Makes an ``R`` out of the value. The first overload deduces the type from the passed in argument, the second allows you to specify a template parameter and forward any relevant arguments to ``sol::stack::push``. The type figured out for ``R`` is what is referenced from the stack. This allows you to request arbitrary pop-able types from Sol and have it constructed from ``R(lua_State* L, int stack_index)``. If the template boolean ``should_pop`` is ``true``, the value that was pushed will be popped off the stack. It defaults to popping, but if it encounters a type such as :doc:`sol::stack_reference<stack_reference>` (or any of its typically derived types in Sol), it will leave the pushed values on the stack.
Makes an object out of the value. It pushes it onto the stack, then pops it into the returned ``sol::object``. The first overload deduces the type from the passed in argument, the second allows you to specify a template parameter and forward any relevant arguments to ``sol::stack::push``. The implementation essentially defers to :ref:`sol::make_reference<make-reference>` with the specified arguments, ``R == object`` and ``should_pop == true``. It is preferred that one uses the :ref:`in_place object constructor instead<overloaded-object-constructor>`, since it's probably easier to deal with, but both versions will be supported for forever, since there's really no reason not to and people already have dependencies on ``sol::make_object``.