// Copyright 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <syscall.h> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include "pffft_sapi.sapi.h" // NOLINT(build/include) #include "absl/flags/flag.h" #include "absl/flags/parse.h" #include "absl/log/globals.h" #include "absl/log/initialize.h" #include "sandboxed_api/vars.h" class PffftSapiSandbox : public PffftSandbox { public: std::unique_ptr<sandbox2::Policy> ModifyPolicy(sandbox2::PolicyBuilder*) { return sandbox2::PolicyBuilder() .AllowStaticStartup() .AllowOpen() .AllowRead() .AllowWrite() .AllowSystemMalloc() .AllowExit() .AllowSyscalls({ __NR_futex, __NR_close, __NR_getrusage, }) .BuildOrDie(); } }; ABSL_FLAG(bool, verbose_output, true, "Whether to display verbose output"); double UclockSec() { return static_cast<double>(clock()) / CLOCKS_PER_SEC; } void ShowOutput(const char* name, int n, int complex, float flops, float t0, float t1, int max_iter) { float mflops = flops / 1e6 / (t1 - t0 + 1e-16); if (absl::GetFlag(FLAGS_verbose_output)) { if (flops != -1) { printf("|%9.0f ", mflops); } else { printf("| n/a "); } } else if (flops != -1) { printf("n=%5d, %s %16s : %6.0f MFlops [t=%6.0f ns, %d runs]\n", n, (complex ? "CPLX" : "REAL"), name, mflops, (t1 - t0) / 2 / max_iter * 1e9, max_iter); } fflush(stdout); } absl::Status PffftMain() { LOG(INFO) << "Initializing sandbox...\n"; PffftSapiSandbox sandbox; SAPI_RETURN_IF_ERROR(sandbox.Init()); PffftApi api(&sandbox); // kTransformSizes is a vector keeping the values by which iterates n, its // value representing the input length. More concrete, n is the number of data // points the caclulus is up to (determinating its accuracy). To show the // performance of Fast-Fourier Transformations the program is testing for // various values of n. constexpr int kTransformSizes[] = { 64, 96, 128, 160, 192, 256, 384, 5 * 96, 512, 5 * 128, 3 * 256, 800, 1024, 2048, 2400, 4096, 8192, 9 * 1024, 16384, 32768}; for (int complex : {0, 1}) { for (int n : kTransformSizes) { const int n_float = n * (complex ? 2 : 1); int n_bytes = n_float * sizeof(float); std::vector<float> work(2 * n_float + 15, 0.0); sapi::v::Array<float> work_array(&work[0], work.size()); std::vector<float> x(n_bytes, 0.0); sapi::v::Array<float> x_array(&x[0], x.size()); std::vector<float> y(n_bytes, 0.0); sapi::v::Array<float> y_array(&y[0], y.size()); std::vector<float> z(n_bytes, 0.0); sapi::v::Array<float> z_array(&z[0], z.size()); double t0; double t1; double flops; int max_iter = 5120000 / n * 4; for (int k = 0; k < n_float; ++k) { x[k] = 0; } // FFTPack benchmark { // SIMD_SZ == 4 (returning value of pffft_simd_size()) int simd_size_iter = max_iter / 4; if (simd_size_iter == 0) simd_size_iter = 1; if (complex) { SAPI_RETURN_IF_ERROR(api.cffti(n, work_array.PtrBoth())); } else { SAPI_RETURN_IF_ERROR(api.rffti(n, work_array.PtrBoth())); } t0 = UclockSec(); for (int iter = 0; iter < simd_size_iter; ++iter) { if (complex) { SAPI_RETURN_IF_ERROR( api.cfftf(n, x_array.PtrBoth(), work_array.PtrBoth())); SAPI_RETURN_IF_ERROR( api.cfftb(n, x_array.PtrBoth(), work_array.PtrBoth())); } else { SAPI_RETURN_IF_ERROR( api.rfftf(n, x_array.PtrBoth(), work_array.PtrBoth())); SAPI_RETURN_IF_ERROR( api.rfftb(n, x_array.PtrBoth(), work_array.PtrBoth())); } } t1 = UclockSec(); flops = (simd_size_iter * 2) * ((complex ? 5 : 2.5) * static_cast<double>(n) * log(static_cast<double>(n)) / M_LN2); ShowOutput("FFTPack", n, complex, flops, t0, t1, simd_size_iter); } // PFFFT benchmark { SAPI_ASSIGN_OR_RETURN( PFFFT_Setup * s, api.pffft_new_setup(n, complex ? PFFFT_COMPLEX : PFFFT_REAL)); sapi::v::RemotePtr s_reg(s); t0 = UclockSec(); for (int iter = 0; iter < max_iter; ++iter) { SAPI_RETURN_IF_ERROR( api.pffft_transform(&s_reg, x_array.PtrBoth(), z_array.PtrBoth(), y_array.PtrBoth(), PFFFT_FORWARD)); SAPI_RETURN_IF_ERROR( api.pffft_transform(&s_reg, x_array.PtrBoth(), z_array.PtrBoth(), y_array.PtrBoth(), PFFFT_FORWARD)); } t1 = UclockSec(); SAPI_RETURN_IF_ERROR(api.pffft_destroy_setup(&s_reg)); flops = (max_iter * 2) * ((complex ? 5 : 2.5) * static_cast<double>(n) * log(static_cast<double>(n)) / M_LN2); ShowOutput("PFFFT", n, complex, flops, t0, t1, max_iter); LOG(INFO) << "n = " << n << " SUCCESSFULLY"; } } } return absl::OkStatus(); } int main(int argc, char* argv[]) { absl::SetStderrThreshold(absl::LogSeverityAtLeast::kInfo); absl::ParseCommandLine(argc, argv); absl::InitializeLog(); if (absl::Status status = PffftMain(); !status.ok()) { LOG(ERROR) << "Initialization failed: " << status.ToString(); return EXIT_FAILURE; } return EXIT_SUCCESS; }