sol2/sol/function.hpp

293 lines
12 KiB
C++
Raw Normal View History

// The MIT License (MIT)
2016-02-27 15:43:53 +08:00
// Copyright (c) 2013-2016 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_HPP
#define SOL_FUNCTION_HPP
#include "reference.hpp"
#include "stack.hpp"
#include "resolve.hpp"
#include "function_result.hpp"
#include "function_types.hpp"
#include <cstdint>
#include <functional>
#include <memory>
namespace sol {
template <typename Sig, typename... Functions>
struct function_packer {
std::tuple<Functions...> set;
template <typename... Args>
function_packer(Args&&... args) : set(std::forward<Args>(args)...) {}
};
template <typename Sig, typename... Args>
function_packer<Sig, Args...> function_pack( Args&&... args ) {
return function_packer<Sig, Args...>(std::forward<Args>(args)...);
}
class function : public reference {
private:
void luacall( std::ptrdiff_t argcount, std::ptrdiff_t resultcount ) const {
lua_callk( lua_state( ), static_cast<int>( argcount ), static_cast<int>( resultcount ), 0, nullptr );
}
template<std::size_t... I, typename... Ret>
auto invoke( types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n ) const {
luacall( n, sizeof...( Ret ) );
int stacksize = lua_gettop( lua_state( ) );
int firstreturn = std::max(1, stacksize - static_cast<int>(sizeof...(Ret)) + 1);
auto r = stack::get<std::tuple<Ret...>>( lua_state( ), firstreturn );
lua_pop(lua_state(), static_cast<int>(sizeof...(Ret)));
return r;
}
template<std::size_t I, typename Ret>
Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n ) const {
luacall( n, 1 );
return stack::pop<Ret>( lua_state( ) );
}
template <std::size_t I>
void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const {
luacall( n, 0 );
}
function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n ) const {
int stacksize = lua_gettop( lua_state( ) );
int firstreturn = std::max( 1, stacksize - static_cast<int>( n ) );
luacall(n, LUA_MULTRET);
int poststacksize = lua_gettop( lua_state( ) );
int returncount = poststacksize - (firstreturn - 1);
return function_result( lua_state( ), firstreturn, returncount );
}
public:
2016-02-27 15:43:53 +08:00
using reference::reference;
template<typename... Args>
function_result operator()( Args&&... args ) const {
return call<>( std::forward<Args>( args )... );
}
template<typename... Ret, typename... Args>
decltype(auto) operator()( types<Ret...>, Args&&... args ) const {
return call<Ret...>( std::forward<Args>( args )... );
}
template<typename... Ret, typename... Args>
decltype(auto) call( Args&&... args ) const {
push( );
2016-03-12 00:34:44 +08:00
int pushcount = stack::multi_push( lua_state( ), std::forward<Args>( args )... );
return invoke( types<Ret...>( ), std::index_sequence_for<Ret...>(), pushcount );
}
};
namespace stack {
template<typename... Sigs>
struct pusher<function_sig<Sigs...>> {
template<typename R, typename... Args, typename Fx, typename = std::result_of_t<Fx(Args...)>>
static void set_memfx(types<R(Args...)> t, lua_State* L, Fx&& fx) {
typedef std::decay_t<meta::Unwrapped<meta::Unqualified<Fx>>> raw_fx_t;
typedef R(* fx_ptr_t)(Args...);
typedef std::is_convertible<raw_fx_t, fx_ptr_t> is_convertible;
set_isconvertible_fx(is_convertible(), t, L, std::forward<Fx>(fx));
}
template<typename Fx>
static void set_memfx(types<>, lua_State* L, Fx&& fx) {
typedef meta::Unwrapped<meta::Unqualified<Fx>> fx_t;
set(L, &fx_t::operator(), std::forward<Fx>(fx));
}
template<typename... Args, typename R>
static void set(lua_State* L, R fxptr(Args...)){
set_fx(std::false_type(), L, fxptr);
}
template<typename Sig>
static void set(lua_State* L, Sig* fxptr){
set_fx(std::false_type(), L, fxptr);
}
template<typename... Args, typename R, typename C, typename T>
static void set(lua_State* L, R (C::*memfxptr)(Args...), T&& obj) {
typedef meta::Bool<meta::is_specialization_of<meta::Unqualified<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
set_reference_fx(is_reference(), L, memfxptr, std::forward<T>(obj));
}
template<typename Sig, typename C, typename T>
static void set(lua_State* L, Sig C::* memfxptr, T&& obj) {
typedef meta::Bool<meta::is_specialization_of<meta::Unqualified<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference;
set_reference_fx(is_reference(), L, memfxptr, std::forward<T>(obj));
}
template<typename... Sig, typename Fx>
static void set(lua_State* L, Fx&& fx) {
set_memfx(types<Sig...>(), L, std::forward<Fx>(fx));
}
template<typename Fx, typename R, typename... Args>
static void set_isconvertible_fx(std::true_type, types<R(Args...)>, lua_State* L, Fx&& fx) {
typedef R(* fx_ptr_t)(Args...);
fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx));
set(L, fxptr);
}
template<typename Fx, typename R, typename... Args>
static void set_isconvertible_fx(std::false_type, types<R(Args...)>, lua_State* L, Fx&& fx) {
typedef meta::Unwrapped<std::decay_t<Fx>> fx_t;
std::unique_ptr<function_detail::base_function> sptr = std::make_unique<function_detail::functor_function<fx_t>>(std::forward<Fx>(fx));
set_fx(L, std::move(sptr));
}
template<typename Fx, typename T>
static void set_reference_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) {
set_fx(std::true_type(), L, std::forward<Fx>(fx), std::forward<T>(obj));
}
template<typename Fx, typename T>
static void set_reference_fx(std::false_type, lua_State* L, Fx&& fx, T&& obj) {
typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
std::unique_ptr<function_detail::base_function> sptr = std::make_unique<function_detail::member_function<clean_fx, meta::Unqualified<T>>>(std::forward<T>(obj), std::forward<Fx>(fx));
return set_fx(L, std::move(sptr));
}
template<typename Fx, typename T>
static void set_fx(std::true_type, lua_State* L, Fx&& fx, T&& obj) {
// Layout:
// idx 1...n: verbatim data of member function pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
typedef std::decay_t<Fx> dFx;
typedef meta::Unqualified<Fx> uFx;
dFx memfxptr(std::forward<Fx>(fx));
auto userptr = detail::ptr(obj);
void* userobjdata = static_cast<void*>(userptr);
lua_CFunction freefunc = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, uFx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, memfxptr);
upvalues += stack::push(L, userobjdata);
stack::push(L, freefunc, upvalues);
}
template<typename Fx>
static void set_fx(std::false_type, lua_State* L, Fx&& fx) {
std::decay_t<Fx> target(std::forward<Fx>(fx));
lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx>::call;
int upvalues = stack::stack_detail::push_as_upvalues(L, target);
stack::push(L, freefunc, upvalues);
}
static void set_fx(lua_State* L, std::unique_ptr<function_detail::base_function> luafunc) {
function_detail::base_function* target = luafunc.release();
void* targetdata = reinterpret_cast<void*>(target);
lua_CFunction freefunc = function_detail::call;
stack::push(L, userdata_value(targetdata));
function_detail::free_function_cleanup(L);
lua_setmetatable(L, -2);
stack::push(L, freefunc, 1);
}
template<typename... Args>
static int push(lua_State* L, Args&&... args) {
// Set will always place one thing (function) on the stack
set<Sigs...>(L, std::forward<Args>(args)...);
return 1;
}
};
template<typename T, typename... Args>
struct pusher<function_packer<T, Args...>> {
template <std::size_t... I, typename FP>
static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) {
return stack::push<T>(L, detail::forward_get<I>(fp.set)...);
}
template <typename FP>
static int push(lua_State* L, FP&& fp) {
return push_func(std::index_sequence_for<Args...>(), L, std::forward<FP>(fp));
}
};
template<typename Signature>
struct pusher<std::function<Signature>> {
static int push(lua_State* L, std::function<Signature> fx) {
return pusher<function_sig<>>{}.push(L, std::move(fx));
}
};
template<typename... Functions>
struct pusher<overload_set<Functions...>> {
static int push(lua_State* L, overload_set<Functions...>&& set) {
pusher<function_sig<>>{}.set_fx(L, std::make_unique<function_detail::overloaded_function<Functions...>>(std::move(set.set)));
return 1;
}
static int push(lua_State* L, const overload_set<Functions...>& set) {
pusher<function_sig<>>{}.set_fx(L, std::make_unique<function_detail::overloaded_function<Functions...>>(set.set));
return 1;
}
};
template<typename Signature>
struct getter<std::function<Signature>> {
typedef meta::function_traits<Signature> fx_t;
typedef typename fx_t::args_type args_types;
typedef meta::tuple_types<typename fx_t::return_type> return_types;
template<typename... Args, typename... Ret>
static std::function<Signature> get_std_func(types<Ret...>, types<Args...>, lua_State* L, int index = -1) {
sol::function f(L, index);
auto fx = [f, L, index](Args&&... args) -> meta::return_type_t<Ret...> {
return f.call<Ret...>(std::forward<Args>(args)...);
};
return std::move(fx);
}
template<typename... FxArgs>
static std::function<Signature> get_std_func(types<void>, types<FxArgs...>, lua_State* L, int index = -1) {
sol::function f(L, index);
2014-08-11 08:49:34 +08:00
auto fx = [f, L, index](FxArgs&&... args) -> void {
f(std::forward<FxArgs>(args)...);
};
return std::move(fx);
}
template<typename... FxArgs>
static std::function<Signature> get_std_func(types<>, types<FxArgs...> t, lua_State* L, int index = -1) {
return get_std_func(types<void>(), t, L, index);
}
static std::function<Signature> get(lua_State* L, int index) {
return get_std_func(return_types(), args_types(), L, index);
}
};
} // stack
} // sol
#endif // SOL_FUNCTION_HPP