Huge improvements to the library and fixes to compile in g++.

usertype now respects factory functions and does not make default constructors/destructors unless the compiler says its okay
new and __gc functions can be overridden for usertypes to provide handle-like creation and deletion functions
Overloading match fixes
RAII improvements for all usertypes
Added tests to make sure these features stay
This commit is contained in:
ThePhD 2016-02-21 19:26:58 -05:00
parent b2b73db5cb
commit 019c7b037b
18 changed files with 884 additions and 568 deletions

View File

@ -323,7 +323,7 @@ struct pusher<function_sig<Sigs...>> {
int metapushed = luaL_newmetatable(L, metatablename);
if(metapushed == 1) {
lua_pushstring(L, "__gc");
stack::push<lua_CFunction>(L, detail::gc);
stack::push(L, detail::gc);
lua_settable(L, -3);
lua_pop(L, 1);
}

View File

@ -28,5 +28,6 @@
#include "function_types_member.hpp"
#include "function_types_usertype.hpp"
#include "function_types_overload.hpp"
#include "function_types_allocator.hpp"
#endif // SOL_FUNCTION_TYPES_HPP

View File

@ -22,9 +22,126 @@
#ifndef SOL_FUNCTION_TYPES_ALLOCATOR_HPP
#define SOL_FUNCTION_TYPES_ALLOCATOR_HPP
#include "stack.hpp"
#include "raii.hpp"
#include "function_types_overload.hpp"
namespace sol {
namespace detail {
template <typename T, typename List>
struct void_call;
template <typename T, typename... Args>
struct void_call<T, types<Args...>> {
static void call(Args... args) {}
};
template <typename T>
struct constructor_match {
T* obj;
constructor_match(T* obj) : obj(obj) {}
template <bool b, typename Fx, std::size_t I, typename... R, typename... Args>
int operator()(Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const {
default_construct func{};
return stack::typed_call<b ? false : stack::stack_detail::default_check_arguments>(r, a, func, L, start, obj);
}
};
} // detail
template <typename T, typename... TypeLists, typename Match>
inline int construct(Match&& matchfx, lua_State* L, int fxarity, int start) {
// use same overload resolution matching as all other parts of the framework
return overload_match_arity<decltype(detail::void_call<T, TypeLists>::call)...>(std::forward<Match>(matchfx), L, fxarity, start);
}
template <typename T, typename... TypeLists>
inline int construct(lua_State* L) {
static const auto& meta = usertype_traits<T>::metatable;
call_syntax syntax = stack::get_call_syntax(L, meta);
int argcount = lua_gettop(L) - static_cast<int>(syntax);
T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& referencepointer = *pointerpointer;
T* obj = reinterpret_cast<T*>(pointerpointer + 1);
referencepointer = obj;
reference userdataref(L, -1);
userdataref.pop();
construct<T, TypeLists...>(detail::constructor_match<T>(obj), L, argcount, 1 + static_cast<int>(syntax));
userdataref.push();
luaL_getmetatable(L, &meta[0]);
if (stack::get<type>(L) == type::nil) {
lua_pop(L, 1);
std::string err = "unable to get usertype metatable for ";
err += meta;
throw error(err);
}
lua_setmetatable(L, -2);
return 1;
}
template <typename T>
inline int destruct(lua_State* L) {
userdata udata = stack::get<userdata>(L, 1);
// The first sizeof(T*) bytes are the reference: the rest is
// the actual data itself (if there is a reference at all)
T** pobj = reinterpret_cast<T**>(udata.value);
T*& obj = *pobj;
std::allocator<T> alloc{};
alloc.destroy(obj);
return 0;
}
template <typename T, typename... Functions>
struct usertype_constructor_function : base_function {
typedef std::tuple<Functions...> overload_list;
typedef std::index_sequence_for<Functions...> indices;
overload_list overloads;
usertype_constructor_function(constructor_wrapper<Functions...> set) : usertype_constructor_function(indices(), set) {}
template <std::size_t... I>
usertype_constructor_function(std::index_sequence<I...>, constructor_wrapper<Functions...> set) : usertype_constructor_function(std::get<I>(set)...) {}
usertype_constructor_function(Functions... fxs) : overloads(fxs...) {}
template <bool b, typename Fx, std::size_t I, typename... R, typename... Args>
int call(Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) {
static const auto& meta = usertype_traits<T>::metatable;
T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& referencepointer = *pointerpointer;
T* obj = reinterpret_cast<T*>(pointerpointer + 1);
referencepointer = obj;
reference userdataref(L, -1);
userdataref.pop();
auto& func = std::get<I>(overloads);
stack::typed_call<b ? false : stack::stack_detail::default_check_arguments>(r, a, func, L, start, detail::implicit_wrapper<T>(obj));
userdataref.push();
luaL_getmetatable(L, &meta[0]);
if (stack::get<type>(L) == type::nil) {
lua_pop(L, 1);
std::string err = "unable to get usertype metatable for ";
err += meta;
throw error(err);
}
lua_setmetatable(L, -2);
return 1;
}
virtual int operator()(lua_State* L) override {
static const auto& meta = usertype_traits<T>::metatable;
call_syntax syntax = stack::get_call_syntax(L, meta);
int argcount = lua_gettop(L) - static_cast<int>(syntax);
auto mfx = [&](auto&&... args) { return this->call(std::forward<decltype(args)>(args)...); };
return construct<T, pop_front_type_t<function_args_t<Functions>>...>(mfx, L, argcount, 1 + static_cast<int>(syntax));
}
};
} // sol
#endif // SOL_FUNCTION_TYPES_ALLOCATOR_HPP

View File

@ -31,6 +31,7 @@ struct ref_call_t {} const ref_call = ref_call_t{};
template <typename T>
struct implicit_wrapper {
T& item;
implicit_wrapper(T* item) : item(*item) {}
implicit_wrapper(T& item) : item(item) {}
operator T& () {
return item;
@ -129,7 +130,7 @@ struct functor<T, Func, std::enable_if_t<std::is_member_object_pointer<Func>::va
template<typename T, typename Func>
struct functor<T, Func, std::enable_if_t<std::is_function<Func>::value || std::is_class<Func>::value>> {
typedef callable_traits<Func> traits_type;
typedef remove_one_type<typename traits_type::args_type> args_type;
typedef pop_front_type_t<typename traits_type::args_type> args_type;
typedef typename traits_type::return_type return_type;
typedef std::tuple_element_t<0, typename traits_type::args_tuple_type> Arg0;
typedef std::conditional_t<std::is_pointer<Func>::value || std::is_class<Func>::value, Func, std::add_pointer_t<Func>> function_type;
@ -183,7 +184,7 @@ struct base_function {
};
namespace detail {
static int base_call(lua_State* L, void* inheritancedata) {
static int base_call(lua_State* L, void* inheritancedata) {
if (inheritancedata == nullptr) {
throw error("call from Lua to C++ function has null data");
}
@ -192,9 +193,9 @@ namespace detail {
base_function& fx = *pfx;
int r = fx(L);
return r;
}
}
static int base_gc(lua_State*, void* udata) {
static int base_gc(lua_State*, void* udata) {
if (udata == nullptr) {
throw error("call from lua to C++ gc function with null data");
}
@ -203,48 +204,48 @@ namespace detail {
std::default_delete<base_function> dx{};
dx(ptr);
return 0;
}
}
template <std::size_t limit>
static void func_gc(std::true_type, lua_State*) {
template <std::size_t limit>
static void func_gc(std::true_type, lua_State*) {
}
}
template <std::size_t limit>
static void func_gc(std::false_type, lua_State* L) {
// Shut up clang tautological error without throwing out std::size_t
template <std::size_t limit>
static void func_gc(std::false_type, lua_State* L) {
for (std::size_t i = 0; i < limit; ++i) {
upvalue up = stack::get<upvalue>(L, static_cast<int>(i + 1));
if (up.value == nullptr)
continue;
base_function* obj = static_cast<base_function*>(up.value);
std::allocator<base_function> alloc{};
alloc.destroy(obj);
alloc.deallocate(obj, 1);
}
}
inline int call(lua_State* L) {
void** pinheritancedata = static_cast<void**>(stack::get<upvalue>(L, 1).value);
return base_call(L, *pinheritancedata);
}
inline int gc(lua_State* L) {
void** pudata = static_cast<void**>(stack::get<userdata>(L, 1).value);
return base_gc(L, *pudata);
}
template<std::size_t I>
inline int usertype_call(lua_State* L) {
// Zero-based template parameter, but upvalues start at 1
return base_call(L, stack::get<upvalue>(L, I + 1));
}
template<std::size_t I>
inline int usertype_gc(lua_State* L) {
func_gc<I>(Bool<(I < 1)>(), L);
return 0;
}
}
inline int call(lua_State* L) {
void** pinheritancedata = static_cast<void**>(stack::get<upvalue>(L, 1).value);
return base_call(L, *pinheritancedata);
}
inline int gc(lua_State* L) {
void** pudata = static_cast<void**>(stack::get<userdata>(L, 1).value);
return base_gc(L, *pudata);
}
template<std::size_t I>
inline int usertype_call(lua_State* L) {
// Zero-based template parameter, but upvalues start at 1
return base_call(L, stack::get<upvalue>(L, I + 1));
}
template<std::size_t I>
inline int usertype_gc(lua_State* L) {
func_gc<I>(Bool<(I < 1)>(), L);
return 0;
}
} // detail
} // sol
#endif // SOL_FUNCTION_TYPES_CORE_HPP

View File

@ -28,45 +28,46 @@
namespace sol {
namespace detail {
template <std::size_t... M, typename Match>
inline int match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, std::ptrdiff_t, lua_State*, Match&&, int) {
template <std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State*, int, int, Args&&...) {
throw error("no matching function call takes this number of arguments and the specified types");
}
template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match>
inline int match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, std::ptrdiff_t fxarity, lua_State* L, Match&& matchfx, int start) {
template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
typedef function_traits<Fx> traits;
typedef tuple_types<typename function_traits<Fx>::return_type> return_types;
typedef typename function_traits<Fx>::args_type args_type;
typedef typename args_type::indices args_indices;
// compile-time eliminate any functions that we know ahead of time are of improper arity
if (find_in_pack_v<Index<traits::arity>, Index<M>...>::value || traits::arity != fxarity) {
return match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), fxarity, L, std::forward<Match>(matchfx), start);
if (find_in_pack_v<Index<traits::arity>, Index<M>...>::value) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
if (traits::arity != fxarity) {
return match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<traits::arity, M...>(), fxarity, L, std::forward<Match>(matchfx), start);
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<traits::arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
if (!detail::check_types(args_type(), args_indices(), L, start)) {
return match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), fxarity, L, std::forward<Match>(matchfx), start);
if (sizeof...(Fxs) != 0 && !detail::check_types(args_type(), args_indices(), L, start)) {
return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
return matchfx(Index<I>(), fxarity, L, start);
return matchfx(Bool<sizeof...(Fxs) != 0>(), types<Fx>(), Index<I>(), return_types(), args_type(), L, fxarity, start, std::forward<Args>(args)...);
}
} // detail
template <typename... Functions, typename Match>
inline int match(std::ptrdiff_t fxarity, lua_State* L, Match&& matchfx, int start = 1) {
return detail::match_arity(types<Functions...>(), std::index_sequence_for<Functions...>(), std::index_sequence<>(), fxarity, L, std::forward<Match>(matchfx), start);
template <typename... Functions, typename Match, typename... Args>
inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start = 1, Args&&... args) {
return detail::overload_match_arity(types<Functions...>(), std::index_sequence_for<Functions...>(), std::index_sequence<>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename... Functions, typename Match>
inline int match(lua_State* L, Match&& matchfx, int start = 1) {
std::ptrdiff_t fxarity = lua_gettop(L) - (start - 1);
return match<Functions...>(fxarity, L, std::forward<Match>(matchfx), start);
template <typename... Functions, typename Match, typename... Args>
inline int overload_match(Match&& matchfx, lua_State* L, int start = 1, Args&&... args) {
int fxarity = lua_gettop(L) - (start - 1);
return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}
template <typename... Functions>
struct overloaded_function : base_function {
typedef std::tuple<Functions...> overload_list;
typedef std::index_sequence_for<Functions...> indices;
overload_list overloads;
overloaded_function(overload_set<Functions...> set)
@ -74,26 +75,22 @@ struct overloaded_function : base_function {
template <std::size_t... I>
overloaded_function(std::index_sequence<I...>, overload_set<Functions...> set)
: overloaded_function(std::get<In>(set)...) {}
: overloaded_function(std::get<I>(set)...) {}
overloaded_function(Functions... fxs)
: overloads(fxs...) {
}
template <std::size_t I>
int call(Index<I>, int, lua_State* L, int) {
template <bool b, typename Fx, std::size_t I, typename... R, typename... Args>
int call(Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) {
auto& func = std::get<I>(overloads);
typedef Unqualified<decltype(func)> Fx;
typedef function_traits<Fx> traits;
typedef tuple_types<typename function_traits<Fx>::return_type> return_types;
typedef typename function_traits<Fx>::args_type args_type;
return stack::typed_call<false>(return_types(), args_type(), func, L);
return stack::typed_call<b ? false : stack::stack_detail::default_check_arguments>(r, a, func, L, start);
}
virtual int operator()(lua_State* L) override {
auto mfx = [&](auto&&... args){ return call(std::forward<decltype(args)>(args)...); };
return match<Functions...>(L, mfx);
auto mfx = [&](auto&&... args){ return this->call(std::forward<decltype(args)>(args)...); };
return overload_match<Functions...>(mfx, L);
}
};
@ -110,20 +107,16 @@ struct usertype_overloaded_function : base_function {
usertype_overloaded_function(Functions... fxs) : overloads(fxs...) {}
template <std::size_t I>
int call(Index<I>, int, lua_State* L, int) {
template <bool b,typename Fx, std::size_t I, typename... R, typename... Args>
int call(Bool<b>, types<Fx>, Index<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) {
auto& func = std::get<I>(overloads);
typedef Unqualified<decltype(func)> Fx;
typedef typename Fx::traits_type traits;
typedef tuple_types<typename Fx::return_type> return_types;
typedef typename Fx::args_type args_type;
func.item = ptr(stack::get<T>(L, 1));
return stack::typed_call<false>(return_types(), args_type(), func, L);
return stack::typed_call<b ? false : stack::stack_detail::default_check_arguments>(r, a, func, L, start);
}
virtual int operator()(lua_State* L) override {
auto mfx = [&](auto&&... args){ return call(std::forward<decltype(args)>(args)...); };
return match<Functions...>(L, mfx, 2);
auto mfx = [&](auto&&... args){ return this->call(std::forward<decltype(args)>(args)...); };
return overload_match<Functions...>(mfx, L, 2);
}
};

View File

@ -62,18 +62,17 @@ struct usertype_function_core : public base_function {
return stack::push(L, std::forward<Return>(r));
}
template<typename... Args>
int operator()(types<void> tr, types<Args...> ta, lua_State* L) {
//static const std::size_t skew = static_cast<std::size_t>(std::is_member_object_pointer<function_type>::value);
stack::call(tr, ta, L, 0, fx);
template<typename... Args, std::size_t Start>
int operator()(types<void> tr, types<Args...> ta, Index<Start>, lua_State* L) {
stack::call(tr, ta, L, static_cast<int>(Start), fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<typename... Ret, typename... Args>
int operator()(types<Ret...> tr, types<Args...> ta, lua_State* L) {
decltype(auto) r = stack::call(tr, ta, L, 0, fx);
template<typename... Ret, typename... Args, std::size_t Start>
int operator()(types<Ret...> tr, types<Args...> ta, Index<Start>, lua_State* L) {
decltype(auto) r = stack::call(tr, ta, L, static_cast<int>(Start), fx);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
int pushcount = push(L, std::forward<decltype(r)>(r));
@ -97,7 +96,7 @@ struct usertype_function : public usertype_function_core<Function, Tp> {
if(this->fx.item == nullptr) {
throw error("userdata for function call is null: are you using the wrong syntax? (use item:function/variable(...) syntax)");
}
return static_cast<base_t&>(*this)(tuple_types<return_type>(), args_type(), L);
return static_cast<base_t&>(*this)(tuple_types<return_type>(), args_type(), Index<2>(), L);
}
virtual int operator()(lua_State* L) override {
@ -124,9 +123,9 @@ struct usertype_variable_function : public usertype_function_core<Function, Tp>
}
switch(argcount) {
case 2:
return static_cast<base_t&>(*this)(tuple_types<return_type>(), types<>(), L);
return static_cast<base_t&>(*this)(tuple_types<return_type>(), types<>(), Index<2>(), L);
case 3:
return static_cast<base_t&>(*this)(tuple_types<void>(), args_type(), L);
return static_cast<base_t&>(*this)(tuple_types<void>(), args_type(), Index<3>(), L);
default:
throw error("cannot get/set userdata member variable with inappropriate number of arguments");
}

84
sol/raii.hpp Normal file
View File

@ -0,0 +1,84 @@
// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_RAII_HPP
#define SOL_RAII_HPP
#include <memory>
#include "traits.hpp"
namespace sol {
struct default_construct {
template<typename T, typename... Args>
void operator()(T&& obj, Args&&... args) const {
std::allocator<Unqualified<T>> alloc{};
alloc.construct(obj, std::forward<Args>(args)...);
}
};
template <typename T>
struct placement_construct {
T obj;
template <typename... Args>
placement_construct( Args&&... args ) : obj(std::forward<Args>(args)...) {}
template<typename... Args>
void operator()(Args&&... args) const {
default_construct{}(obj, std::forward<Args>(args)...);
}
};
template<typename... Args>
using constructors = sol::types<Args...>;
const auto default_constructor = constructors<types<>>{};
template <typename... Functions>
struct constructor_wrapper : std::tuple<Functions...> {
using std::tuple<Functions...>::tuple;
};
template <typename... Functions>
constructor_wrapper<Functions...> constructor(Functions&&... functions) {
return constructor_wrapper<Functions...>(std::forward<Functions>(functions)...);
}
template <typename Function>
struct destructor_wrapper {
Function fx;
template <typename... Args>
destructor_wrapper(Args&&... args) : fx(std::forward<Args>(args)...) {}
};
template <>
struct destructor_wrapper<void> {};
const destructor_wrapper<void> default_destructor{};
template <typename Fx>
inline destructor_wrapper<Fx> destructor(Fx&& fx) {
return destructor_wrapper<Fx>(std::forward<Fx>(fx));
}
} // sol
#endif // SOL_RAII_HPP

View File

@ -539,7 +539,7 @@ struct pusher<std::reference_wrapper<T>> {
template<>
struct pusher<bool> {
static int push(lua_State* L, const bool& b) {
static int push(lua_State* L, bool b) {
lua_pushboolean(L, b);
return 1;
}
@ -547,12 +547,20 @@ struct pusher<bool> {
template<>
struct pusher<nil_t> {
static int push(lua_State* L, const nil_t&) {
static int push(lua_State* L, nil_t) {
lua_pushnil(L);
return 1;
}
};
template<>
struct pusher<std::remove_pointer_t<lua_CFunction>> {
static int push(lua_State* L, lua_CFunction func, int n = 0) {
lua_pushcclosure(L, func, n);
return 1;
}
};
template<>
struct pusher<lua_CFunction> {
static int push(lua_State* L, lua_CFunction func, int n = 0) {
@ -759,7 +767,6 @@ template <bool b>
struct check_arguments {
template <std::size_t I0, std::size_t... I, typename Arg0, typename... Args>
static bool check(types<Arg0, Args...>, std::index_sequence<I0, I...>, lua_State* L, int firstargument) {
bool checks = true;
if (!stack::check<Arg0>(L, firstargument + I0))
return false;
return check(types<Args...>(), std::index_sequence<I...>(), L, firstargument);
@ -780,24 +787,14 @@ struct check_arguments<false> {
template <bool checkargs = default_check_arguments, std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline R call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
const int stacksize = lua_gettop(L);
const int firstargument = static_cast<int>(start + stacksize - std::max(sizeof...(Args)-1, static_cast<std::size_t>(0)));
check_arguments<checkargs>{}.check(ta, tai, L, firstargument);
return fx(std::forward<FxArgs>(args)..., stack::get<Args>(L, firstargument + I)...);
check_arguments<checkargs>{}.check(ta, tai, L, start);
return fx(std::forward<FxArgs>(args)..., stack::get<Args>(L, start + I)...);
}
template <bool checkargs = default_check_arguments, std::size_t... I, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
const int stacksize = lua_gettop(L);
const int firstargument = static_cast<int>(start + stacksize - std::max(sizeof...(Args)-1, static_cast<std::size_t>(0)));
bool checks = check_arguments<checkargs>{}.check(ta, tai, L, firstargument);
if ( !checks )
throw error("Arguments not of the proper types for this function call");
fx(std::forward<FxArgs>(args)..., stack::get<Args>(L, firstargument + I)...);
check_arguments<checkargs>{}.check(ta, tai, L, start);
fx(std::forward<FxArgs>(args)..., stack::get<Args>(L, start + I)...);
}
} // stack_detail
@ -831,7 +828,12 @@ inline R call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx,
template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline R call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
return call<check_args>(tr, ta, L, 0, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline R top_call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
return call<check_args>(tr, ta, L, static_cast<int>(lua_gettop(L) - sizeof...(Args)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
@ -842,20 +844,25 @@ inline void call(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&
template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
call<check_args>(tr, ta, L, 0, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template<bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx>
inline int typed_call(types<void> tr, types<Args...> ta, Fx&& fx, lua_State* L, int start = 0) {
call<check_args>(tr, ta, L, start, fx);
template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void top_call(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
call<check_args>(tr, ta, L, static_cast<int>(lua_gettop(L) - sizeof...(Args)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
template<bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline int typed_call(types<void> tr, types<Args...> ta, Fx&& fx, lua_State* L, int start = 1, FxArgs&&... fxargs) {
call<check_args>(tr, ta, L, start, fx, std::forward<FxArgs>(fxargs)...);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return 0;
}
template<bool check_args = stack_detail::default_check_arguments, typename... Ret, typename... Args, typename Fx>
inline int typed_call(types<Ret...>, types<Args...> ta, Fx&& fx, lua_State* L, int start = 0) {
decltype(auto) r = call<check_args>(types<ReturnType<Ret...>>(), ta, L, start, fx);
template<bool check_args = stack_detail::default_check_arguments, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<Not<std::is_void<Ret0>>::value>>
inline int typed_call(types<Ret0, Ret...>, types<Args...> ta, Fx&& fx, lua_State* L, int start = 1, FxArgs&&... fxargs) {
decltype(auto) r = call<check_args>(types<return_type_t<Ret0, Ret...>>(), ta, L, start, fx, std::forward<FxArgs>(fxargs)...);
int nargs = static_cast<int>(sizeof...(Args));
lua_pop(L, nargs);
return push(L, std::forward<decltype(r)>(r));

View File

@ -177,9 +177,16 @@ public:
return *this;
}
template<typename Class, typename... CTor, typename... Args>
template<typename Class, typename... Args>
state_view& new_usertype(const std::string& name, Args&&... args) {
constructors<types<CTor...>> ctor{};
usertype<Class> utype(std::forward<Args>(args)...);
set_usertype(name, utype);
return *this;
}
template<typename Class, typename CTor0, typename... CTor, typename... Args>
state_view& new_usertype(const std::string& name, Args&&... args) {
constructors<types<CTor0, CTor...>> ctor{};
return new_usertype<Class>(name, ctor, std::forward<Args>(args)...);
}

View File

@ -125,6 +125,15 @@ struct find_in_pack_v : Bool<false> { };
template<typename V, typename Vs1, typename... Vs>
struct find_in_pack_v<V, Vs1, Vs...> : Or<Bool<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> { };
template<std::size_t I, typename... Args>
struct at_in_pack {};
template<std::size_t I, typename... Args>
using at_in_pack_t = typename at_in_pack<I, Args...>::type;
template<std::size_t I, typename Arg, typename... Args>
struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {};
template<typename... Args>
struct return_type {
typedef std::tuple<Args...> type;
@ -143,12 +152,6 @@ struct return_type<> {
template <typename... Args>
using return_type_t = typename return_type<Args...>::type;
template <typename Empty, typename... Args>
using ReturnTypeOr = typename std::conditional<(sizeof...(Args) < 1), Empty, return_type_t<Args...>>::type;
template <typename... Args>
using ReturnType = ReturnTypeOr<void, Args...>;
namespace detail {
template<typename T, bool isclass = std::is_class<Unqualified<T>>::value>

View File

@ -30,15 +30,6 @@ template<typename... Args>
struct types { typedef std::index_sequence_for<Args...> indices; static constexpr std::size_t size() { return sizeof...(Args); } };
namespace detail {
template<typename Arg>
struct chop_one : types<> {};
template<typename Arg0, typename Arg1, typename... Args>
struct chop_one<types<Arg0, Arg1, Args...>> : types<Arg1, Args...> {};
template<typename Arg, typename... Args>
struct chop_one<types<Arg, Args...>> : types<Args...> {};
template<typename... Args>
struct tuple_types_ { typedef types<Args...> type; };
@ -53,12 +44,15 @@ template<typename... Args>
using tuple_types = typename detail::tuple_types_<Args...>::type;
template<typename Arg>
struct remove_one_type : detail::chop_one<Arg> {};
struct pop_front_type;
template<typename Arg>
using pop_front_type_t = typename pop_front_type<Arg>::type;
template<typename Arg, typename... Args>
struct pop_front_type<types<Arg, Args...>> { typedef types<Args...> type; };
template<typename... Args>
using constructors = sol::types<Args...>;
const auto default_constructor = constructors<types<>>{};
} // sol

View File

@ -25,7 +25,7 @@
#include "state.hpp"
#include "function_types.hpp"
#include "usertype_traits.hpp"
#include "default_construct.hpp"
#include "raii.hpp"
#include "deprecate.hpp"
#include <vector>
#include <array>
@ -33,12 +33,12 @@
#include <map>
namespace sol {
const std::array<std::string, 2> meta_variable_names = { {
const std::array<std::string, 2> meta_variable_names = { {
"__index",
"__newindex",
} };
} };
const std::array<std::string, 21> meta_function_names = { {
const std::array<std::string, 21> meta_function_names = { {
"new",
"__index",
"__newindex",
@ -60,9 +60,9 @@ namespace sol {
"__le",
"__gc",
"__call",
} };
} };
enum class meta_function {
enum class meta_function {
construct,
index,
new_index,
@ -85,11 +85,37 @@ namespace sol {
less_than_or_equal_to,
garbage_collect,
call_function,
};
};
namespace usertype_detail {
template<typename T, typename Funcs, typename FuncTable, typename MetaFuncTable>
inline void push_metatable(lua_State* L, Funcs&& funcs, FuncTable&&, MetaFuncTable&& metafunctable) {
namespace usertype_detail {
struct add_destructor_tag {};
struct check_destructor_tag {};
struct verified_tag {} const verified {};
template <typename T>
struct is_constructor : std::false_type {};
template <typename... Args>
struct is_constructor<constructors<Args...>> : std::true_type {};
template <typename... Args>
struct is_constructor<constructor_wrapper<Args...>> : std::true_type {};
template <typename... Args>
using has_constructor = Or<is_constructor<Unqualified<Args>>...>;
template <typename T>
struct is_destructor : std::false_type {};
template <typename Fx>
struct is_destructor<destructor_wrapper<Fx>> : std::true_type {};
template <typename... Args>
using has_destructor = Or<is_destructor<Unqualified<Args>>...>;
template<typename T, bool refmeta, typename Funcs, typename FuncTable, typename MetaFuncTable>
inline void push_metatable(lua_State* L, bool needsindexfunction, Funcs&& funcs, FuncTable&& functable, MetaFuncTable&& metafunctable) {
static const auto& gcname = meta_function_names[static_cast<int>(meta_function::garbage_collect)];
luaL_newmetatable(L, &usertype_traits<T>::metatable[0]);
int metatableindex = lua_gettop(L);
if (funcs.size() < 1 && metafunctable.size() < 2) {
@ -97,58 +123,51 @@ namespace sol {
}
// Metamethods directly on the metatable itself
int metaup = stack::stack_detail::push_upvalues(L, funcs);
if (std::is_pointer<T>::value) {
// Insert nullptr before new/gc methods for pointer types;
// prevents calling new/GC on pointer-based tables.
luaL_Reg& oldref = metafunctable[metafunctable.size() - 3];
luaL_Reg old = oldref;
oldref = { nullptr, nullptr };
if (refmeta && gcname == metafunctable[metafunctable.size()-2].name) {
// We can just "clip" out the __gc function,
// which we always put as the last entry in the meta function table.
luaL_Reg& target = metafunctable[metafunctable.size() - 2];
luaL_Reg old = target;
target = { nullptr, nullptr };
luaL_setfuncs(L, metafunctable.data(), metaup);
oldref = old;
target = old;
}
else {
// Otherwise, just slap it in there.
luaL_setfuncs(L, metafunctable.data(), metaup);
}
if (needsindexfunction) {
// We don't need to do anything more
// since we've already bound the __index field using
// setfuncs above...
return;
}
// Otherwise, we use quick, fast table indexing for methods
// gives us performance boost in calling them
lua_createtable(L, 0, functable.size());
int up = stack::stack_detail::push_upvalues(L, funcs);
luaL_setfuncs(L, functable.data(), up);
lua_setfield(L, metatableindex, "__index");
return;
}
template <typename T, typename Functions>
inline void set_global_deleter(lua_State* L, lua_CFunction cleanup, Functions&& metafunctions) {
template <typename T, typename Functions>
inline void set_global_deleter(lua_State* L, lua_CFunction cleanup, Functions&& functions) {
// Automatic deleter table -- stays alive until lua VM dies
// even if the user calls collectgarbage(), weirdly enough
lua_createtable(L, 0, 0);
lua_createtable(L, 0, 1);
int up = stack::stack_detail::push_upvalues<true>(L, metafunctions);
lua_pushcclosure(L, cleanup, up);
lua_setfield(L, -2, "__gc");
lua_createtable(L, 0, 0); // global table that sits at toplevel
lua_createtable(L, 0, 1); // metatable for the global table
int up = stack::stack_detail::push_upvalues<true>(L, functions);
stack::set_field(L, "__gc", c_closure(cleanup, up));
lua_setmetatable(L, -2);
// gctable name by default has ♻ part of it
lua_setglobal(L, &usertype_traits<T>::gc_table[0]);
}
}
}
template<typename T, typename... Args>
static void do_constructor(lua_State* L, T* obj, call_syntax syntax, int, types<Args...>) {
default_construct fx{};
stack::call(types<void>(), types<Args...>(), L, -1 + static_cast<int>(syntax), fx, obj);
}
template <typename T>
static void match_constructor(lua_State*, T*, call_syntax, int) {
throw error("No matching constructor for the arguments provided");
}
template<typename T, typename ...CArgs, typename... Args>
static void match_constructor(lua_State* L, T* obj, call_syntax syntax, int argcount, types<CArgs...> t, Args&&... args) {
if (argcount == sizeof...(CArgs)) {
do_constructor<T>(L, obj, syntax, argcount, t);
return;
}
match_constructor<T>(L, obj, syntax, argcount, std::forward<Args>(args)...);
}
}
template<typename T>
class usertype {
private:
template<typename T>
class usertype {
private:
typedef std::map<std::string, std::pair<bool, base_function*>> function_map_t;
std::vector<std::string> functionnames;
std::vector<std::unique_ptr<base_function>> functions;
@ -157,50 +176,20 @@ namespace sol {
base_function* indexfunc;
base_function* newindexfunc;
function_map_t indexwrapper, newindexwrapper;
base_function* constructfunc;
base_function* destructfunc;
lua_CFunction functiongc;
template<typename... TTypes>
struct constructor {
static int construct(lua_State* L) {
const auto& meta = usertype_traits<T>::metatable;
call_syntax syntax = stack::get_call_syntax(L, meta);
int argcount = lua_gettop(L);
T** pointerpointer = reinterpret_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
T*& referencepointer = *pointerpointer;
T* obj = reinterpret_cast<T*>(pointerpointer + 1);
referencepointer = obj;
int userdataindex = lua_gettop(L);
usertype_detail::match_constructor(L, obj, syntax, argcount - static_cast<int>(syntax), identity_t<TTypes>()...);
if (luaL_newmetatable(L, &meta[0]) == 1) {
lua_pop(L, 1);
std::string err = "unable to get usertype metatable for ";
err += meta;
throw error(err);
}
lua_setmetatable(L, userdataindex);
return 1;
}
};
static int destruct(lua_State* L) {
userdata udata = stack::get<userdata>(L, 1);
// The first sizeof(T*) bytes are the reference: the rest is
// the actual data itself (if there is a reference at all)
T** pobj = reinterpret_cast<T**>(udata.value);
T*& obj = *pobj;
std::allocator<T> alloc{};
alloc.destroy(obj);
return 0;
}
lua_CFunction constructfunc;
const char* destructfuncname;
lua_CFunction destructfunc;
lua_CFunction functiongcfunc;
bool needsindexfunction;
template<typename... Functions>
std::unique_ptr<base_function> make_function(const std::string&, overload_set<Functions...> func) {
return std::make_unique<usertype_overloaded_function<T, Functions...>>(func);
return std::make_unique<usertype_overloaded_function<T, Functions...>>(std::move(func));
}
template<typename... Functions>
std::unique_ptr<base_function> make_function(const std::string&, constructor_wrapper<Functions...> func) {
return std::make_unique<usertype_constructor_function<T, Functions...>>(std::move(func));
}
template<typename Arg, typename... Args, typename Ret>
@ -241,33 +230,85 @@ namespace sol {
return std::make_unique<usertype_function<function_type, T>>(func);
}
template<std::size_t N, typename... Args>
void build_function(std::string funcname, constructors<Args...>) {
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
// Insert bubble to keep with compile-time argument count (simpler and cheaper to do)
functions.push_back(nullptr);
constructfunc = construct<T, Args...>;
metafunctiontable.push_back({ functionnames.back().c_str(), constructfunc });
}
template<std::size_t N>
void build_function(std::string funcname, destructor_wrapper<void>) {
auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), funcname);
if (metamethodfind == meta_function_names.end())
throw error("cannot set destructor to anything but the metamethod \"__gc\"");
meta_function metafunction = static_cast<meta_function>(metamethodfind - meta_function_names.begin());
if (metafunction != meta_function::garbage_collect)
throw error("cannot set destructor to anything but the metamethod \"__gc\"");
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
destructfunc = destruct<T>;
destructfuncname = name.c_str();
// Insert bubble to stay with the compile-time count
functions.push_back(nullptr);
}
template<std::size_t N, typename Fx>
void build_function(std::string funcname, destructor_wrapper<Fx> dx) {
auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), funcname);
if (metamethodfind == meta_function_names.end())
throw error("cannot set destructor to anything but the metamethod \"__gc\"");
meta_function metafunction = static_cast<meta_function>(metamethodfind - meta_function_names.begin());
if (metafunction != meta_function::garbage_collect)
throw error("cannot set destructor to anything but the metamethod \"__gc\"");
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
auto baseptr = make_function(name, std::move(dx.fx));
functions.emplace_back(std::move(baseptr));
destructfunc = detail::usertype_call<N>;
destructfuncname = name.c_str();
}
template<std::size_t N, typename Fx>
void build_function(std::string funcname, Fx&& func) {
typedef std::is_member_object_pointer<Unqualified<Fx>> is_variable;
typedef std::decay_t<Fx> function_type;
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
auto baseptr = make_function(name, std::forward<Fx>(func));
functions.emplace_back(std::move(baseptr));
if (is_variable::value) {
indexwrapper.insert({ name, { false, functions.back().get() } });
newindexwrapper.insert({ name, { false, functions.back().get() } });
return;
}
auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), name);
if (metamethodfind != meta_function_names.end()) {
metafunctiontable.push_back({ name.c_str(), detail::usertype_call<N> });
meta_function metafunction = static_cast<meta_function>(metamethodfind - meta_function_names.begin());
switch (metafunction) {
case meta_function::garbage_collect:
destructfuncname = name.c_str();
destructfunc = detail::usertype_call<N>;
return;
case meta_function::index:
indexfunc = functions.back().get();
needsindexfunction = true;
break;
case meta_function::new_index:
newindexfunc = functions.back().get();
break;
case meta_function::construct:
constructfunc = detail::usertype_call<N>;
break;
default:
break;
}
metafunctiontable.push_back({ name.c_str(), detail::usertype_call<N> });
return;
}
if (is_variable::value) {
needsindexfunction = true;
indexwrapper.insert({ name, { false, functions.back().get() } });
newindexwrapper.insert({ name, { false, functions.back().get() } });
return;
}
indexwrapper.insert({ name, { true, functions.back().get() } });
@ -300,67 +341,71 @@ namespace sol {
metafunctiontable.push_back({ "__newindex", indexwrapper.empty() ? detail::usertype_call<N> : detail::usertype_call<N + 1> });
++variableend;
}
if (destructfunc != nullptr) {
metafunctiontable.push_back({ destructfuncname, destructfunc });
}
switch (variableend) {
case 2:
functiongc = detail::usertype_gc<N + 2>;
functiongcfunc = detail::usertype_gc<N + 2>;
break;
case 1:
functiongc = detail::usertype_gc<N + 1>;
functiongcfunc = detail::usertype_gc<N + 1>;
break;
case 0:
functiongc = detail::usertype_gc<N + 0>;
functiongcfunc = detail::usertype_gc<N + 0>;
break;
}
}
public:
template<typename... Args>
usertype(Args&&... args) : usertype(default_constructor, std::forward<Args>(args)...) {}
template<typename... Args, typename... CArgs>
usertype(constructors<CArgs...>, Args&&... args)
: indexfunc(nullptr), newindexfunc(nullptr), constructfunc(nullptr), destructfunc(nullptr), functiongc(nullptr) {
usertype(usertype_detail::verified_tag, Args&&... args) : indexfunc(nullptr), newindexfunc(nullptr), constructfunc(nullptr), destructfunc(nullptr), functiongcfunc(nullptr), needsindexfunction(false) {
functionnames.reserve(sizeof...(args)+3);
functiontable.reserve(sizeof...(args)+3);
metafunctiontable.reserve(sizeof...(args)+3);
build_function_tables<0>(std::forward<Args>(args)...);
functionnames.push_back("new");
metafunctiontable.push_back({ functionnames.back().c_str(), &constructor<CArgs...>::construct });
functionnames.push_back("__gc");
metafunctiontable.push_back({ functionnames.back().c_str(), destruct });
// ptr_functions does not participate in garbage collection/new,
// as all pointered types are considered
// to be references. This makes returns of
// `std::vector<int>&` and `std::vector<int>*` work
metafunctiontable.push_back({ nullptr, nullptr });
functiontable.push_back({ nullptr, nullptr });
}
template<typename... Args>
usertype(usertype_detail::add_destructor_tag, Args&&... args) : usertype(usertype_detail::verified, "__gc", default_destructor, std::forward<Args>(args)...) {}
template<typename... Args>
usertype(usertype_detail::check_destructor_tag, Args&&... args) : usertype(If<And<std::is_destructible<T>, Not<usertype_detail::has_destructor<Args...>>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward<Args>(args)...) {}
public:
template<typename... Args>
usertype(Args&&... args) : usertype(If<And<std::is_default_constructible<T>, Not<usertype_detail::has_constructor<Args...>>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward<Args>(args)...) {}
template<typename... Args, typename... CArgs>
usertype(constructors<CArgs...> constructorlist, Args&&... args) : usertype(usertype_detail::verified, "new", constructorlist, "__gc", default_destructor, std::forward<Args>(args)...) {
}
int push(lua_State* L) {
// push pointer tables first,
usertype_detail::push_metatable<T*>(L, functions, functiontable, metafunctiontable);
usertype_detail::push_metatable<T*, true>(L, needsindexfunction, functions, functiontable, metafunctiontable);
lua_pop(L, 1);
// but leave the regular T table on last
// so it can be linked to a type for usage with `.new(...)` or `:new(...)`
usertype_detail::push_metatable<T>(L, functions, functiontable, metafunctiontable);
usertype_detail::push_metatable<T, false>(L, needsindexfunction, functions, functiontable, metafunctiontable);
// Make sure to drop a table in the global namespace to properly destroy the pushed functions
// at some later point in life
usertype_detail::set_global_deleter<T>(L, functiongc, functions);
usertype_detail::set_global_deleter<T>(L, functiongcfunc, functions);
return 1;
}
};
};
namespace stack {
template<typename T>
struct pusher<usertype<T>> {
namespace stack {
template<typename T>
struct pusher<usertype<T>> {
static int push(lua_State* L, usertype<T>& user) {
return user.push(L);
}
};
} // stack
};
} // stack
} // sol
#endif // SOL_USERTYPE_HPP

View File

@ -224,6 +224,41 @@ struct giver {
};
struct factory_test {
private:
factory_test() { a = true_a; }
~factory_test() { a = 0; }
public:
static int num_saved;
static int num_killed;
struct deleter {
void operator()(factory_test* f) {
f->~factory_test();
}
};
static const int true_a = 156;
int a;
static std::unique_ptr<factory_test, deleter> make() {
return std::unique_ptr<factory_test, deleter>( new factory_test(), deleter());
}
static void save(factory_test& f) {
new(&f)factory_test();
++num_saved;
}
static void kill(factory_test& f) {
f.~factory_test();
++num_killed;
}
};
int factory_test::num_saved = 0;
int factory_test::num_killed = 0;
TEST_CASE("table/traversal", "ensure that we can chain requests and tunnel down into a value if we desire") {
sol::state lua;
@ -1307,6 +1342,36 @@ func(1,2,3)
REQUIRE_THROWS(lua.script("func(1,2,'meow')"));
}
TEST_CASE("usertype/private constructible", "Check to make sure special snowflake types from Enterprise thingamahjongs work properly.") {
int numsaved = factory_test::num_saved;
int numkilled = factory_test::num_killed;
{
sol::state lua;
lua.open_libraries(sol::lib::base);
lua.new_usertype<factory_test>("factory_test",
"new", sol::constructor(factory_test::save),
"__gc", sol::destructor(factory_test::kill),
"a", &factory_test::a
);
std::unique_ptr<factory_test, factory_test::deleter> f = factory_test::make();
lua.set("true_a", factory_test::true_a, "f", f.get());
REQUIRE_NOTHROW(lua.script(R"(
assert(f.a == true_a)
)"));
REQUIRE_NOTHROW(lua.script(R"(
local fresh_f = factory_test:new()
assert(fresh_f.a == true_a)
)"));
}
int expectednumsaved = numsaved + 1;
int expectednumkilled = numkilled + 1;
REQUIRE(expectednumsaved == factory_test::num_saved);
REQUIRE(expectednumkilled == factory_test::num_killed);
}
TEST_CASE("usertype/overloading", "Check if overloading works properly for usertypes") {
struct woof {
int var;