sol2/sol/usertype.hpp

412 lines
17 KiB
C++
Raw Normal View History

// The MIT License (MIT)
// Copyright (c) 2013-2016 Rapptz and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
2014-09-19 22:45:13 +08:00
#ifndef SOL_USERTYPE_HPP
#define SOL_USERTYPE_HPP
2014-04-26 08:53:36 +08:00
#include "state.hpp"
2014-04-26 10:05:58 +08:00
#include "function_types.hpp"
#include "usertype_traits.hpp"
#include "raii.hpp"
#include "deprecate.hpp"
#include <vector>
#include <array>
#include <algorithm>
2016-02-17 10:22:07 +08:00
#include <map>
namespace sol {
const std::array<std::string, 2> meta_variable_names = { {
"__index",
"__newindex",
} };
const std::array<std::string, 21> meta_function_names = { {
"new",
"__index",
"__newindex",
"__mode",
"__call",
"__metatable",
"__tostring",
"__len",
"__unm",
"__add",
"__sub",
"__mul",
"__div",
"__mod",
"__pow",
"__concat",
"__eq",
"__lt",
"__le",
"__gc",
"__call",
} };
enum class meta_function {
construct,
index,
new_index,
mode,
call,
metatable,
to_string,
length,
unary_minus,
addition,
subtraction,
multiplication,
division,
modulus,
power_of,
involution = power_of,
concatenation,
equal_to,
less_than,
less_than_or_equal_to,
garbage_collect,
call_function,
};
namespace usertype_detail {
struct add_destructor_tag {};
struct check_destructor_tag {};
struct verified_tag {} const verified {};
template <typename T>
struct is_constructor : std::false_type {};
template <typename... Args>
struct is_constructor<constructors<Args...>> : std::true_type {};
template <typename... Args>
struct is_constructor<constructor_wrapper<Args...>> : std::true_type {};
template <typename... Args>
using has_constructor = Or<is_constructor<Unqualified<Args>>...>;
template <typename T>
struct is_destructor : std::false_type {};
template <typename Fx>
struct is_destructor<destructor_wrapper<Fx>> : std::true_type {};
template <typename... Args>
using has_destructor = Or<is_destructor<Unqualified<Args>>...>;
template<typename T, bool refmeta, typename Funcs, typename FuncTable, typename MetaFuncTable>
inline void push_metatable(lua_State* L, bool needsindexfunction, Funcs&& funcs, FuncTable&& functable, MetaFuncTable&& metafunctable) {
static const auto& gcname = meta_function_names[static_cast<int>(meta_function::garbage_collect)];
luaL_newmetatable(L, &usertype_traits<T>::metatable[0]);
int metatableindex = lua_gettop(L);
if (funcs.size() < 1 && metafunctable.size() < 2) {
return;
}
// Metamethods directly on the metatable itself
int metaup = stack::stack_detail::push_upvalues(L, funcs);
if (refmeta && gcname == metafunctable[metafunctable.size()-2].name) {
// We can just "clip" out the __gc function,
// which we always put as the last entry in the meta function table.
luaL_Reg& target = metafunctable[metafunctable.size() - 2];
luaL_Reg old = target;
target = { nullptr, nullptr };
luaL_setfuncs(L, metafunctable.data(), metaup);
target = old;
}
else {
// Otherwise, just slap it in there.
luaL_setfuncs(L, metafunctable.data(), metaup);
}
if (needsindexfunction) {
// We don't need to do anything more
// since we've already bound the __index field using
// setfuncs above...
return;
}
// Otherwise, we use quick, fast table indexing for methods
// gives us performance boost in calling them
lua_createtable(L, 0, functable.size());
int up = stack::stack_detail::push_upvalues(L, funcs);
luaL_setfuncs(L, functable.data(), up);
lua_setfield(L, metatableindex, "__index");
return;
}
template <typename T, typename Functions>
inline void set_global_deleter(lua_State* L, lua_CFunction cleanup, Functions&& functions) {
// Automatic deleter table -- stays alive until lua VM dies
// even if the user calls collectgarbage(), weirdly enough
lua_createtable(L, 0, 0); // global table that sits at toplevel
lua_createtable(L, 0, 1); // metatable for the global table
int up = stack::stack_detail::push_upvalues<true>(L, functions);
stack::set_field(L, "__gc", c_closure(cleanup, up));
lua_setmetatable(L, -2);
// gctable name by default has ♻ part of it
lua_setglobal(L, &usertype_traits<T>::gc_table[0]);
}
}
template<typename T>
class usertype {
private:
typedef std::map<std::string, std::pair<bool, base_function*>> function_map_t;
std::vector<std::string> functionnames;
std::vector<std::unique_ptr<base_function>> functions;
std::vector<luaL_Reg> functiontable;
std::vector<luaL_Reg> metafunctiontable;
base_function* indexfunc;
base_function* newindexfunc;
function_map_t indexwrapper, newindexwrapper;
lua_CFunction constructfunc;
const char* destructfuncname;
lua_CFunction destructfunc;
lua_CFunction functiongcfunc;
bool needsindexfunction;
template<typename... Functions>
std::unique_ptr<base_function> make_function(const std::string&, overload_set<Functions...> func) {
return std::make_unique<usertype_overloaded_function<T, Functions...>>(std::move(func));
}
template<typename... Functions>
std::unique_ptr<base_function> make_function(const std::string&, constructor_wrapper<Functions...> func) {
return std::make_unique<usertype_constructor_function<T, Functions...>>(std::move(func));
}
template<typename Arg, typename... Args, typename Ret>
std::unique_ptr<base_function> make_function(const std::string&, Ret(*func)(Arg, Args...)) {
typedef Unqualified<std::remove_pointer_t<Arg>> Argu;
static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired userdata type.");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_variable_function(std::true_type, const std::string&, Ret Base::* func) {
static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_variable_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_variable_function(std::false_type, const std::string&, Ret Base::* func) {
static_assert(std::is_base_of<Base, T>::value, "Any registered function must be part of the class");
typedef std::decay_t<decltype(func)> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
}
template<typename Base, typename Ret>
std::unique_ptr<base_function> make_function(const std::string& name, Ret Base::* func) {
typedef std::decay_t<decltype(func)> function_type;
return make_variable_function(std::is_member_object_pointer<function_type>(), name, func);
}
template<typename Fx>
std::unique_ptr<base_function> make_function(const std::string&, Fx&& func) {
typedef Unqualified<Fx> Fxu;
typedef std::tuple_element_t<0, typename function_traits<Fxu>::args_tuple_type> Arg0;
typedef Unqualified<std::remove_pointer_t<Arg0>> Argu;
static_assert(std::is_base_of<Argu, T>::value, "Any non-member-function must have a first argument which is covariant with the desired usertype.");
typedef std::decay_t<Fxu> function_type;
return std::make_unique<usertype_function<function_type, T>>(func);
}
template<std::size_t N, typename... Args>
void build_function(std::string funcname, constructors<Args...>) {
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
// Insert bubble to keep with compile-time argument count (simpler and cheaper to do)
functions.push_back(nullptr);
constructfunc = construct<T, Args...>;
metafunctiontable.push_back({ functionnames.back().c_str(), constructfunc });
}
template<std::size_t N>
void build_function(std::string funcname, destructor_wrapper<void>) {
auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), funcname);
if (metamethodfind == meta_function_names.end())
throw error("cannot set destructor to anything but the metamethod \"__gc\"");
meta_function metafunction = static_cast<meta_function>(metamethodfind - meta_function_names.begin());
if (metafunction != meta_function::garbage_collect)
throw error("cannot set destructor to anything but the metamethod \"__gc\"");
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
destructfunc = destruct<T>;
destructfuncname = name.c_str();
// Insert bubble to stay with the compile-time count
functions.push_back(nullptr);
}
template<std::size_t N, typename Fx>
void build_function(std::string funcname, destructor_wrapper<Fx> dx) {
auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), funcname);
if (metamethodfind == meta_function_names.end())
throw error("cannot set destructor to anything but the metamethod \"__gc\"");
meta_function metafunction = static_cast<meta_function>(metamethodfind - meta_function_names.begin());
if (metafunction != meta_function::garbage_collect)
throw error("cannot set destructor to anything but the metamethod \"__gc\"");
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
auto baseptr = make_function(name, std::move(dx.fx));
functions.emplace_back(std::move(baseptr));
destructfunc = detail::usertype_call<N>;
destructfuncname = name.c_str();
}
template<std::size_t N, typename Fx>
void build_function(std::string funcname, Fx&& func) {
typedef std::is_member_object_pointer<Unqualified<Fx>> is_variable;
functionnames.push_back(std::move(funcname));
std::string& name = functionnames.back();
auto baseptr = make_function(name, std::forward<Fx>(func));
functions.emplace_back(std::move(baseptr));
auto metamethodfind = std::find(meta_function_names.begin(), meta_function_names.end(), name);
if (metamethodfind != meta_function_names.end()) {
metafunctiontable.push_back({ name.c_str(), detail::usertype_call<N> });
meta_function metafunction = static_cast<meta_function>(metamethodfind - meta_function_names.begin());
switch (metafunction) {
case meta_function::garbage_collect:
destructfuncname = name.c_str();
destructfunc = detail::usertype_call<N>;
return;
case meta_function::index:
indexfunc = functions.back().get();
needsindexfunction = true;
break;
case meta_function::new_index:
newindexfunc = functions.back().get();
break;
case meta_function::construct:
constructfunc = detail::usertype_call<N>;
break;
default:
break;
}
return;
}
if (is_variable::value) {
needsindexfunction = true;
indexwrapper.insert({ name, { false, functions.back().get() } });
newindexwrapper.insert({ name, { false, functions.back().get() } });
return;
}
indexwrapper.insert({ name, { true, functions.back().get() } });
functiontable.push_back({ name.c_str(), detail::usertype_call<N> });
}
template<std::size_t N, typename Fx, typename... Args>
void build_function_tables(std::string funcname, Fx&& func, Args&&... args) {
build_function<N>(std::move(funcname), std::forward<Fx>(func));
build_function_tables<N + 1>(std::forward<Args>(args)...);
}
template<std::size_t N, typename Fx, typename... Args>
void build_function_tables(meta_function metafunc, Fx&& func, Args&&... args) {
std::size_t idx = static_cast<std::size_t>(metafunc);
const std::string& funcname = meta_function_names[idx];
build_function_tables<N>(funcname, std::forward<Fx>(func), std::forward<Args>(args)...);
}
template<std::size_t N>
void build_function_tables() {
int variableend = 0;
if (!indexwrapper.empty()) {
functions.push_back(std::make_unique<usertype_indexing_function>("__index", indexfunc, std::move(indexwrapper)));
metafunctiontable.push_back({ "__index", detail::usertype_call<N> });
++variableend;
}
if (!newindexwrapper.empty()) {
functions.push_back(std::make_unique<usertype_indexing_function>("__newindex", newindexfunc, std::move(newindexwrapper)));
metafunctiontable.push_back({ "__newindex", indexwrapper.empty() ? detail::usertype_call<N> : detail::usertype_call<N + 1> });
++variableend;
}
if (destructfunc != nullptr) {
metafunctiontable.push_back({ destructfuncname, destructfunc });
}
switch (variableend) {
case 2:
functiongcfunc = detail::usertype_gc<N + 2>;
break;
case 1:
functiongcfunc = detail::usertype_gc<N + 1>;
break;
case 0:
functiongcfunc = detail::usertype_gc<N + 0>;
break;
}
}
template<typename... Args>
usertype(usertype_detail::verified_tag, Args&&... args) : indexfunc(nullptr), newindexfunc(nullptr), constructfunc(nullptr), destructfunc(nullptr), functiongcfunc(nullptr), needsindexfunction(false) {
functionnames.reserve(sizeof...(args)+3);
functiontable.reserve(sizeof...(args)+3);
metafunctiontable.reserve(sizeof...(args)+3);
build_function_tables<0>(std::forward<Args>(args)...);
metafunctiontable.push_back({ nullptr, nullptr });
functiontable.push_back({ nullptr, nullptr });
}
template<typename... Args>
usertype(usertype_detail::add_destructor_tag, Args&&... args) : usertype(usertype_detail::verified, "__gc", default_destructor, std::forward<Args>(args)...) {}
template<typename... Args>
usertype(usertype_detail::check_destructor_tag, Args&&... args) : usertype(If<And<std::is_destructible<T>, Not<usertype_detail::has_destructor<Args...>>>, usertype_detail::add_destructor_tag, usertype_detail::verified_tag>(), std::forward<Args>(args)...) {}
public:
template<typename... Args>
usertype(Args&&... args) : usertype(If<And<std::is_default_constructible<T>, Not<usertype_detail::has_constructor<Args...>>>, decltype(default_constructor), usertype_detail::check_destructor_tag>(), std::forward<Args>(args)...) {}
template<typename... Args, typename... CArgs>
usertype(constructors<CArgs...> constructorlist, Args&&... args) : usertype(usertype_detail::verified, "new", constructorlist, "__gc", default_destructor, std::forward<Args>(args)...) {
}
int push(lua_State* L) {
// push pointer tables first,
usertype_detail::push_metatable<T*, true>(L, needsindexfunction, functions, functiontable, metafunctiontable);
lua_pop(L, 1);
// but leave the regular T table on last
// so it can be linked to a type for usage with `.new(...)` or `:new(...)`
usertype_detail::push_metatable<T, false>(L, needsindexfunction, functions, functiontable, metafunctiontable);
// Make sure to drop a table in the global namespace to properly destroy the pushed functions
// at some later point in life
usertype_detail::set_global_deleter<T>(L, functiongcfunc, functions);
return 1;
}
};
namespace stack {
template<typename T>
struct pusher<usertype<T>> {
static int push(lua_State* L, usertype<T>& user) {
return user.push(L);
}
};
} // stack
2014-04-27 13:29:37 +08:00
} // sol
#endif // SOL_USERTYPE_HPP