sol2/docs/source/api/state.rst

183 lines
8.9 KiB
ReStructuredText
Raw Normal View History

2016-03-12 06:47:15 +08:00
state
=====
owning and non-owning state holders for registry and globals
------------------------------------------------------------
.. code-block:: cpp
class state_view;
2016-03-12 10:45:41 +08:00
class state : state_view, std::unique_ptr<lua_State*, deleter>;
2016-03-12 06:47:15 +08:00
The most important class here is ``state_view``. This structure takes a ``lua_State*`` that was already created and gives you simple, easy access to Lua's interfaces without taking ownership. ``state`` derives from ``state_view``, inheriting all of this functionality, but has the additional purpose of creating a fresh ``lua_State*`` and managing its lifetime for you in the default constructor.
The majority of the members between ``state_view`` and :doc:`sol::table<table>` are identical, with added for this higher-level type. Therefore, all of the examples and notes in :doc:`sol::table<table>` apply here as well.
enumerations
------------
.. code-block:: cpp
:caption: in-lua libraries
2016-03-12 10:45:41 +08:00
:name: lib-enum
2016-03-12 06:47:15 +08:00
enum class lib : char {
base,
package,
coroutine,
string,
os,
math,
table,
debug,
bit32,
io,
ffi,
jit,
2016-03-12 06:47:15 +08:00
count // do not use
};
This enumeration details the various base libraries that come with Lua. See the `standard lua libraries`_ for details about the various standard libraries.
members
-------
.. code-block:: cpp
:caption: function: open standard libraries/modules
2016-03-12 10:45:41 +08:00
:name: open-libraries
2016-03-12 06:47:15 +08:00
template<typename... Args>
void open_libraries(Args&&... args);
This function takes a number of :ref:`sol::lib<lib-enum>` as arguments and opens up the associated Lua core libraries.
2016-03-12 06:47:15 +08:00
.. code-block:: cpp
:caption: function: script / script_file
:name: state-script-function
2016-03-12 06:47:15 +08:00
sol::function_result script(const std::string& code);
2017-04-03 12:08:56 +08:00
sol::protected_function_result script(const std::string& code, const environment& env);
template <typename Func>
sol::protected_function_result script(const std::string& code, Func&& func);
template <typename Func>
2017-04-03 12:08:56 +08:00
sol::protected_function_result script(const std::string& code, const environment& env, Func&& func);
sol::function_result script_file(const std::string& filename);
sol::protected_function_result script_file(const std::string& filename, const environment& env);
template <typename Func>
sol::protected_function_result script_file(const std::string& filename, Func&& func);
2017-04-03 12:08:56 +08:00
template <typename Func>
sol::protected_function_result script_file(const std::string& filename, const environment& env, Func&& func);
These functions run the desired blob of either code that is in a string, or code that comes from a filename, on the ``lua_State*``. It will not run isolated: any scripts or code run will affect code in the ``lua_State*`` the object uses as well (unless ``local`` is applied to a variable declaration, as specified by the Lua language). Code ran in this fashion is not isolated. If you need isolation, consider creating a new state or traditional Lua sandboxing techniques.
If your script returns a value, you can capture it from the returned :ref:`sol::function_result<function-result>`/:ref:`sol::protected_function_result<protected-function-result>`.
To handle errors when using the second overload, provide a callable function/object that takes a ``lua_State*`` as its first argument and a ``sol::protected_function_result`` as its second argument. Then, handle the errors any way you like:
.. code-block:: cpp
:caption: running code safely
:name: state-script-safe
int main () {
sol::state lua;
// the default handler panics or throws, depending on your settings
auto result1 = lua.script("bad.code", &sol::default_on_error);
auto result2 = lua.script("123 bad.code", [](lua_State* L, sol::protected_function_result pfr) {
// pfr will contain things that went wrong, for either loading or executing the script
// the user can do whatever they like here, including throw. Otherwise,
// they need to return the protected_function_result
// You can also just return it, and let the call-site handle the error if necessary.
return pfr;
});
}
2016-03-12 06:47:15 +08:00
2017-05-10 01:24:56 +08:00
You can also pass a :doc:`sol::environment<environment>` to ``script``/``script_file`` to have the script have sandboxed / contained in a way inside of a state. This is useful for runnig multiple different "perspectives" or "views" on the same state, and even has fallback support. See the :doc:`sol::environment<environment>` documentation for more details.
2017-04-03 12:30:20 +08:00
.. code-block:: cpp
:caption: function: require / require_file
:name: state-require-function
sol::object require(const std::string& key, lua_CFunction open_function, bool create_global = true);
sol::object require_script(const std::string& key, const std::string& code, bool create_global = true);
sol::object require_file(const std::string& key, const std::string& file, bool create_global = true);
These functions play a role similar to `luaL_requiref`_ except that they make this functionality available for loading a one-time script or a single file. The code here checks if a module has already been loaded, and if it has not, will either load / execute the file or execute the string of code passed in. If ``create_global`` is set to true, it will also link the name ``key`` to the result returned from the open function, the code or the file. Regardless or whether a fresh load happens or not, the returned module is given as a single :doc:`sol::object<object>` for you to use as you see fit.
Thanks to `Eric (EToreo) for the suggestion on this one`_!
.. code-block:: cpp
:caption: function: load / load_file
:name: state-load-code
sol::load_result load(const std::string& code);
sol::load_result load_file(const std::string& filename);
These functions *load* the desired blob of either code that is in a string, or code that comes from a filename, on the ``lua_State*``. It will not run: it returns a ``load_result`` proxy that can be called to actually run the code, turned into a ``sol::function``, a ``sol::protected_function``, or some other abstraction. If it is called, it will run on the object's current ``lua_State*``: it is not isolated. If you need isolation, consider creating a new state or traditional Lua sandboxing techniques.
2016-11-05 07:41:16 +08:00
.. code-block:: cpp
:caption: function: do_string / do_file
:name: state-do-code
sol::protected_function_result do_string(const std::string& code);
sol::protected_function_result do_file(const std::string& filename);
These functions *loads and performs* the desired blob of either code that is in a string, or code that comes from a filename, on the ``lua_State*``. It *will* run, and then return a ``protected_function_result`` proxy that can be examined for either an error or the return value.
2016-11-05 07:41:16 +08:00
2016-03-12 06:47:15 +08:00
.. code-block:: cpp
:caption: function: global table / registry table
sol::global_table globals() const;
sol::table registry() const;
2016-03-12 06:47:15 +08:00
Get either the global table or the Lua registry as a :doc:`sol::table<table>`, which allows you to modify either of them directly. Note that getting the global table from a ``state``/``state_view`` is usually unnecessary as it has all the exact same functions as a :doc:`sol::table<table>` anyhow.
.. code-block:: cpp
:caption: function: set_panic
2016-03-12 10:45:41 +08:00
:name: set-panic
2016-03-12 06:47:15 +08:00
void set_panic(lua_CFunction panic);
Overrides the panic function Lua calls when something unrecoverable or unexpected happens in the Lua VM. Must be a function of the that matches the ``int(lua_State*)`` function signature.
2016-03-12 06:47:15 +08:00
.. code-block:: cpp
:caption: function: memory_used
:name: memory-used
std::size_t memory_used() const;
Returns the amount of memory used *in bytes* by the Lua State.
.. code-block:: cpp
:caption: function: collect_garbage
:name: collect-garbage
void collect_garbage();
Attempts to run the garbage collector. Note that this is subject to the same rules as the Lua API's collect_garbage function: memory may or may not be freed, depending on dangling references or other things, so make sure you don't have tables or other stack-referencing items currently alive or referenced that you want to be collected.
2016-03-15 05:12:03 +08:00
.. code-block:: cpp
:caption: function: make a table
sol::table create_table(int narr = 0, int nrec = 0);
2016-03-15 05:12:03 +08:00
template <typename Key, typename Value, typename... Args>
sol::table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args);
template <typename... Args>
sol::table create_table_with(Args&&... args);
2016-03-15 05:12:03 +08:00
static sol::table create_table(lua_State* L, int narr = 0, int nrec = 0);
2016-03-15 05:12:03 +08:00
template <typename Key, typename Value, typename... Args>
static sol::table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args);
2016-03-15 05:12:03 +08:00
2017-07-01 23:20:39 +08:00
Creates a table. Forwards its arguments to :ref:`table::create<table-create>`. Applies the same rules as :ref:`table.set<set-value>` when putting the argument values into the table, including how it handles callable objects.
2016-03-15 05:12:03 +08:00
.. _standard lua libraries: http://www.lua.org/manual/5.3/manual.html#6
.. _luaL_requiref: https://www.lua.org/manual/5.3/manual.html#luaL_requiref
.. _Eric (EToreo) for the suggestion on this one: https://github.com/ThePhD/sol2/issues/90