sandboxed-api/sandboxed_api/sandbox2/global_forkclient.cc
Wiktor Garbacz a4d602298b Dump coverage prior to execveat
PiperOrigin-RevId: 520002416
Change-Id: Ic792b0b71b8e7b2f00b669db9b6831acd8341c5c
2023-03-28 05:50:43 -07:00

327 lines
10 KiB
C++

// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Implementation of the sandbox2::ForkServer class.
#include "sandboxed_api/sandbox2/global_forkclient.h"
#include <fcntl.h>
#include <sched.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <syscall.h>
#include <unistd.h>
#include <climits>
#include <csignal>
#include <cstdlib>
#include <memory>
#include <string>
#include <vector>
#include "absl/cleanup/cleanup.h"
#include "absl/flags/flag.h"
#include "absl/log/log.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/ascii.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/mutex.h"
#include "sandboxed_api/config.h"
#include "sandboxed_api/embed_file.h"
#include "sandboxed_api/sandbox2/comms.h"
#include "sandboxed_api/sandbox2/fork_client.h"
#include "sandboxed_api/sandbox2/forkserver_bin_embed.h"
#include "sandboxed_api/sandbox2/util.h"
#include "sandboxed_api/util/fileops.h"
#include "sandboxed_api/util/raw_logging.h"
namespace sandbox2 {
namespace file_util = ::sapi::file_util;
namespace {
std::string ToString(GlobalForkserverStartMode mode) {
switch (mode) {
case GlobalForkserverStartMode::kOnDemand:
return "ondemand";
default:
return "unknown";
}
}
} // namespace
bool AbslParseFlag(absl::string_view text, GlobalForkserverStartModeSet* out,
std::string* error) {
*out = {};
if (text == "never") {
return true;
}
for (absl::string_view mode : absl::StrSplit(text, ',')) {
mode = absl::StripAsciiWhitespace(mode);
if (mode == "ondemand") {
*out |= GlobalForkserverStartMode::kOnDemand;
} else {
*error = absl::StrCat("Invalid forkserver start mode: ", mode);
return false;
}
}
return true;
}
std::string AbslUnparseFlag(GlobalForkserverStartModeSet in) {
std::vector<std::string> str_modes;
for (size_t i = 0; i < GlobalForkserverStartModeSet::kSize; ++i) {
auto mode = static_cast<GlobalForkserverStartMode>(i);
if (in.contains(mode)) {
str_modes.push_back(ToString(mode));
}
}
if (str_modes.empty()) {
return "never";
}
return absl::StrJoin(str_modes, ",");
}
} // namespace sandbox2
ABSL_FLAG(std::string, sandbox2_forkserver_binary_path, "",
"Path to forkserver_bin binary");
ABSL_FLAG(sandbox2::GlobalForkserverStartModeSet,
sandbox2_forkserver_start_mode,
sandbox2::GlobalForkserverStartModeSet(
sandbox2::GlobalForkserverStartMode::kOnDemand)
,
"When Sandbox2 Forkserver process should be started");
namespace sandbox2 {
namespace {
GlobalForkserverStartModeSet GetForkserverStartMode() {
return absl::GetFlag(FLAGS_sandbox2_forkserver_start_mode);
}
struct ForkserverArgs {
int exec_fd;
int comms_fd;
};
int LaunchForkserver(void* vargs) {
auto* args = static_cast<ForkserverArgs*>(vargs);
// Move the comms FD to the proper, expected FD number.
// The new FD will not be CLOEXEC, which is what we want.
// If exec_fd == Comms::kSandbox2ClientCommsFD then it would be replaced by
// the comms fd and result in EACCESS at execveat.
// So first move exec_fd to another fd number.
if (args->exec_fd == Comms::kSandbox2ClientCommsFD) {
args->exec_fd = dup(args->exec_fd);
SAPI_RAW_PCHECK(args->exec_fd != -1, "duping exec fd failed");
fcntl(args->exec_fd, F_SETFD, FD_CLOEXEC);
}
SAPI_RAW_PCHECK(dup2(args->comms_fd, Comms::kSandbox2ClientCommsFD) != -1,
"duping comms fd failed");
char proc_name[] = "S2-FORK-SERV";
char* const argv[] = {proc_name, nullptr};
util::Execveat(args->exec_fd, "", argv, environ, AT_EMPTY_PATH);
SAPI_RAW_PLOG(FATAL, "Could not launch forkserver binary");
}
absl::StatusOr<std::unique_ptr<GlobalForkClient>> StartGlobalForkServer() {
SAPI_RAW_LOG(INFO, "Starting global forkserver");
// Allow passing of a spearate forkserver_bin via flag
int exec_fd = -1;
if (!absl::GetFlag(FLAGS_sandbox2_forkserver_binary_path).empty()) {
exec_fd = open(absl::GetFlag(FLAGS_sandbox2_forkserver_binary_path).c_str(),
O_RDONLY);
}
if (exec_fd < 0) {
// For Android we expect the forkserver_bin in the flag
if constexpr (sapi::host_os::IsAndroid()) {
return absl::ErrnoToStatus(
errno,
"Open init binary passed via --sandbox2_forkserver_binary_path");
}
// Extract the fd when it's owned by EmbedFile
exec_fd = sapi::EmbedFile::instance()->GetDupFdForFileToc(
forkserver_bin_embed_create());
}
if (exec_fd < 0) {
return absl::InternalError("Getting FD for init binary failed");
}
file_util::fileops::FDCloser exec_fd_closer(exec_fd);
int sv[2];
if (socketpair(AF_LOCAL, SOCK_STREAM | SOCK_CLOEXEC, 0, sv) == -1) {
return absl::ErrnoToStatus(errno, "Creating socket pair failed");
}
// Fork the fork-server, and clean-up the resources (close remote sockets).
const size_t stack_size = PTHREAD_STACK_MIN;
int clone_flags = CLONE_VM | CLONE_VFORK | SIGCHLD;
// CLONE_VM does not play well with TSan.
if constexpr (sapi::sanitizers::IsTSan()) {
clone_flags &= ~CLONE_VM & ~CLONE_VFORK;
}
char* stack =
static_cast<char*>(mmap(NULL, stack_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0));
if (stack == MAP_FAILED) {
return absl::ErrnoToStatus(errno, "Allocating stack failed");
}
absl::Cleanup stack_dealloc = [stack, stack_size] {
munmap(stack, stack_size);
};
ForkserverArgs args = {
.exec_fd = exec_fd,
.comms_fd = sv[0],
};
pid_t pid = clone(LaunchForkserver, &stack[stack_size], clone_flags, &args,
nullptr, nullptr, nullptr);
if (pid == -1) {
return absl::ErrnoToStatus(errno, "Forking forkserver process failed");
}
close(sv[0]);
return std::make_unique<GlobalForkClient>(sv[1], pid);
}
void WaitForForkserver(pid_t pid) {
int status;
pid_t wpid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
if (wpid != pid) {
SAPI_RAW_PLOG(ERROR, "Waiting for %d failed", pid);
}
if (WIFEXITED(status)) {
int exit_code = WEXITSTATUS(status);
if (exit_code == 0) {
SAPI_RAW_LOG(INFO, "forkserver (pid=%d) terminated normally", pid);
} else {
SAPI_RAW_LOG(WARNING, "forkserver (pid=%d) terminated with exit code %d",
pid, exit_code);
}
} else if (WIFSIGNALED(status)) {
SAPI_RAW_LOG(WARNING, "forkserver (pid=%d) terminated by signal %d", pid,
WTERMSIG(status));
}
}
} // namespace
absl::Mutex GlobalForkClient::instance_mutex_(absl::kConstInit);
GlobalForkClient* GlobalForkClient::instance_ = nullptr;
void GlobalForkClient::EnsureStarted(GlobalForkserverStartMode mode) {
absl::MutexLock lock(&instance_mutex_);
EnsureStartedLocked(mode);
}
void GlobalForkClient::EnsureStartedLocked(GlobalForkserverStartMode mode) {
if (instance_) {
return;
}
if (getenv(kForkServerDisableEnv)) {
SAPI_RAW_LOG(ERROR,
"Start of the Global Fork-Server prevented by the %s "
"environment variable present",
kForkServerDisableEnv);
return;
}
if (!GetForkserverStartMode().contains(mode)) {
SAPI_RAW_LOG(
ERROR, "Start of the Global Fork-Server prevented by commandline flag");
return;
}
absl::StatusOr<std::unique_ptr<GlobalForkClient>> forkserver =
StartGlobalForkServer();
if (!forkserver.ok()) {
SAPI_RAW_LOG(ERROR, "Starting forkserver failed: %s",
forkserver.status().message().data());
}
instance_ = forkserver->release();
}
void GlobalForkClient::ForceStart() {
absl::MutexLock lock(&GlobalForkClient::instance_mutex_);
SAPI_RAW_CHECK(instance_ == nullptr,
"A force start requested when the Global Fork-Server was "
"already running");
absl::StatusOr<std::unique_ptr<GlobalForkClient>> forkserver =
StartGlobalForkServer();
SAPI_RAW_CHECK(forkserver.ok(), forkserver.status().message().data());
instance_ = forkserver->release();
}
void GlobalForkClient::Shutdown() {
pid_t pid = -1;
{
absl::MutexLock lock(&GlobalForkClient::instance_mutex_);
if (instance_) {
pid = instance_->fork_client_.pid();
}
delete instance_;
instance_ = nullptr;
}
if (pid != -1) {
WaitForForkserver(pid);
}
}
SandboxeeProcess GlobalForkClient::SendRequest(const ForkRequest& request,
int exec_fd, int comms_fd) {
absl::ReleasableMutexLock lock(&GlobalForkClient::instance_mutex_);
EnsureStartedLocked(GlobalForkserverStartMode::kOnDemand);
if (!instance_) {
return SandboxeeProcess();
}
SandboxeeProcess process =
instance_->fork_client_.SendRequest(request, exec_fd, comms_fd);
if (instance_->comms_.IsTerminated()) {
LOG(ERROR) << "Global forkserver connection terminated";
pid_t server_pid = instance_->fork_client_.pid();
delete instance_;
instance_ = nullptr;
// Don't wait for process exit while still holding the lock and potentially
// blocking other threads.
lock.Release();
WaitForForkserver(server_pid);
}
return process;
}
pid_t GlobalForkClient::GetPid() {
absl::MutexLock lock(&instance_mutex_);
EnsureStartedLocked(GlobalForkserverStartMode::kOnDemand);
if (!instance_) {
return -1;
}
return instance_->fork_client_.pid();
}
bool GlobalForkClient::IsStarted() {
absl::ReaderMutexLock lock(&instance_mutex_);
return instance_ != nullptr;
}
} // namespace sandbox2