.c_str(), &base_function::usertype<N>::call });
}
template<std::size_t N, typename Fx, typename... Args>
void build_function_tables(function_map_t*& index, function_map_t*& newindex, std::string funcname, Fx&& func, Args&&... args) {
typedef std::is_member_object_pointer<Unqualified<Fx>> is_variable;
static const std::size_t V = static_cast<std::size_t>(!is_variable::value);
if(build_function<N>(is_variable(), index, newindex, std::move(funcname), std::forward<Fx>(func))) {
build_function_tables<N + V>(index, newindex, std::forward<Args>(args)...);
}
else {
build_function_tables<N>(index, newindex, std::forward<Args>(args)...);
}
}
template<std::size_t N, typename Fx, typename... Args>
void build_function_tables(std::string funcname, Fx&& func, Args&&... args) {
build_function<N>(std::move(funcname), std::forward<Fx>(func));
build_function_tables<N + 1>(std::forward<Args>(args)...);
}
template<std::size_t N, typename Base, typename Ret, typename... Args>
void build_function_tables(function_map_t*& index, function_map_t*& newindex, meta_function metafunc, Ret Base::* func, Args&&... args) {
std::size_t idx = static_cast<std::size_t>(metafunc);
const std::string& funcname = meta_function_names[idx];
build_function_tables<N>(index, newindex, funcname, std::move(func), std::forward<Args>(args)...);
}
template<std::size_t N, typename Fx, typename... Args>
void build_function_tables(meta_function metafunc, Fx&& func, Args&&... args) {
std::size_t idx = static_cast<std::size_t>(metafunc);
const std::string& funcname = meta_function_names[idx];
build_function_tables<N>(funcname, std::forward<Fx>(func), std::forward<Args>(args)...);
}
public:
template<typename... Args>
usertype(Args&&... args): usertype(default_constructor, std::forward<Args>(args)...) {}
template<std::size_t N>
void build_function_tables() {
int variableend = 0;
if (!indexwrapper.empty()) {
functions.push_back(std::make_unique<usertype_indexing_function>("__index", indexfunc, std::move(indexwrapper)));
variablefunctiontable[0] = { "__index", &base_function::usertype<N>::call };
++variableend;
}
if (!newindexwrapper.empty()) {
functions.push_back(std::make_unique<usertype_indexing_function>("__newindex", newindexfunc, std::move(newindexwrapper)));
variablefunctiontable[variableend] = { "__newindex", indexwrapper.empty() ? &base_function::usertype<N>::call : &base_function::usertype<N + 1>::call };
++variableend;
}
variablefunctiontable[variableend] = { nullptr, nullptr };
switch (variableend) {
case 2:
destructfunc = &base_function::usertype<N + 2>::gc;
break;
case 1:
destructfunc = &base_function::usertype<N + 1>::gc;
break;
case 0:
destructfunc = &base_function::usertype<N + 0>::gc;
break;
}
}
template<typename... Args, typename... CArgs>
usertype(constructors<CArgs...>, Args&&... args) {
functionnames.reserve(sizeof...(args) + 2);
metafunctiontable.reserve(sizeof...(args));
ptrmetafunctiontable.reserve(sizeof...(args));
public:
template<typename... Args>
usertype(Args&&... args) : usertype(default_constructor, std::forward<Args>(args)...) {}
function_map_t* index = nullptr;
function_map_t* newindex = nullptr;
build_function_tables<0>(index, newindex, std::forward<Args>(args)...);
indexmetafunctions.clear();
newindexmetafunctions.clear();
functionnames.push_back("new");
metafunctiontable.push_back({ functionnames.back().c_str(), &constructor<CArgs...>::construct });
functionnames.push_back("__gc");
metafunctiontable.push_back({ functionnames.back().c_str(), destruct });
// ptr_functions does not participate in garbage collection/new,
// as all pointered types are considered
// to be references. This makes returns of
// `std::vector<int>&` and `std::vector<int>*` work
template<typename... Args, typename... CArgs>
usertype(constructors<CArgs...>, Args&&... args)
: indexfunc(nullptr), newindexfunc(nullptr), constructfunc(nullptr), destructfunc(nullptr) {
functionnames.reserve(sizeof...(args)+2);
functiontable.reserve(sizeof...(args));
metafunctiontable.reserve(sizeof...(args));
metafunctiontable.push_back({ nullptr, nullptr });
ptrmetafunctiontable.push_back({ nullptr, nullptr });
}
build_function_tables<0>(std::forward<Args>(args)...);
functionnames.push_back("new");
metafunctiontable.push_back({ functionnames.back().c_str(), &constructor<CArgs...>::construct });
functionnames.push_back("__gc");
metafunctiontable.push_back({ functionnames.back().c_str(), destruct });
int push(lua_State* L) {
// push pointer tables first,
// but leave the regular T table on last
// so it can be linked to a type for usage with `.new(...)` or `:new(...)`
push_metatable(L, usertype_traits<T*>::metatable,
metafunctions, ptrmetafunctiontable);
lua_pop(L, 1);
// ptr_functions does not participate in garbage collection/new,
// as all pointered types are considered
// to be references. This makes returns of
// `std::vector<int>&` and `std::vector<int>*` work
functiontable.push_back({ nullptr, nullptr });
metafunctiontable.push_back({ nullptr, nullptr });
}
push_metatable(L, usertype_traits<T>::metatable,
metafunctions, metafunctiontable);
set_global_deleter(L);
return 1;
}
int push(lua_State* L) {
// push pointer tables first,
usertype_detail::push_metatable<T*>(L, functions, functiontable, metafunctiontable, variablefunctiontable);
lua_pop(L, 1);
// but leave the regular T table on last
// so it can be linked to a type for usage with `.new(...)` or `:new(...)`
usertype_detail::push_metatable<T>(L, functions, functiontable, metafunctiontable, variablefunctiontable);
// Make sure to drop a table in the global namespace to properly destroy the pushed functions
// at some later point in life
usertype_detail::set_global_deleter<T>(L, destructfunc, functions);
return 1;
}
};
private:
template<typename Meta, typename MetaFuncs, typename MetaFuncTable>
static void push_metatable(lua_State* L, Meta&& metakey, MetaFuncs&& metafuncs, MetaFuncTable&& metafunctable) {
luaL_newmetatable(L, std::addressof(metakey[0]));
if(metafunctable.size() > 1) {
// regular functions accessed through __index semantics
int up = push_upvalues(L, metafuncs);
luaL_setfuncs(L, metafunctable.data(), up);
}
}
void set_global_deleter(lua_State* L) {
// Automatic deleter table -- stays alive until lua VM dies
// even if the user calls collectgarbage(), weirdly enough
lua_createtable(L, 0, 0);
lua_createtable(L, 0, 1);
int up = push_upvalues<true>(L, metafunctions);
lua_pushcclosure(L, cleanup, up);
lua_setfield(L, -2, "__gc");
lua_setmetatable(L, -2);
// gctable name by default has ♻ part of it
lua_setglobal(L, std::addressof(usertype_traits<T>::gctable[0]));
}
template<bool release = false, typename TCont>
static int push_upvalues(lua_State* L, TCont&& cont) {
int n = 0;
for(auto& c : cont) {
if(release) {
stack::push<upvalue>(L, c.release());
}
else {
stack::push<upvalue>(L, c.get());
}
++n;
}
return n;
}
};
namespace stack {
template<typename T>
struct pusher<usertype<T>> {
static int push(lua_State* L, usertype<T>& user) {
return user.push(L);
}
};
} // stack
namespace stack {
template<typename T>
struct pusher<usertype<T>> {
static int push(lua_State* L, usertype<T>& user) {
return user.push(L);
}
};
} // stack
} // sol
#endif // SOL_USERTYPE_HPP

View File

@ -30,7 +30,8 @@ template<typename T>
struct usertype_traits {
static const std::string name;
static const std::string metatable;
static const std::string gctable;
static const std::string variable_metatable;
static const std::string gc_table;
};
template<typename T>
@ -40,7 +41,10 @@ template<typename T>
const std::string usertype_traits<T>::metatable = std::string("sol.").append(detail::demangle(typeid(T)));
template<typename T>
const std::string usertype_traits<T>::gctable = std::string("sol.").append(detail::demangle(typeid(T))).append(".\xE2\x99\xBB");
const std::string usertype_traits<T>::variable_metatable = std::string("sol.").append(detail::demangle(typeid(T))).append(".variables");
template<typename T>
const std::string usertype_traits<T>::gc_table = std::string("sol.").append(detail::demangle(typeid(T))).append(".\xE2\x99\xBB");
}